1. True/False Questions (10 x 1p each = 10p)

(a) I forgot to write down my name, student ID, and lab section.  TRUE / FALSE

(b) This is a valid C statement: for(i=0,j=10;i<j;i++,j--);  TRUE / FALSE

(c) The increment statement in a for loop is optional  TRUE / FALSE

(d) The time function returns the seconds elapsed since 1/1/1980 GMT  TRUE / FALSE

(e) The default clause of a switch statement is optional  TRUE / FALSE

(f) While loops cannot be used with arrays.  TRUE / FALSE

(g) In the worst case insertion sort is faster than bubble sort  TRUE / FALSE

(h) A C function can take an array as an input argument  TRUE / FALSE

(i) The minimum value that can be stored in an integer is -2147483648  TRUE / FALSE

(j) Linear search is faster than binary search  TRUE / FALSE

2. If-Else (5 x 2p each = 10 p)

Given the following if/else block where a, b, c, and d are integer variables,

```
if(a == b || c < b ) {
    d = (a + b)/2;
} else if(b == 1 || c) {
    d = a + c%2;
} else
    d = 2*b;
```

determine the final value of the variable d for the following initial conditions:

a) a = 6;  b = 5;  c = 8;  d = _____

b) a = 1;  b = 1;  c = 0;  d = _____

c) a = 0;  b = 2;  c = 4;  d = _____

d) a = 0;  b = 1;  c = 0;  d = _____

e) a = 1;  b = -1;  c = 0;  d = _____
3. Code Snippets (2 x 5p each = 10p)

Write a C code snippet (3-6 lines max) that produces the results specified below.

(a) Print only the numbers greater than 5 and smaller than 20 that are stored in the integer array of size 10 named a. Separate the printed numbers with commas.

(b) Print the numbers between 1 and 1000 that are perfect squares. In other words, they can be represented as n*n, where n is a positive integer.
4. What is the Output? Explain. (2 x 5p each = 10p)

a)  
int i=0;
for(;i>=0;i++)
    printf("%d\n",i);

b) Please indicate spaces with |__| and new lines with \n
int a,b;
for(a=0; a<=5; a++)
{
    for(b=0; b<=5; b++)
        if( (a==1) || (a==4))
            printf("#")
        else if((b==1) || (b==4))
            printf("#")
        else
            printf(" ");
    printf("\n");
}
5. Calculating e (10 p)

The real constant $e$, which has many applications in Mathematics and Engineering, can be calculated with the following formula:

$$e = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \ldots$$

where ‘!’ stands for factorial (N!= 1*2*3* . . . *N). Write a complete C program that approximates the value of $e$ using the first 10 elements of the series given above.
6. Symmetric Matrix (15 points)

Symmetry is an interesting property in the mathematical world and particularly in matrix algebra. Your task is to determine if a given square matrix is symmetric.

As a refresher, a matrix is a 2-dimensional array of elements. A square matrix is a matrix that has the same number of rows and columns (i.e., the size is N x N). Transposition is one common operation that can be performed on a matrix. In this operation, the k-th row of the input matrix A becomes the k-th column in the output matrix B for all k=1,...,N. The square matrix A is symmetric if it is equivalent to its transpose B; that is, A = B.

The first line of the input contains the size N of the square matrix. The next N lines contain N elements each, representing the elements of the matrix. The output is simply "Symmetric" if the matrix is symmetric or "Not symmetric" if it is not.

HINT: Transposition is really just a reflection over the main diagonal of the matrix.

===== SAMPLE RUN ======
2
0 2
2 0
Symmetric

===== SAMPLE RUN ======
3
4 2 1
2 5 3
1 3 9
Symmetric

===== SAMPLE RUN ======
3
1 2 3
4 5 6
7 8 9
Not symmetric

===== SAMPLE RUN ======
<table>
<thead>
<tr>
<th>Question</th>
<th>Max</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>True/False</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>If-Else</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Code Snippets</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>What is the output</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Calculating e</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Symmetric Matrix</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Program 1 (lab)</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Program 2 (lab)</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Program 3 (lab)</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Program 4 (lab)</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Program 5 (lab)</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td><strong>TOTAL:</strong></td>
<td><strong>135</strong></td>
<td></td>
</tr>
</tbody>
</table>

May the source be with you!