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Abstract
As part of a young child's learning process, there are specific items that are discovered through the embodied experience.  
It's been shown that an infant is going to using their hands and feet to touch things and characterize how they “experienced”  
the objects.  The goal of this project is to model that learning, by organizing the characteristics of learned objects, allowing a 
prediction of what new similar objects might be like.  Success would be the software/robot determining if a object is going  
to be hot or code based on previous experience.

Introduction 
The concept is to attempt to model a child's learning process, when related to predicting what new objects are like based on 
previously learned objects.  A object is defined for this project as something like a ice cream cone or a pizza.  It's something  
that consists of color and a specific set of environmental traits (hot/cold, luminous, etc).  This experiment takes in those  
traits via imagery and environment sensor data to define what an object is like.  That data is then used to form a model of  
relationships of similar objects that can be later compared to a new object.  When a new object is discovered, the prediction  
process would try to fit it to an already learned object.  Even if the new object isn't predicted correctly, there is still a valid  
path in it's process to learn that new objects characteristics.  If that path is taken, the algorithm performs a confirmation step 
where a correction could be made to then “correctly” learn that new object's characteristics.  This concept is relying on 
using multiple sensor data sources to decrease error in the learning/predicting algorithm, but may still run into cases where  
the “noise” is to high to get an understanding of what is being analyzed.  Understanding this “noise” is going to be part of  
the experimentation process and may limit the initial project inputs to controlled background colors and images that appeal 
to the available image detection algorithms.

This concept strives to provide the user, without an embodied robot, a method for doing sudo-embodiment through the use 
of  “hand” sensors and “eye” camera.  I've only selected to use a subset of sensors available, but the design allows enabling 
of more sensors on the hardware as needed to enhance/supplement the existing sensory data.  Things like the camera could 
also be enabled to do video instead of the initial  still  shots currently planned.  Since the Android and communication 
protocols being used are based on open standards, the interoperability of this design with existing hardware could definitely 
be leveraged.

This project is targeted to students who have simple technology like their cell phone and micro-controller kits available to  
run experiments on.  With the end goal of providing a framework that  allows object and sensory input learning to be 
organized with relationships.  This framework could be then used to take a Android based device and make it a “brain” for a  
robot.  There have been some attempts to use a Android device in a “cellbot” (http://mashable.com/2010/03/06/cellbot/), but the 
“cellbots” seem to rely on preprogrammed functionality.   Compiling the  existing camera inputs  with computer  vision  
processing, would make the cellbot a powerful platform for prototyping autonomous movement.

Illustration 1: Cellbot (http://mashable.com/2010/03/06/cellbot/)

When researching the resources available for doing a computer vision project and understanding sensor data, there weren't 
an open source examples or platforms available as a good starting point that already brought that information together to 
easily form predictions.  When this project is completed, an Android application will exist that processes inbound sensory 
data and creates the necessary predictions for learning of new objects.

http://mashable.com/2010/03/06/cellbot/


Approach
Since I don't have much experience in the area of robotics, I've fell back on my work experience with micro-controllers and 
Android.  I will have to do some research to figure-out the computer vision and the neural net learning algorithms available,  
but initial searches have found a number of projects and examples that look promising.  Items like coding up a socket 
transport to move the sensor data from the sensor array isn't an issue.  Along with the neural net examples seem to show a  
easy representation of do the data inputting and organizing.  The difficult part looks to be with the image processing and  
similarity predictions using the neural net.

When looking at this project from the perspective of a 2-year-old child, usually they can start to learn characteristics of 
objects experience.  So attempting to do basic learning of objects based of similarity characteristics doesn't seen beyond  
reach.  The challenge is going to meeting the capability(error rate) that the child would have for recognizing new objects 
based previous experience.

At a high-level, I've broken the development into the following tasks (Design, Code/Test, Integrate, Document).  The design 
phase will consist of growing this document with more detailed sequence diagrams,  algorithm information, and test cases / 
expected results.  The code/test phase will consist of a few steps.  

– Develop image and sensor data gathering code
– Develop computer vision image processing code
– Develop the basic Android application
– Develop communication between micro-controller and Android application

The integrate phase will consist of taking each of the code/test tasks and bringing them together on hardware.  It will also  
contain the tasks for testing and collecting the experiment data.  Following the integrate phase, the documentation will start 
to create the necessary artifacts (write up, demo, videos, poster, presentations, website).

Digging  into  the  details  of  the  development,  I'll  be  starting  with  the  sensor  package.   The  micro-controller  board 
configuration would first be setup to enable the pins/interfaces that connect to the sensors and also the Ethernet interface for  
off board communication.  Then the data collection and format would be coded that would result in IP packets for relay to  
the Android application.  Once this basic application platform is in place, I'll begin the process of  integrating the computer  
vision library  into Android  and  building  a  basic  model  of  image matching either  using  histograms and or  edge/point 
detection.

Equipment

Since I'm taking this class via distance education, I'll be using simulation combined with some sensing hardware.  The main  
component is an Android phone that will collect sensor data and images.  The sensor data comes from an external Arduino 
sensor package that would normally be attached to a robot's hand.  The sensors being used are a one-wire temperature 
sensor and a resistive photo sensor.  For my experiment, I'll  be manually placing the sensors close to the object being  
learned.  In the diagram below, the connectivity is shown between components.  

Some of the initial work I've done has been focused in validating a working hardware platform.  
– I've found that I wasn't going to be able to use WIFI for communication from my micro-controller because of 

outstanding issues with the provided drivers.  Luckily there was still an Ethernet option.
– The micro-controller example software has allowed accelerated development because of provided example code 

that allows the hardware configuration I need to pretty much work our of the box. (wasn't expecting this)
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Data Structures

Micro-controller communication packets are defined as a UDP packet of data size 10bytes to port 20000 with the following 
format.

2 byte(s) 1 byte(s) 2 byte(s) 2 byte(s) 3 byte(s)

NA Temperature NA Light level NA

Object data storage is going to be based on the neural net configuration, but at a high-level the following will be captured.
– Image features (Histogram/Edge Point data) – (Array of normalized data)
– Temperature – (normalized integer)
– Light level – (normalized integer)

Algorithms

For this project there are (3) categories of algorithms required.  One to distill the raw data to get information from it, the  
second  to take that  distilled information and organize it,  and the third to  efficiently  extract  the information that  was 
organized for comparison.

Distillation

The data from the sensors  will  be taken and normalized between -1 and 1 for  use in the neural  net.   For the image  
processing, I'm making some assumptions that the image captured will be focused in on the object excluding most of the 
surrounding noise that could affect the generation of a histogram for comparison purposes.  A histogram is a graph of the 
amplitude of the number of pixels (read left(black) to right (white)).  Shown below is the basic graph of count vs intensity  
and an example image w/ it's respective histogram (http://www.shotaddict.com/tips/article_Reading+A+Histogram+Correctly.html).  That 
histogram data would be stored as part of each objects set of traits.

Beyond using histograms to analyze the images, I've investigated edge/point detection using an algorithm like Speeded Up 
Robust Features (SURF).  A combination of SURF and histograms  looks to be the best analysis to do image matching. 
(http://www.cscjournals.org/csc/manuscript/Journals/IJIP/volume3/Issue4/IJIP-51.pdf)  Depending on the histogram 
analysis approach, it looks to compensate for the illumination and rotation issues that come with the SURF algorithm. 
Especially since the histogram is just a pixel distribution count not a feature detection algorithm.  Some of the first testing 
during development will be to understand the success rate of both techniques to create image “finger prints” that provide 
good data for the neural net. 

Distill new 
obj inputs

Organize new
SOM entry for obj

Extract Similar 
obj from SOM

Item not 
in SOM

Similar Items 
Found

Display similar
items

http://www.cscjournals.org/csc/manuscript/Journals/IJIP/volume3/Issue4/IJIP-51.pdf


Organization

One of the concepts I'm still working to figure-out, is how to utilize a self-organizing net that allows me to easily change the 
dimensions on the fly and reorganize.  I'm not sure if I'll get that resolved in this project or if the net will be a large fixed 
size to start with.

I've been researching neural nets and found one in particular that stuck out as a good pick for this project.  It's a Self 
Organizing Map (SOM).  I found a couple really good examples that utilize the SOM for doing picture predictions based on 
previously learned images.  Also since the SOM can be told to refine it's relational organization, the learning process doesn't  
require a fixed library of objects that have already been learned.  It's possible to start out with new objects and build up to  
having a large set of object data that is relationally organized for fast prediction searches.  Using the example discussion  
about the picture prediction as my basis, I'd like to factor in the sensor data to produce predictions on if objects are hot/cold  
bright/dark in-addition to if a picture of a  is similar.  Basically allowing multiple sensor sources to refine the prediction.
The way a SOM works is to take multidimensional nodes that each have a relationship to an input node that provides  
normalized values (-1 to 1) that define what's unique about that node.  For example most of the SOM examples are using  
colors.  i.e. like below, there would be 3 input nodes (RGB) and each map node would have a normalized value to represent  
each of the three colors to create the specific shade that defines that map node.  

 

Illustration 2: SOM Input  
and Map Node 
Connectivity  
(http://www.generation5.org/content/2
004/aiSomPic.asp)

Extraction

The  extraction  process  would  take  place  every  time  there  is  a  input  of  a  object  for  analysis.   The  object  would  be 
characterized and then an attempt would be made at locating the item in the SOM.  Optimizations can definitely be made to 
the bookkeeping of the SOM to allow fast locates of similar objects, but even without that in place, it'd be possible to just  
use a simple tree following algorithm to pick a node at random to start with and follow to find the best position where that  
object would fit.  The data that would be followed would be the normalized values of the image and sensor data.  The end  
goal of extraction is to characterize the object to determine if it is hot/cold without just reading the temperature sensor.  I  
assume that when a normal person is learning and they come upon a object that appears through previous experience as 
something that could be hot/cold, they wouldn't just stick out their finger and touch it first without thinking about if it would 
burn them.  So I'm doing the same thing.  First predicting if something might be hot/cold and then verifying by touching it.

Illustration 4: SOM Color  
Example - Unsorted 
(http://www.ai-
junkie.com/ann/som/som1.html)

Illustration 3: SOM Color 
Example - Sorted  (http://www.ai-
junkie.com/ann/som/som1.html)



User interface

Here are some initial  mock-ups of the user interface.   The first  image shows the interface broken into capturing data, 
predicting, and learning.  The “Check” button will be used to start the process of gathering an image for analysis.  After the 
image has be analyzed and a prediction is attempted (image two), the bottom of the screen will provide a suggested match  
along with the temperature and luminescence sensor info for that match.  The temperature will change color between blue  
and red to represent cold and hot respectively.  The luminescence/light sensor will change color between gray and yellow 
representing dark and light respectively.  The user can then decide to agree with that match or learn the obj as a new obj.  If  
the decision is made to learn, then the objects attributes along with sensor information are stored.  i.e. in these initial mock-
ups if this was the case for the last image analyzed, the user could press the learn button to add it to the neural net.  Also just  
to note the behavior of the sensors.  The temperature and light (luminescence) sensors provide a semi-realtime feed to the  
application and update above the top image until a object is checked and then lock in until the item is found or learned.



Dataflows

UseCase User button press on GUI

Description User  finds  new object  to  analyze,  to  predict  if  we can  find  a 
match.

Preconditions Sensor data is valid and camera is focused on new object.

Postconditions New object is either stored in the SOM or a object was displayed 
that matched what was analyzed.

UseCase Sensor data provider

Description Micro-controller pushes data out via Ethernet for application use

Preconditions Ethernet connectivity
Sensors initialized

Postconditions Repeat in endless loop.



UseCase Image processing

Description Convert  images  into  a  hash  or  simplified  value  that  can  be 
compared.

Preconditions Image is png formatted

Postconditions Image has been converted into a mathematical representation.

UseCase SOM processing

Description Organizes data by normalized values unique to each node

Preconditions Data is normalized for insertion to map
New node was added to map and needs to be placed

Postconditions Map is organized with correct relationships formed.



Software

Libraries

The baseline software for doing the image analysis is the OpenCV port to the Android platform.  It's libraries seem to  
support all the operations I'll need to distilling down a image into comparable characteristics.  It currently directly interfaces  
with the Android application allowing me to use a Android application to directly control the camera and feed the image  
into OpenCv directly for analysis.  Following the analysis the data would be handed off to extraction step to see if the SOM  
contains similar data or if this is new data that needs to be added.  I have not used this library before, but the examples look 
pretty easy for the type of analysis I need to perform.  Specifically they have a image detection example that looks to offer  
one way of looking at that problem.

I've  looked  at  a  few  other  approaches  to  the  image  analysis  using  histograms,  hashes,  and  hamming  distance  for  
comparisons to find close matches.  The library pHash might be another good fit if the initial testing with OpenCV doesn't  
look  promising.   (http://stackoverflow.com/questions/2146542/opencv-surf-how-to-generate-a-image-hash-fingerprint-signature-out-of-the-d) 

(http://www.phash.org/)  

The micro-controller software is provided with the kit.  A few examples for the sensor implementation are provided by the  
manufacture or Ardunio website.  I haven't worked with this before, but my initial investigation has allowed me to already  
complete the capabilities I need this to perform.  It has built in sensor and UDP Ethernet libraries that can be directly reused 
to relay all the sensor information via WIFI to the Android phone application.

The Android software for the user application is created using the freely available SDK.  I have done a little coding with this  
before and hope to leverage all the examples to do the functionality I'd like to accomplish.

Experiment Setup

The setup consists of a set  of  images to use in the test  cases  and also the hardware configuration show above in the 
Equipment  section.   The  set  of  images  will  contain  a  variety  of  black  and  white  and  also  color  images.   Each  set 
independently tested to see the impacts of color on determining if a object is going to be cold/hot.  Here are some of the  
sample images. (http://www.ngsp.com/Portals/0/Downloads/41018_tg.pdf  )    These samples would be used to initially train 
the SOM.  Once the algorithms are worked out I would then move on to using pictures I take and tyeing in the sensor data  
as an extra trait to be analyzed.  Success would be to have these samples grouped by common specific shapes and colors.

http://www.phash.org/
http://stackoverflow.com/questions/2146542/opencv-surf-how-to-generate-a-image-hash-fingerprint-signature-out-of-the-d
http://www.ngsp.com/Portals/0/Downloads/41018_tg.pdf
http://www.ngsp.com/Portals/0/Downloads/41018_tg.pdf


Timeline (Due on)

March 4 – Narrowed down hardware and software library selection

March 7 – Completed micro-controller integration

March 10 – Turn in project proposal

March 18 – Complete Image analysis with OpenCV/pHash and have information to feed into SOM

March 25 – Complete initial SOM testing with example containing the same inputs required for this project

April 1 – Complete first attempt at using SOM to store and organize OpenCV analyzed image data

April 8 – Make SOM searchable to do comparisons to new object information

April 15 - Testing

April 21 – Writeups Due (poster, writeup, webpage)

April 25 – Dead week presentations

Evaluation Methodology

The plan for testing is to develop a set of know data and expected results (inputs hopefully == outputs).  
The first step will be to build a automated OpenCV application for Android that captures camera pictures and converts them 
using a SURF or histogram algorithm to raw data that I could dump to a file that could be used for post analysis.  This data  
would then be flowed into the SOM processing to test the learning quality of the node organization.  Success is measured  
with the ability to take a converted picture and compare it to another picture of the same object with varying light, angle and 
focus  and  have  the  algorithm  pick  out  that  they  match.   A  good  example  of  test  data  is  found  in  this  paper  
(http://sites.google.com/site/chrisevansdev/files/opensurf.pdf).  It  shows a sequence of images that would be ran through the SURF 
algorithm to verify it's functioning correctly.

To visualize the SOM and organization, the first step is to build a SOM test application and test it to understand if the Java  
version of the SOM algorithm I'm using is going to work.  Using this test application I should be able to take the image data 
collected from the OpenCV test app and build a SOM model that I can verify for organizational correctness.  Then using  
that organized model I can attempt to search the SOM for a similar object to those currently occupying the nodes.  The level 
of success will be measured by it placing the new object somewhere in the region of similar objects.  Once this SOM model 
and searching algorithm are solid then I can convert the application over to a Android application for integration with the 
camera as my input device for gathering/interrogating new objects.

For the final testing of the Android application, the test conditions would be as follows.
– Identification of a set of objects that would have their pictures taken and  temperature/light emittance measured.
– Instructions for the sequence of application event interactions to test the state-machine for valid transitions 
– Post analysis of the SOM organization at specific points during the learning process to make sure things are getting 

organized correctly
– A set of objects to classify and try to identify features based on relationships to the set of learned objects.

The evaluation of the results will look at the sets of inputs and output data to verify that a reasonable match has been made  
that fits the expected results (Similar in color and sensor hot/cold properties).  If the result isn't what is expected, the post  
analysis of the SOM data and whatever the results did end up as, should allow refinement of the decision filtering process.

http://sites.google.com/site/chrisevansdev/files/opensurf.pdf


Conclusion

On completion, this project will model a child's learning process to associate images and sensory feedback to previous  
experience.  As part of the effort an open source framework would be developed that would allow further experiments using 
self-organizing maps (SOMs) within Anrdoid.  (Possibly with computer vision applications for other self learning through 
sensory input.)  i.e. Using this project as a basis, many other applications come to mind.  From simple things like selecting 
the perfect  bottle of wine by pointing your phone at  the store shelf and letting it  pick-out the correct  bottle based on 
previously learned characteristics.  Also possibly based on other information you pass to the application, you could narrow 
down it's pick based on food pairing and atmosphere/event.  Hooks could even be put in to allow other peoples feedback to 
direct the application's selection decisions.

I believe I've selected something that's within my capabilities to accomplish within the necessary deadline.  There are some 
definite challenges with some of the technologies required, but the amount of resources currently available through software 
libraries or examples on the Internet seem to lower the risk.  One of the first things I'll need to tackle is narrowing in on the 
exact behavior of items like image processing to make sure that algorithms will be solid.  By discovering issues with those  
high risk items first, I believe this should be successful.  Thanks for taking the time to read and review my proposal!


