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Abstract—From an early stage in development, infants
show a profound drive to explore the objects around them.
Research in psychology has shown that in doing so, they
solve a vast array of problems, including the formation
and establishment of object representations, recognitionof
objects based on the stimuli they produce, object grouping
and ordering, as well as learning words that describe
objects and their properties. This proposal introduces a
behavior-grounded framework for object perception that
will enable a robot to solve these very same problems.

I. I NTRODUCTION

Our ability to explore physical objects is unparalleled
in the natural world. From an early age, human beings
spend much of their time manipulating objects while si-
multaneously observing the resulting stimuli (e.g., visual
movement, auditory events, etc.). A long line of research
in psychology has revealed that humans (as well as
animals) acquire information about objects through the
use of a number of manipulation behaviors, commonly
referred to asexploratory procedures[23] or exploratory
behaviors[9], [33]. For example, scratching an object
can inform us of its roughness, while lifting it can inform
us of its weight. In a sense, the exploratory behavior
acts as a “question” to the object, which is subsequently
“answered” by the sensory stimuli produced during the
execution of the behavior.

Other research in psychology has established that the
sensory feedback produced by objects can be crucial for
solving several key tasks:

1) object identification, i.e., the ability to individuate
objects, recognize the object identity of a given
object stimulus, and recognize when a stimulus is
produced by a novel object [19], [17]..

2) object sorting, i.e., the ability to spontaneously
group items into sets, or orders, without given a
specific criteria [48], [32].

3) category and relational learning, i.e., the ability
to assign category membership to novel objects as

well as infer how two objects should be ordered,
based on a criteria specified by a series of example
objects with known labels and/or orderings [2].

The goal of this proposal is the development of a
multi-modal behavior-grounded framework for object
perception that would enable a robot to solve these
problems in an experimental setting. To achieve this aim,
the robot in our framework actively performs exploratory
behaviors (e.g., grasping, lifting, shaking, dropping,
pushing and tapping) when learning about objects as
opposed to just passively observing them. While most
robots perceive objects using vision alone, the robot in
our framework also uses the auditory, proprioceptive and
tactile sensory modalities, which are necessary to capture
many object properties [6], [26].

The rest of the proposal is organized as follows:
Section II gives an overview of the related work in
psychology and robotics. Section III provides a detailed
description of the three main problems this proposal
addresses, along with the approaches that will be used
to solve them. Section IV describes our robot platform
and the experimental design used to test our solutions.
Finally, the last section provides extra information about
the software libraries that will be used, the team mem-
bers, and the timeline for the project.

II. RELATED WORK

A. Psychology and Cognitive Science

The ability of humans to individuate objects and
recognize their identities has been extensively studied
in psychology. The problem of object identification is
typically defined as that of inferring how many objects
the environment contains (also referred to as individua-
tion) as well as recognizing when the same object is en-
countered twice (sometimes referred to as identification
as well as recognition) [17]. Studies in developmental
psychology have shown that this process is fundamental
to establishing an internal object representation that



can handle the large number of objects that humans
encounter in their day to day lives [52], [19].

For this reason, how infants establish an object rep-
resentation and subsequently use it to recognize the
identities of objects is a question of significant interest
to developmental psychology. For example, a study in
infants showed that even at the age of 12-months, hu-
mans are able to individuate objects using both shape and
color information [52]. The study also found that while
both object features were used for the task of figuring
out how many objects exist, only the shape feature was
used when recognizing the identity of an object that
was previously individuated. Other studies have shown
that when identifying objects, infants and adults often
make different judgments based on the differences in
the objects’ features [54], indicating that at such an early
age, the biological circuits that allow the problem to be
solved are still developing.

In a typical scenario, the human participant observes
(or interacts with) objects one at a time, where the next
object may or may not be a previously encountered one.
Subsequently, participants may be asked to enumerate
the objects they observed, or match an object stimulus
to one of the estimated object identities. For example,
one such study with human adults showed that as the
number of objects observed increases, the likelihood that
a novel object will be classified as a previously observed
object goes down [17]. The same study also found that
humans rely on prior information when solving iden-
tification problems - based on this finding, the robot’s
object identification model will also be evaluated when
prior information about objects with known identities is
available.

A closely related area of developmental psychology
studies how infants group objects. An important finding
is that certain experimental settings can elicit sponta-
neous sorting and grouping behaviors by infants [30],
[48]. Starkley [48] reports that both 9 and 12 month-old
infants exhibit sorting behaviors when presented with a
set of 8 objects, where the set contains 2 groups of four
objects that are similar along some dimension (e.g., size,
color, etc.).

Sorting and grouping behaviors have also been ob-
served with non-human primates [32], [46]. For exam-
ple, Spinozziet al. [46] found that human-encultured
Bonobos and Chimpanzees are capable of spontaneously
partitioning a set of objects into two categories. The au-
thors also report that chimpanzees’ predominant means
of partitioning a set of objects is by manipulating objects
from one object class only. This procedure is consistent

with the behavior of 3 year old infants [46]. Overall,
these findings suggest that the ability to sort objects is
fundamental to primate intelligence.

For humans in particular, object grouping skills are
thought to be fundamental for language acquisition –
for example, Nelson argued that children form primitive
conceptual categories which are later used when binding
the meaning of a word [30]. Similarly, based on a
large volume of experimental research, Bloom argues
that a large part of early language learning is about
establishing a relation that maps language symbols (e.g.,
individual nouns) to already existing concepts that are
formed independently of the language in question [4].
An example of what this may look like is provided by
Kemp et al. [16] who write:

“Before learning her first few words, a child
may already have formed a category that in-
cludes creatures like the furry pet kept by her
parents; and learning the word ’cat’ may be
a matter of attaching a new label to this pre-
existing category.” [16, p. 216]

Not surprisingly, a large volume of research has
focused on revealing how humans learn the names of
categories [2]. In this framework, the participants are
typically presented with several examples from each
object category and subsequently asked to categorize a
novel item. Researches postulate that humans use two
different strategies (sometimes in combination) to learn
categories from examples - the first involves finding the
common features of members of an individual category,
while the second consists of identifying the distinctive
features among the non-members of that category [14],
[13]. Experiments have shown that adults can learn
categories even when presented only with pairs of objects
of different categories [14]. Children between the ages
of 6-9 years old, however, could only learn the same
categories when provided with object pairs in which the
two objects are of the same category class, indicating
that the two strategies for solving the task have different
developmental trajectories [14].

In addition to learning discrete categories, researchers
have also examined how adult and infant humans learn
real-valued comparative relations such as “A is bigger
than B” [44], [8]. As with category learning, humans can
learn such relations when presented with paired exam-
ples for which the relation is provided by the instructor
or inferred by some other means. Hence, the robot in this
work will be tested in a similar fashion – after initially
interacting with the objects, computational models will



be evaluated using both discrete categorization as well
as real-valued ordering tasks.

B. Robotics

Traditionally, most object recognition systems used by
robots have relied heavily on computer vision techniques
[34], [47], [35] and/or 3D laser scan data [38]. But
studies in psychology indicate that not only is there
a link between neural activations and different sensory
inputs for the same object in the brain [1], but that often
multiple senses are necessary to correctly recognize an
object. In a study by Sappet al., toddlers were presented
with sponges painted as rocks and only by grasping the
sponges could they realize that they were being deceived
[39]. Other studies involving proprioception or audition
have also shown that not only is it possible to use sensory
modalities other than vision to recognize objects and
their properties, but in some cases it is necessary [15],
[7], [10], [11].

Recently, there have been multiple studies in robotics
that have focused on object recognition using sensory
modalities other than vision or 3D laser scan data. A
study by Nataleet al. [29] showed that proprioceptive
information obtained by grasping an object can be used
to successfully recognize objects. Other studies have
estimated physical parameters of objects from proprio-
ceptive data [21], [22], which can be used to recognize
objects. A study by Bergquistet al. [3] showed that
a robot can use proprioceptive information alone to
recognize an object from a large set of objects. A study
by Sinapovet al. [43] showed a similar result using
auditory information alone. Other studies have confirmed
that audition can be used for object recognition [37], [36]
as well as for determining properties of objects [20].
Another study by Mettaet al. showed that integrating
proprioception and vision can bootstrap a robot’s ability
to manipulate objects. All of these studies strongly imply
that sensory modalities other than vision (e.g. audition,
proprioception) are useful for object recognition in addi-
tion to vision. This research will take advantage of this
by combing multiple sensory modalities in order for the
robot to perform tasks.

One of the major drawbacks of virtually all of the
methods cited above is that during the training stage,
the robot has to be told which object it is exploring at
any given trial. In other words, the training trials must
be grouped by object identity. In order to relax that
assumption, a robot must be able to autonomously figure
out how many objects it has interacted with as well as
organize its sensorimotor data according to object ID

(i.e., solve the object individuation problem). There has
been relatively little work in robotics in that area - a
study by Modayil and Kuipers [27] showed how a robot
could use data gathered from a laser range finder to build
an ontology of objects. Another study by Southey and
Little [45] used a stereo camera to detect depth features
in the robot’s environment, which were combined based
off 3D movement patterns to create representations of
each object in the environment.

In addition to object recognition, there has been much
work in robotics studying how robots can form object
categories in an unsupervised manner. Some of them
have focused on how robots can estimate similarity
between objects and use that similarity to develop mean-
ingful object categories [31], [29], [28], [51], [43], [50].
In [29] a Self-Organizing Map was used to illustrate the
haptic similarities between objects, while [43] showed
that a robot can use auditory data generated from per-
forming multiple behaviors on an object to estimate
similarities.

Griffith et al. [12] showed that a robot can form
categories of “container” and “non-container” by observ-
ing the movement of an object dropped in the vicinity
of another object. Sinapov and Stoytchev [42] showed
that a robot can use these object similarities to detect
which object in a set of objects is the odd one out.
While all of these studies showed how a robot can
group objects in an unsupervised manner, they all suffer
from one main drawback: They all require the type
of sorting to be specified in advance - for example,
in [12], the robot’s categorization model used the X-
means algorithm, which can find clusters in data, but
not orders or hierarchies. In [41], on the other hand, the
categorization algorithm assumed that the objects can
be organized in a hierarchy, as opposed to some other
structure. The research project that we propose plans to
implement methods such as the one described in [18] to
allow the robot to determine which structure type should
be used to organize a particular set of objects – in other
words, the structure used to sort the object is induced by
the model, rather then specified by the programmer.

Supervised learning for object category classification
has also been studied in robotics, though not as exten-
sively as identification. A study by Lopes and Chauhan
[25] had a robot use vision to extract features from an
object. They then used a set of classifiers to classify each
object into different categories specified by a human. A
study by Sinapov and Stoytchev [40] showed how a robot
can use proprioceptive and auditory feedback to classify
objects into six human-labeled categories.



Other studies have examined relations among objects.
The study by Griffith et al. [12] examined the rela-
tionship between objects dropped in the vicinity of a
container/non-container, and how the two objects moved
when the robot interacted with them. This research will
present methods for categorizing objects into pre-defined
categories and learning relations between objects as they
relate to ordering objects (e.g. bigger than). To the
authors’ knowledge, there has been no previous research
in robotics on ordering objects.

III. EXPERIMENTAL PLATFORM

A. Robot and Sensors

We will use an upper torso humanoid robot, which has
as its actuators two 7-DOF Barrett WAMs, each with an
attached 3-finger BarrettHand. The WAMs have built-
in proprioception that measures joint angle and torque
at 500 Hz; auditory feedback is captured by an Audio-
Technica U853AW cardioid microphone mounted in the
head, which samples 1 channel (mono) at the standard
16-bit/44.1 kHz resolution and rate. A digital accelerom-
eter device [49], mounted on one of its fingertips, sam-
ples acceleration of the fingertip at 1600 Hz, allowing
detection of minute vibrations due to rubbing between
the robot’s fingertip and the objects’ surfaces. Vision is
supplied by a ZCam, which is a color+depth camera from
3DV systems that records standard640×480 RGB video
in addition to320×240 depth images accurate to within
1-2 cm.

B. Objects

In this project, the robot will explore 100 different
household objects. To our knowledge, this is the largest
number of objects explored by a robot for this type of
study. The total object set will consist of 20 individual
object sets (of 5 objects each) such that each set corre-
sponds to an object category, within which the objects
vary along 1 or more dimensions. Some of the object
categories include:

• decorative eggs of varying material
• small inflated rubber balls of varying color and

material
• pink water noodles of varying length
• small oval-shaped cups of varying color
• tupperware containers of varying contents
• styrofoam cones of varying size
• cans of food of varying size and weight
• medicine bottles of varying color, contents and

weight
• soda cans of varying sizes

Fig. 1. Example object sets that will be used in our experiments.

• plastic bottles of varying color and material
• PVC pipe pieces of varying diameter
• cups of varying material and color
• boxes of pasta of varying color, contents, size, and

weight
• metal objects of varying color, shape, and size
Figure 1 shows some of the object sets that will be

used in our experiments.

C. Behaviors

The robot in our experiments will perform 10 different
behaviors on the objects. Some of the behaviors will
require that the object’s location is detected on the table,
which is done in the following way:

1) A background model will be created by taking a
snapshot of the empty table before any objects are
placed on it.

2) When an object is in place and the robot needs
to determine its position, the robot will move
its hand out of its field of view, calculate the
deviation of each pixel observed from the value



predicted by the background model, and then use
a threshold to classify them as either “background”
or “foreground”.

3) The “foreground” areas will then be grouped, and
the largest group will be deemed the object; the
shape representing the object will then be sur-
rounded with a rectangle. An example is shown
in Figure 2.

4) The pixel coordinates of the lower left corner
of this rectangle will be provided to a3-nearest
neighbors algorithm, which will interpolate the
appropriate hand position from a set of pretrained
positions.

The “Look” behavior will be the only non-interactive
behavior; for this behavior, visual modalities will be
later analyzed (color, depth). For the other behaviors,
proprioceptive, auditory, and vibrotactile data will be
recorded.

1) Look: The robot will record a sequence of images
from its cameras (both RGB and depth) which will be
used to extract visual object features

2) Grasp: The aforementioned algorithm will be used
to position the arm near the object, and the gripper will
be closed.

3) Slow Lift: After grasping, the object will be lifted
with little acceleration.

4) Fast Lift: After grasping, the object will be lifted
with sharp acceleration.

5) Shake:After lifting, the object will be shaked by
applying torque on the wrist and elbow joints.

6) Drop: After lifting, the object will be positioned
2.5 cm off the table and released; the motors will be
moved only slightly to minimize noise from the fingers.

7) Tap: The aforementioned algorithm will be used
to position the hand in a ”scooping” position next to the
object, and the hand will hit the object.

8) Crush: The object will be positioned in a fixed
place, and the hand will move in a fixed trajectory down
onto it. Once the object is struck, and once the torque
values reach a threshold, the robot will back its hand up.

9) Poke: The aforementioned algorithm will be used
to position the hand in a position similar to the ”Tap”
position, except that all but one finger will be curled up.
The finger will hit the object, moving faster than during
the ”Tap” behavior.

10) Push:The aforementioned algorithm will be used
to position the hand in a ”clapping” position next to the
object, and the hand will push the object with the palm
rather than the fingers.

Fig. 2. Illustration of object detection in the robot’s visual field of
view.

Over the course of each behavior execution, the robot
will record the sensory feedback from the following
sensors: joint-torque sensors in the motors, microphones
in the head, RGB images from the ZCam, Depth images
from the ZCam and vibrotactile feedback from the
robot’s fingertip accelerometer. Each behavior will be
executed on each object a minimun of 5 times.

IV. T HEORETICAL MODEL

A. Notation

Let B be the set of exploratory behaviors and letS
be the set of sensory modalities available to the robot.
Let C be a set of behavior-modality contexts such that
each contextcj ∈ C refers to a unique combination of
a behavior and a sensory modality (e.g.,drop-audio).
Note that it is not necessary for every combination to be
present in the setC, since in our case certain behaviors
do not produce sensations in certain modalities.

During each object exploration trial, the robot is
presented with an objecto ∈ O, the set of all ob-
jects, and subsequently applies its set of exploratory
behaviors on the object. Hence, when executing behavior
b ∈ B, the robot observes a set of sensory signals
Xb = {x1 . . . xmb

} where eachxj represents the sensory
feedback observed from some known sensory modality
in S. Note that the number of sensory feedback sig-
nals detected when performing some specific behavior,
|Xb| = mb, may be less than the number of sensory
modalities,|S|, since certain behaviors do not produce
sensations in certain modalities (e.g., looking at an object
does not produce tactile sensations).

After all behaviors are applied on the test object, the
ith exploration trial may be summarized by the collection
of observed sensory feedback signals,Ti = {Xb}b∈B. In
practice, the signalsxj may be encoded as numerical
vectors, real-valued time series, or discrete sequences.
For this project, several different representations will be
used, including sequences



Fig. 3. The exploratory behaviors (excluding the “look” behavior)
that the robot performs on objects.

B. Object Identification

1) Problem Formulation:Object identification is the
problem of deciding how many objects have been per-
ceived, as well as establishing what psychologists refer
to an object representation (OR) [17]. While there is no
clear agreement about what exactly an OR encodes, it
has been theorized that at the very least, an OR must
contain a mapping betweenobject tokens(i.e., individual
experiences with an object) toobject identities(i.e., a
unique identifier of the object) [17]. In addition, the
object identification problem cannot be considered fully
solved, unless a novel object can be recognized as being
novel.

In the scenario proposed in this paper, the robot is
presented with a set of objectsO, such that each object
is presented one at time to the robot. The objects are
explored in an order such that after performing one

exploration trial with an object, the object is switched
for the next one and so forth. This process is repeated
n times, such that in the end, the robot has explored
each object inn different trials. Hence, each object
identification task can simply be represented by the set
of trials T = T1, . . . Tn×|O|.

The robot in this setting has no information regarding
which object was present at triali or how many objects
were present in the object set|O|. Hence, to solve the
problem, the robot’s object identification model must
be capable of findings how many objects there were,
enumerate them using object IDs, and associate each of
the trials in the setT with a specific object identity. Thus,
this model would allow a robot to group its sensory mo-
tor experiences into sets such that each set corresponds to
experience with a unique object. This is highly desirable
since variants of such representations have been used
for a wide variety of tasks, but always require a human
programmer to specify the object identity of a given trial
or sensorimotor experience with the object.

2) Approach and Evaluation:Given a sensorimotor
data for a set of trialsT , a possible solution to solve
the problem is to use a clustering algorithm to partition
the trials into individual sets, such that each set corre-
sponds to a particular object. Popular clustering methods
include k-Means, as well as graph-based algorithms such
as spectral clustering. While such an approach might
succeed on the task, these algorithms suffer from the
drawback that they require careful parameter selection.
For example, k-Means requires that the programmer
specify the desired number of clusters (in our case,
object identities). The choice of these parameters often
determines how coarse the resulting partitioning is.

This implies that if the objects are always explored
one at a time, there is no guarantee that a particular
clustering algorithm will solve the task. One way to
overcome this problem is to give the robot’s model some
prior information regarding experience with objects with
known identities. In fact, there is direct evidence from
psychological experiments that humans also need such
prior experience [17]. Hence, the second approach we
consider will be one that is trained on a certain object
set with known identitiesOtrain while the subsequent
individuation model is evaluated on set of objectsOtest

whose identities are not known. An initial implemen-
tation for such a model will consist of an algorithm
which estimates the best parameters of a given clustering
algorithm for solving the task from the training data.
Other approaches will be considered as well.

The object individuation model will be evaluated



based on how close the resulting partitioning of the
trials matches the way they would be partitioned when
grouped into sets based on the true object identity. Since
both, the model’s output, and the true individuation,
are represented by two clusterings, we will use metrics
designed to compute the mutual information between
two clusterings (e.g., the ones used in [53]). The object
recognition model, on the other hand, will be evaluated
on how well it can match the sensory feedback from
individual trials to the identity of a known object that
was previously experience (typically measured in percent
accuracy). Finally, the recognition model from previous
work will be improved so that it can estimate when
the object in the interaction is a novel object, not
previously explored by the robot – this will be done by
measuring how uncertain the recognition model is given
the sensory feedback produced by the object. As with all
subsequent tasks, success will be determined by whether
the performance of the models (measured by whichever
metrics apply) is substantially better than what a chance
model would produce.

C. Spontaneous Object Sorting

1) Problem Formulation: In a typical psychological
experiment, the participant is presented with a set of
objects and then either asked to group them or allowed
to freely explore them to see if spontaneous sorting
behavior occurs. Hence, the task in this setting is to
learn a model which, given a set of object identities
and some amount of sensorimotor experience with the
objects, outputs one (or possibly more) ways that the
objects may be grouped, or ordered. More specifically,
the algorithm has to output a structure,S which can
either represent a discrete categorization (e.g., finding
two clusters in the set of objects), a continuous ordering
(e.g., if the objects vary along weight), or even a grid-
like structure (e.g., if the objects vary in visual size as
well as weight).

2) Approach and Evaluation:While there are many
algorithms and frameworks for unsupervised object cate-
gorization, virtually all of them require that the program-
mer specify the structure (e.g., a discrete clustering vs. a
hierarchy vs. a grid) in advance. Given a set of objects,
however, the robot cannot automatically know which
structure is appropriate - instead the structure has to
be induced from the sensorimotor feedback experienced
with the objects. To solve this problem, we will use the
probabilistic model of Kempet al. [18] which is capable
of estimating what type of structure best explains the
data, as well as finding the instance of that structure.

For example, given a set of 5 black and 5 white balls,
the model would (ideally) discover that thepartition
structure is most optimal and that the specific instance
involves two clusters, one for each color. On the other
hand, if the 10 objects were identical in all respects
except for weight, the model should find that theorder
structure is the best fit.

The input to the structure discovery model consists
of a similarity relation that specifies how similar two
objects are. In our case, the robot will estimate such
a relation for each behavior-modality combination, and
then attempt to fit the best structure for each one. The
different ways in which the objects may be sorted may
subsequently be visualized. The model will be tested
on sets of objects which vary along one or more given
dimensions (e.g., shape) while remaining constant on
others (e.g, color, weight, etc.). If the sorting produced
by the model captures the variation among the ob-
jects, than the sorting will be considered meaningful.
In addition, once the model fits a structure for each
sensory-modality context, these structures can then be
used to extract features for each object – for example,
given a partition structure with 2 clusters, the cluster
membership for an object may be used as an input feature
for an object classification task, which is discussed in the
next subsection.

D. Category and Relational Learning

1) Problem Formulation:The final task consists of
training the robot to recognize the category labels of
objects given a certain amount of objects with known
labels. For example, if the robot interacts with a large
set of objects, and if the programmer specifies that two
of those objects are called “cups”, then the robot’s model
should be able to infer what other objects are cups as
well. Similarly, given a comparative relation (e.g., A
bigger than B), and a few example objects for which the
relation is known, the robot’s model should be able to
learn a ranking rule which can compare novel objects
according to the same rule, given some sensorimotor
experience with them.

2) Approach and Evaluation:For the category recog-
nition task, we will consider up to 20 objects categories,
where each one consists of five objects. Some of the
categories group objects based on material (e.g., the
metal objects category), while others group them based
on shape (e.g., balls). Some are based on common names
that humans assign to them (e.g., pop cans category).
To recognize the category of an object, a classifier
approach will be used, such that the classifier established



a mapping between object features (extracted over the
course of interaction with the objects) and object cate-
gory label. In this setting, each object is represented as a
feature vector which will be generated by looking at how
the objects are sorted in various sensorimotor contexts
(as described in the previous section). Alternatively,
graph-based learning methods (such as the one used in
[40]) will also be explored, which directly exploit the
estimated object similarity in a given behavior-modality
combination. As done in prior work, the category recog-
nition accuracy will be compared for different machine
learning algorithms (e.g., k-Nearest Neighbors, Suppor
Vector Machine, etc.).

For the comparative relational learning task, the task
of the model is to determine the order for a pair of
objects, given features used to represent the objects.
Similarly, this model will be trained with example ob-
jects for which the relation is known, and will be tested
on objects for which the relation is unknown. Several
relations will be considered for evaluation, including
size relation (bigger then), and weight relation (heavier
then). In machine learning, several algorithms have been
proposed to solve this task, most of which are designed
to rank the order of documents such as web pages.
For this project, we plan to test any available standard
machine learning methods, as well as develop ordering
models that use regression (i.e., mapping from features
to a real valued number) to order objects.

V. A PPENDIX

A. Team

1) Kerrick Staley is a first-year student in Com-
puter Engineering. He is interested, in general, in
computer science, mathematics, and the physical
sciences; he has specific interests in robotics, cryp-
tography and data security, user interface design,
and the practicalization of open source software.
He programs primarily in C/C++ and Python.
He enjoys reading Slashdot.org, and his Kirby
skills in SSB64 will stomp most competitors. He
has a website with further biographical details at
kerrickstaley.com.

2) Connor Schenck is a senior in Computer Sci-
ence. He has experience with C/C++, Java, and
Matlab. He has used OpenCV, Weka, Java Swing,
and MATLAB’s Image Processing Toolkit. He
has taken courses on Machine Learning, Artificial
Intelligence, Algorithms, and Statistics. He is a
coauthor for the paperInteractive Object Recog-
nition Using Proprioceptive Feedbackand Inter-

active Object Recognition Using Proprioceptive
and Auditory Feedback. He has also worked on
multiple projects in the Developmental Robotics
Laboratory at Iowa State University.

3) Jivko Sinapov received the B.S. degree in Com-
puter Science from the University of Rochester,
NY in 2005. He is currently a PhD student in
Computer Science and works at the Developmen-
tal Robotics Laboratory at Iowa State University,
Ames. His research interests include developmen-
tal robotics, robotic perception, manipulation, and
machine learning.

B. Software Packages

We anticipate that the following list of software li-
braries will be used in for this project:

1) The WEKA Java Machine Learning Library :
contains a number of implementations for popu-
lar machine learning algorithms for the tasks of
classification, and unsupervised clustering [55].

2) Structural Form Discovery MATLAB package:
implementation of the model proposed by Kemp
et al. [18] for the purposes of fitting structures to
data.

3) OpenCV: C++ computer vision library, used when
detecting the object on the table, as well as extract-
ing visual object features.

4) GHSOM package: a Java library implementing
the Growing-Hierarchical Self-Organizing Map al-
gorithm [5] for dimensionality reduction. The
package will be used to turn high-dimensional sen-
sory feedback data into low dimensional discrete
sequence.

5) Sparse Coding MATLAB package: a MATLAB
library developed by Leeet al. [24], which will be
used to extract features given depth images taken
by the robot’s ZCam.

6) robocop: C++ software, written by Vlad Sukhoy,
which wraps the Barett WAM API and is used
for recording the robot’s sensorimotor data during
object exploration trials.

C. Timeline

1) Final Object Selection: Week 1
2) Finish exploratory behavior scripting: Week 1
3) Conduct object exploratory trials: Week 1-2
4) Implement algorithms for feature extraction from

sensory data: Week 3



5) Evaluate models for identification, sorting, and
category learning on recorded data: Week 4-5

6) Generate result figures, write up manuscript(s) for
publication: Week 6-8
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