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Introduction 

A hallmark of greater intelligence is the ability to utilize objects in ones environment to perform 
actions that normally would not be possible.  These tools allow an individual, human or animal, 
to extend their capabilities whether they are physical or mental.  There have been numerous 
studies in the realm of developmental psychology to study tool use in animals; however the 
same is not true in developmental robotics.  In this project we will propose a novel approach to 
extend Stoytchev‟s Behavior Grounded Representation of Tools Affordances for a variety of 
differently shaped pucks using a simple hooked stick as the primary tool. 

Motivation 

Most of today‟s robotic systems are programmed to work efficiently, but they are also quite task 
specific and are incapable of being extended to work on other tasks without reprogramming. For 
example, a robot that utilizes tools will have to be programmed for a specific tool and a 
predefined set of objects that it can work on. If one were to generalize the task in any 
meaningful way, the amount of tools, objects and their interactions that need to be encoded, are 
quite staggering. If this robot were to encounter a tool or object not in the database, it will be 
unable to perform any action. 
  
Developmental robotics targets this prevalent issue in robotics and aims to create machines 
with robust intelligence that are autonomous, adaptable to novel situations. This can be 
accomplished by allowing the robot to undergo a developmental learning phase which helps it 
understand and verify things on its own without need of human interference. 
 
One of the far reaching goals of robotics is to create robots that can do jobs which are repetitive 
and often tedious, or jobs that demand precision or simply those jobs which are harmful to 
humans; thereby freeing human beings to concentrate on finding the answer to life, the universe 
and everything, one assumes. Almost any work though, requires either tool use or object 
interaction and sometimes object manipulation through tool use. 
 
Previous work on learning the affordances of tools and autonomous tool use by Alex Stoytchev, 
looked at manipulating a single object using various tools. The focus of our project is on using a 
single tool to operate on different objects. Knowing the affordance of an object - which is 
determined by its shape and the entity using it - is important for manipulating the object for 
various tasks. Because of the complexity involved in having a robot learn about affordances of 
different objects, we have chosen to start with regular shapes for this project. 
 
The results of our experiments in developmental robotics could also be used to extend and gain 
deeper insight into developmental psychology of humans and animals. 



 

 

Audience 

The target audience for this project is researchers in in the fields of Developmental Robotics 
and Developmental Psychology as well as the automated processing industry.   

Demonstrated Need 

Tool use has not been well addressed in robotics [6].  It is usually hard-coded into the robotic 
system; for example, on the assembly line in a car factory, specialized robots are built to use 
tools for a specific task in a particular production phase.  However, these robots cannot perform 
any other tasks and their tools are not meant for other phases.  In most cases, they are 
physically bound to a single tool and are not built to use other types of tools.  In the future, 
robots may be implemented to replace human activity in delicate areas such as elderly care and 

the military.  Thus, robots will need to be capable of tool use [6]. 

Previous Work / Related Work 

Affordances 
Affordance is a biological concept that defines a relationship between an intelligent being and its 
environment [5].  Chemero and Turvey state that “affordances are opportunities for behavior” 
and “they are properties of the environment but taken relative to the animal” [1].  Ortmann and 
Kuhn believe “humans judge their environment according to the actions it affords.”  They claim 
that affordances are qualities.  For instance, an affordance of stairs is „climbability‟.  Climbability 
is an observable quality and physical quality of a step [6].  Affordances are tremendously 
powerful because they provide a perception of object properties and their role in the 
environment via actions executed on the objects [5].  An intelligent being can learn the 
affordances of an object though motor and sensing capabilities such as pushing, pulling, 
moving, and grasping.  Affordances can indicate what will take place if a specific action is 
applied to an object.  Thus they can help an intelligent being to decide which objects, and what 
actions on said objects, will accomplish a desired goal [5].  For instance, a bird – after learning 
the affordances of long and thin objects in the environment – may decide to use a twig to find 
food in openings that its beak cannot fit. 
 
Tool Use 

With the ability to perceive object affordances comes the ability to use objects as tools.  Tool 
use is common amongst animals and is an indication of intelligence.  A single tool can afford a 
variety of behaviors, especially if the animal can modify it [3].  Animals that can manipulate an 
object in its environment to accomplish a goal exhibit reasoning abilities [11].  For example, in a 
study presented by von Bayern et al, a crow was able to solve a task that required it to drop a 
stone into a vertical tube to release food from an out-of-reach platform inside a transparent box.  
Learning to use tools is a developmental process.  E. J. Gibson stated that ”active exploration of 
objects has important results for learning about what an object affords, what can be done with it, 
its functional possibilities and uses” [2]   She pointed out that when a child perceives an object‟s 
use it is an indication that it recognizes potential affordances.  Thus, in order for an object to be 
recognized as a tool, it needs to undergo exploratory behaviors by the manipulator [9]. 
 



 

 

Applications to Robotics 

Several researchers have examined the applications of affordances in robotic systems.  
Chemora and Turvey compared Gibsonian and representationalist approaches to affordances.  
According to the Gibsonian view, the two components of affordances are the animal-
environment system and the perception-action [1].  The representationalist approach believe 
that affordances must be internalized (this approach eliminates the perception-action 
component) and those who take the Gibsonian approach believe that affordances must be 
perceived.  Chemora and Turvey claim that the Gibsonian approach is more suitable for 
developmental robotics. 
 
Stoytchev developed a method for the robot to 
develop representations of the tools and their 
affordances using a behavior-based approach 
[8].  He equipped the robot with a set of 
exploratory behaviors which it could randomly 
apply to the tools to manipulate real physical 
objects.  The robot then recorded and kept 
track of the outcomes of each tool and its 
behavior on an object.  Stoytchev pointed out 
that his method has some shortcomings stating 
that in this approach some tool affordances are 
less likely to be discovered due to limited 
exploratory behaviors. 
 

 
 
Montesano et al implemented a developmental approach for a general affordance model that 
could be applicable to new contexts.  They proposed that affordances naturally connect low-
level representations i.e. sensory-motor maps and higher level cognitive skills i.e. imitation [5].  
Their approach involved a 
framework with three phases which 
include sensory-motor coordination, 
world interaction, and imitation.  In 
the sensory-motor phase the robot 
learns new actions and builds 
perceptual skills.  The world 
interaction phase helps the robot to 
learn a Bayesian network that 
symbolizes affordances via 
statistical dependencies between 
features, actions, and effects.  In 
the imitation phase, the robot used 
its affordance model to recognize 
objects and actions performed by a 
human and imitate the goal of the 
human participant.  The authors‟ 
developmental architecture is 
illustrated below. 
 

 
 

 
Figure 1: Stoytchev's Robot and Tool Setup 

 Figure 2: Montesano Developmental Architecture 



 

 

Kraft et al implemented a robotic vision system to autonomously learn object representation and 
their grasp affordances through three-dimensional images and pure exploration without any 
prior knowledge of objects [6].  Using basic exploratory behaviors, the robot gains a visual 
representation of the objects appearance and geometric properties while learning various 
grasping actions.  Successful grasping parameters determine the objects‟ grasping affordance, 
which are associated with the object model. 
 
Sinapov and Stoytchev‟s research provided a different perspective of the way object properties 
are learned [7].  Specifically he showed why a combination of exploratory behaviors and 
sensory modalities can effectively increase object recognition rates.  He developed a theoretical 
framework that utilizes a machine language concept called classifier diversity, in which a 
combination of multiple classifiers is more efficient in improving accuracy than a single classifier.   
He states that exploratory behaviors on an object are essentially like classifiers and therefore 
can be boosted to increase recognition rates [7]. 
 
Uger et al implemented a model to identify the traversability affordance, a property of an object 
that allows it to be moved or rolled away, such as a sphere or a lying cylinder [10].  In their 
research, they found that only one percent of information about an object‟s features was needed 
to determine if it was “traversable”.  Thus they were able to utilize a range image of the 
environment and from that construct a perceptual representation of each object in the 
environment [10].  Using both a computerized physics-based simulation called the MACSim and 
a real mobile robot – coupled with very little information of the objects‟ features via range 
images – they were able to identify the traversability affordance with 95% accuracy. 
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Approach 

We will extend Stoytchev‟s behavior-based approach for tool use to manipulate differently 
shaped pucks with a hooked stick.  We will impose a babbling period on the robotic simulator to 
learn the properties of the hooked stick and the effects of exploratory behaviors on each of the 
differently shaped objects or pucks.  In addition, it will also learn the affordances of each shape.  

We will test the simulator‟s knowledge of affordances to measure its ability to maneuver a puck 
so that it is not only positioned but also oriented correctly over a marker representing its shape. 
 
This study will be conducted using a physics-based simulation of the robotic arm similar to the 
mobile manipulator in Stoytchev‟s experiments. 

Equipment 

Development 
 
OpenGL 
OpenGL is a standardized graphic application programming interface that was first introduced in 
1992 in order to allow portable graphic applications.  Through the years it has gone through 
numerous revisions and has earned its place as the mostly widely used graphics API 
accelerating the rendering of thousands of application across a wide variety of platforms  It is 
known for its stability, reliability, scalability, and most importantly ease of use. 
http://www.opengl.org/ 
 
Bullet 

Bullet is a professional grade Open Source physics library that is supported on a variety of 
platform including the current generation of game consoles providing Collision Detection, Rigid 
Body Dynamics, and soft body dynamics.  It has solid reputation for pushing the state of art and 
has even found its way into several movies and AAA game titles. 
http://bulletphysics.org/wordpress/ 
 
OpenCV 

Open Source Computer Vision Library (OpenCV) is programing library aimed at real time 
computer vision that was initially developed by Intel in 1999 to advance CPU intensive 
applications and later picked up by Willow Garage.  It has gone through several iterations with 
the most recent adding C++ wrappers so as improve its ease of use by minimizing the lines of 
code required to execute functionality and to eliminate common coding mistakes such as 
leaking memory.  
http://opencv.willowgarage.com/wiki/ 
 
Microsoft Visual Studio 2010 
Visual Studios is a premier integrated development environment by Microsoft that enables one 
to design, implement, and test sophisticated programs for running on various platforms.  The 
single interface design eliminates a lot of issues often encountered in software development and 
therefore is one of the preferred solutions in industry.  
http://www.microsoft.com/visualstudio/en-us/ 

http://www.opengl.org/
http://bulletphysics.org/wordpress/
http://opencv.willowgarage.com/wiki/
http://www.microsoft.com/visualstudio/en-us/


 

 

Virtual Objects  
 
Table 

The table is the flat surface on which all pucks are manipulated.  It is represented by a flat plane 
that occupies the valid region of operation. 
 
Hooked Stick 

The manipulator in our robotic system is a simple hooked stick as seen below.  A hooked stick 
was chosen over a straight stick in order to allow the system behaviors to include push 
operations that are towards itself as well as away.  In order to ensure that the stick cannot press 
down on an object as it is being pulled the hooked section will be significantly taller than the 
pucks so that even if the end of the stick was laid on the table the shaft would still not touch the 
puck. 
 

 
Figure 3: Hooked Stick 

  
Pucks 

There will be support a set of predefined pucks consisting of a circle, square, rectangle, and 
triangle. 

 
Figure 4: Set of Defined Pucks 

Each puck will have a yellow marker that can be used to identify its current orientation and will 
be push able along any of its edges.  Note that while an object may be pushed along any edge 
the directions of push are limited to the four cardinal directions. 

 
Figure 5: Puck Markers and Push Positions 

Algorithms and Data Structures 

Algorithms 
Two main algorithms will be implemented: Babbling and Strategy. 
 



 

 

Babbling 

The babbling algorithm is responsible for determining an object‟s affordances in relation to the 
tool by applying a random set of behaviors.  The combined affordances establish a model that 
allows desired results to be achieved.  In the case of project the babbling algorithm will 
randomly select a push position, direction, and distance to be applied to the current puck and 
stores the results.     Since the strategy chooses the best action based upon the desired results 
it is not necessary to ensure that the full set of permutations is executed during babbling, 
however the babbling algorithm will need to ensure that selections are applied to every 
orientation and that the puck is reset back to the start position if it should go out of bounds. 
 
Strategy 

In the evaluation phase, the aim is to maneuver the object from its initial placement in order to 
position & orient it such that its contours match that of its shape marker. A greedy algorithm is 
used as the Strategy to guide this exploratory behavior. This is based on previous work on 
„Affordances of Tools‟ by Alex Stoytchev. 
 
Given the initial test setup, the robot first identifies the positions of the puck and the shape 
marker and calculates the distance between them. It then filters all exploratory behavior results 
for the particular shape from the database. All those with less than a predefined success rate 
are eliminated. Of the top few behaviors from this list, the one whose expected action brings it 
closest to the desired destination is chosen and applied. Beyond this, our strategy will rule out 
any behavior which moves the puck beyond the defined border. 
 
If the actual outcome matches the expected outcome of the particular behavior, then its success 
rate is increased. It now recalculates the distance between the puck and the shape marker.  If 
they are within a certain error tolerance, then the goal is reached, else, the above steps are 
repeated. 
 

 
Figure 6: Strategy for moving puck over marker 



 

 

Data Structures 
Two main data structure will be implemented: Object Action and Object Result. 
 
Object Action 
The object action data structure will be used to capture all relevant state that represents a 
discrete event.  This includes the initial orientation of the object and the location, direction, and 
distance of the push. 
 
struct obj_act  
{ 
    unsigned int   iOrient;       // Orientation 
    unsigned int   iPos;           // Position of push 
    unsigned int   iDir;            // Direction of push 
    unsigned int   iDis;           // Distance of push 
    unsigned int   iNumAct;   // Number of times action executed  
    unsigned int   iSucAct;    // Number of time successful 
}; 
 
Object Result 

The object result data structure will be used to capture all relevant state that represents a 
potential result of a given action.  This includes the resulting offset of the object and degrees of 
rotation. 
 
struct obj_res  
{ 
    float      vOff[2];  // Change in position 
    float       fAng;     // Change in orientation 
    obj_act *pAct      // Associated action 
}; 

Data Definitions 
 
Push Position 

Angle in degrees relative to the orientation marker at which the hooked 
stick is placed against the object in order to perform a push behavior. 

 
 
Push Direction 

ID used to identify one of the four unique directions in which the stick can 
push the puck. 
 

 
Figure 8: Set of Defined Push Directions 

 
Figure 7: Push Position 



 

 

 
Push Distance 
Push distance is the number of units the stick will be offset in the 
direction of push.  In order to limit the number of permutation that will 
need to be tracked pushing will be limited to 3 and 5 units. 
 
Orientation   

Rotation of the puck in degrees based upon the change in location of 
its orientation marker. 

Implementation Methodology 

This project will follow a clearly defined development model with each individual being 
responsible for different aspects of the projects. 

Developmental Model 

The Shape project will be implemented using a standard waterfall developmental model with 
each of its iterations having a clearly defined set of goals to be achieved.  This should allow 
issues with our general approach to be quickly identified without having to worry about the 
additional complexities that will be introduced in later iterations. 
 
Iteration 1: Environment Setup 

 Setup the Visual Studio Project and select Bullet and OpenCV versions 

 Create simple application that renders top down view of a table like environment 

 Implement objects for the various pucks that are to be supported 

 Implement object for the hooked stick and create interface for it to be positioned and for 
it to execute a push 

 Implement physics model such that the stick can interaction with the objects 

 Implement marker object, ensure it does not participate in the physics 
 

Iteration 2: 2D Perspective Simulation using Bullet for physics and data collection 

 Implement algorithm for randomly selecting push direction and push points 

 Implement data structure for storing results of a given push operation and update it 
based upon the simulation physic parameters before and after a push 

 Implement babbling algorithm that randomly pushed a puck around the table 

 Implement test algorithm that selects from the known list of affordances in order to 
maneuver the puck such that it ends up in the correct position and orientation 

 Implement the defined test cases such that the setup can toggle between them and 
babbling against each of the object 

 Execute babbling for each of the pucks 

 Execute test cases for each of the pucks 
 

Iteration 3: 2D Perspective Simulation using Bullet for physics and OpenCV for data 
collection 

 Implement FBO interface that provides OpenCV the before and after frames for each 
push operation. 

 
Figure 9: Orientation Angle 



 

 

 Implement OpenCV based functions for determining the change in position and 
orientation 

 Implement alternative update for the results data structure that uses the OpenCV results 

 Execute babbling for each of the pucks 

 Execute test cases for each of the pucks 
 

Iteration 4: 3D Perspective Simulation using Bullet for physics and OpenCV for data 
collection 

 Optional iteration to move simulation to a 3D perspective if time should allow.  

Responsibilities 

The project responsibilities will tentatively be broken up as listed.  As the project progresses it 
may become necessary to shift responsibilities to accommodate something be easier or harder 
than originally expected.  
 

Jeremy  

 Framework and Architecture  

 OpenGL Rendering 

 Common Data Structures 
PJ  

 Simulation  

 Physics 
Poorvi 

 Strategy 

 OpenCV 

Timeline 

The project will implemented over a period of a month and a half with each of the non-optional 
faces given approximately two weeks to be completed.  Dates are subject to change if we 
should happen to get ahead/behind schedule or decide to proof of concept an item from a later 
iteration. 
 

Week of March 6 

Implement Phase 1 
*March 10 - Project Proposal Due 
 

Week of March 13 

Spring Break - No official work planned 
 

Week of March 20 

Start Phase 2 
 

Week of March 27 

Finish Phase 2 

Week of April 3 

Start Phase 3 
 

Week of April 10 

Finish Phase 3 
Start Project Report 
 

Week of April 17 

Finish Project Report 
*April 21 - Project Report Due 

 



 

 

Risks 

This project has three key risks:  Bullet, OpenCV, and Time. 
 
Bullet 

The project team has limited experience using the open source physics.   Further the limited 
experience we have has shown us the engine can be quite unforgiving.  This being said some of 
the work from the previous experience can serve as solid basis for which simulation can be 
derived. 
 
OpenCV 

The project team has limited experience with OpenCV and it has been over 4 years since the 
last time any of us has used it. However, the functionality we require was implemented in part 
while taking Computational Perception and should easily be adapted to our needs.   
 
Time 
The timeline for completing the project is very tight and the goals are definitely aggressive.  The 
iterative development plan should help substantially, however we will definitely be cutting it 
close. 

Evaluation Methodology 

Objective 

The aim is to get the robot to move the shape from its initial 
position to the marker which represents the particular 
shape. From the babbling phase prior to this, the robot 
would have formed some internal representation of the 
affordances of certain shapes. We have a preprogrammed 
strategy which guides the robot to move the shape closer to 
the destination by making use of the robot‟s representations 
on affordance to formulate the best way to position and 
orient the shape correctly over the marker.  
 

 

Tests 

There are four basic shapes which were used during the babbling phase. Each of these shapes 
will be tested based on placement -position relative to the marker-orientation at that position. 
This totals to 33 unique test cases. 
 

CIRCLE 

Owing to its shape, the circle has only one orientation. The shape is placed in three standard 
positions relative to the marker on the table - the bottom left, the bottom right and bottom center.  

 
Figure 10: Test Setup 



 

 

Therefore we have only 3 test cases set up. In all the cases, the shape marker remains fixed in 
the top center position. 
 

 
Figure 11: Circle Tests 

SQUARE 

The square puck will be tested for two orientations.  In one, the base of the square is set parallel 
to the table. In the second case, the base of the square makes a 45degree angle with the table 
to form a diamond shape.  The shape is placed in three standard positions relative to the marker 
on the table - the bottom left, the bottom right and bottom center.  Therefore we have 6 test 
cases set up.  In all the cases, the shape marker remains fixed in the top center position. 
 

 
Figure 12: Square Tests 

RECTANGLE 

For the rectangle there are four specific orientations.  The first one has the long axis of the 
rectangle laid parallel to the bottom edge of the table, while in the second case, it is the short 
axis. For the next two cases, long axis is angled at 45 degree and 135 degree to the table.  For 

   

   

   
 



 

 

each case, the shape is placed in three standard positions relative to the marker on the table - 
the bottom left, the bottom right and bottom center.  Therefore we have 12 test cases set up. In 
all the cases, the shape marker remains fixed in the top center position. 
 

 
Figure 13: Rectangle Tests 

TRIANGLE 

Similar to the rectangle, the triangle also has four specific orientations.  The first one has the 
base of the triangle laid parallel to the bottom edge of the table, while in the second case, it is 

   

   

   

   



 

 

the tip. For the next two cases, the base is kept perpendicular with the tip pointing left or right.  
As in the above experiments, the shape is placed in three standard positions relative to the 
marker on the table - the bottom left, the bottom right and bottom Centre.  Therefore we have a 
total of 12 test cases set up. In all the cases, the shape marker remains fixed in the top center 
position. 
 

 
Figure 14: Triangle Tests 

 
 

   

   

   

   



 

 

 

Test Conditions 

 

Precondition 

The robotic system was given an opportunity to generate an affordance model for the given 
shape by performing babbling as described in the Algorithms and Data Structures Section. 
 

Setup 

The board is setup as shown in the test cases. The marker is in a fixed position near the head of 
the board. The active shape is placed away from the marker towards the foot of the board at 
one of the three pre-determined spots. The orientation of the shape is also varied for a given 
position. 
 

Duration 

The robotic system will be allowed two minutes to complete each test case.  At the end of a two 
minutes period the simulation will be stopped and the results will be tabulated. 
 

Conditions for Success 
 
Success is defined by the ability to position and orient the active shape relative to the marker 
within an acceptable error tolerance.  The success of position and orientation will be measured 
independently so as to be able to identify the situation in which the system is capable of 
performing one of the required actions, but fails to complete the other. 

Test Subjects 

The Robotic System in the Simulation is the test subject. 
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