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0 - Summary 

 
This paper presents the research done by Todd 

Wegter, Nicolas Cabeen, and Tanner Borglum in 

Professor Stoychev’s Developmental Robotics 

Lab in the Spring of 2011. It is commonplace for 

a human to use a flashlight to enhance his or 

her vision when ambient light conditions are 

not sufficient for sight. This paper proposes a 

method by which a robot can learn to use a 

flashlight through a developmental approach. 

First, the robot explores it field of vision with 

the flashlight. Then, the robot can infer where 

to move its arm to light up a desired area from 

these past experiences. 

 

1 - Project Overview 

 

Robots are slowly becoming more and more 

capable of completing everyday human tasks. 

The field of developmental robotics is working 

to continue this advancement by creating 

robots that are capable of learning. For 

example, Vladimir Sukhoy and Alexander 

Stoytchev [1] created a program by which their 

upper-torso humanoid robot was able to learn 

to push doorbell buttons based on audio, visual, 

and proprioceptive feedback. We set out to 

create a program by which a robot can learn to 

properly wield a flashlight, shining its beam on a 

desired location. This could make it possible for 

a robot to push a doorbell button using Sukhoy 

and Stoytchev’s algorithms in the dark. 

 

1.1 - Motivation 

 

The inspiration for our project came from a 

poorly designed conference room in Howe Hall 

at Iowa State University. The light switch is 

located a good distance from the main 

entrance, above a counter set into the wall. This 

makes it nearly impossible to find in the dark 

when you first enter the room. One day, when 

meeting in this conference room with Professor 

Stoytchev, one of our group members quickly 

got out his keychain flashlight to illuminate the 

light switch for Professor Stoytchev, who was 

struggling to turn the lights on in the dark. After 

turning the lights on, Professor Stoytchev 

wheeled around, exclaiming how it would be 

cool to program the robot to learn to do that, 

and our project was born. 

 

So why use a flashlight? Why not use infrared 

cameras or laser 3D imaging. Flashlights pose 

many advantages, one of which is cost. A 

standard flashlight costs much less than 

infrared cameras and 3D laser scanners. 

Another advantage of using a flashlight to 

illuminate a robot’s environment is simplicity. 

Instead of having to switch to a whole other 

system for seeing in the dark, a robot using a 

flashlight needs only pick one up, turn it on, and 

point it in the desired direction. This would also 

allow robots to assist humans. We humans lack 

the capability to see in the dark, so if we require 

Figure 1 - Illuminated Switch 
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the assistance of a robot in the dark, it should 

be able to light the way for us.  

 

Using flashlights to allow robots to see in the 

dark will help to better standardize robotic 

visual systems. If robots are built using different 

methods for seeing in the dark, it will be very 

hard for them to communicate visual 

information. By developing robots that use 

flashlight technology to illuminate their 

environment, not only will they be able to 

better communicate with and help humans, but 

they will be able to more effectively 

communicate with other robots. 

 

1.2 - Audience and Applications 

 

Flashlight use has many practical applications to 

a wide range of audiences. One day, robots will 

be “living” with us as assistants and caretakers, 

especially for the elderly. In case of a power 

outage or a nighttime emergency, these robots 

should be able to help their owners in any 

manner they should require. In one of these 

situations, an individual will need a flashlight’s 

beam to see, so being able to learn to use a 

flashlight will be a key skill for caretaker robots. 

These robots must be able to learn to use 

flashlights because they will undoubtedly 

encounter many different kinds of flashlights. 

With each kind being slightly different, a hard 

coded “how to use a flashlight” program would 

certainly fail, so robots will need to be able to 

adapt to different types of flashlights. 

 

Robots built to work in dark environments will 

also greatly benefit from flashlight 

manipulation. For example, a robot working in a 

coal mine will need to be able to see, and it 

should also be able to help its human workers 

to see to. If the robot were trying to point out 

that it had discovered a crack in the bracing of 

the mine, it would be hard to point that out to a 

human without being able to illuminate it with a 

flashlight beam. 

Requiring robots to use visible light to see 

would also make them more sensitive to visible 

light. If a robot were able to see in the dark 

using infrared cameras, it would never be able 

to understand why a human can’t see in the 

dark. We experience blindness in dark 

situations quite often, but a robot with the 

correct sensors may never have this problem. 

By forcing robots to have limitations similar to 

ours, it becomes easier for robots to relate to 

humans and vice versa.  

 

Flashlight manipulation will also carry over to 

anything else that creates a light beam, like a 

laser pointer. Tour guide robots and teaching 

robots would be able to point out items of 

interest to humans by using a laser pointer 

much easier than by any other method. For 

Professor Stoytchev’s sake, we will omit the 

obvious extension to light sabers…  

 

 

1.3 - Related Work 

 

This section details previous works in robotics 

and artificial intelligence that are related to our 

project. Our proposal is unique in that there 

have been no close attempts at what we are 

Figure 2 - Join the Darkside... 
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aiming to do.  However, there was a robot 

created at MIT that was used to light the area 

that a user was working in and respond to voice 

commands [6].  This is similar in the respect 

that a light was being used to target an area of 

interest, but their methods incorporated 

technologies that caused the lamp to follow the 

movements of a hand that a had a special glove 

so it could be detected.  The problem of 

learning how to move was not solved in this 

research. 

 

Another idea that was related to ours involved 

searching a space with a light.  Lavalle's paper 

[7] described how to search a polygon for a 

moving target in the dark.  The modeled 

method works in a situation where there is one 

searcher looking for one target.  This is related 

because it involves the use of light to 

manipulate the environment, but once again 

this does not address the problem of learning 

how to move the light. 

 

Self-detection has an important role in 

developmental robotics for a couple of reasons.  

One is that self-detection is related to the level 

of intelligence of the creatures it is manifested 

in.  Humans are able to self-detect, some 

primates are, and even some other animal 

species can.  However, most animals are not 

able to self-detect and/or recognize themselves 

in a mirror.  Additionally, if a robot is able to 

learn about itself, how it looks, and how it can 

move, it should be able to adapt to situations 

where it may be upgraded, damaged, or 

otherwise changed that would cause a robot 

that does not have a knowledge of itself could 

fail after such a change [3]. 

 

Self-detection is the process through which 

something can differentiate “self” between 

other. “Self” is defined through action and 

outcome pairs in combination with a probability 

estimate based on the regularity and 

consistency of these pairs [5]. The approach 

taken by Alexander Stoytchev [3] first solves the 

problem of self-detection in robots by 

estimating the efferent-afferent delay. To find 

this delay, movement was corresponded with 

the time after a motor command was issued. 

Once this delay is found, differentiating “self” 

from other becomes easier because “self” will 

only move a certain amount of time after 

commands are issued. 

 

Tool use is a form of self-detection and has a 

very important part in our proposal. Stoytchev 

has defined four things necessarily involved 

with robotic tool use: a robot, something in the 

environment labeled as a tool, an object to 

which the tool is applied, and a tool task [4]. 

One of the steps taken by Stoytchev was 

babbling with the tool grasped. The effects of 

the tool moving through the environment were 

associated with motor commands and relating 

the motor commands to the changes in the 

environment determined how the tool could be 

used to best manipulate the environment.  Our 

project is similar in that it is a form of tool use, 

but it differs in that the robot uses tools to alter 

its perception rather than its ability to physically 

interact with the world.  The ability to alter 

perception is something that humans use on a 

regular basis (one of the most intelligent 

animals) that many other animals can't.  Some 

specific examples include using microscopes to 

see small objects, telescopes to see far away 

objects, and night vision goggles to see in the 

dark.  Being able to augment perception would 

seem to increase the potential for 

understanding something better or even just to 

interact with the world better (such as when a 

human wears glasses). 
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1.4 - Individual Skills 

  

Tanner Borglum 

Tanner is a first year student at Iowa 

State University, sophomore by 

classification. He has programming 

experience in C and Java, and has 

learned to program in OpenCV for 

processing the visual sensory 

information we collected in our project. 

His knowledge of the C programming 

language was also helpful as the robot 

is programmed in C. 

 

Nicolas Cabeen 

Nicolas is also a first year student at 

Iowa State University, sophomore by 

classification. He has programming 

experience in C, Java and Visual Basic, 

and learned MATLAB for finding the 

error in the results collected in our 

project and creating contour maps of 

the percent error over the XY visual 

field to visualize the results. His 

knowledge of the C programming 

language was also helpful as the robot 

is programmed in C. 

 

Todd Wegter 

Todd is also a first year student at Iowa 

State University, sophomore by 

classification. He has programming 

experience in C and Java, and learned to 

use UNIX based operating systems, 

specifically the terminal, as the robot is 

run out of a UNIX terminal. His 

knowledge of the C programming 

language was also helpful as the robot 

is programmed in C. 

 

 

 

Jivko Sinapov 

Jivko is a graduate student at Iowa State 

University who works in Professor 

Stoytchev’s developmental robotics lab. 

This means he has lots of experience 

with the robot. While he was not 

technically a member of our group, he 

was the TA for the class and helped us 

operate the robot and met with us in 

the lab for testing. He has years of 

programming experience, and his help 

has been key to the success of our 

project. 

 

1.5 - Responsibilities 

 

For this project, we divided the responsibilities 

as equally as possible among the group 

members. Nicolas was responsible for managing 

the group’s grant money and for devising the 

algorithm which calculates where the robot 

should move its arm to illuminate a goal point 

from the three closest known data points. 

Tanner was responsible for researching related 

work and for analyzing the collected data.  Todd 

was responsible for creating the programs 

which used the processed data and algorithms 

to move the robot’s arm to illuminate a point. 

He also handled setting up times to meet in the 

lab, collect data, and meet with Alex and Jivko. 
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1.6 – Timeline

Figure 3 - Timeline 
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2 - Approach 

 

2.1 - Equipment 

 

Robot 

 

The flashlight exploration experiments will be 

performed with the upper-torso humanoid 

robot illustrated in Figure 3. Two Barrett Whole 

Arm Manipulators (WAMs) are used for the 

robot's arms. Each WAM has seven degrees of 

freedom. In addition to that, each arm is 

equipped with a three-finger Barrett BH8-262 

Hand as an end effector.  Each hand has seven  

 

degrees of freedom (two per finger and one 

that controls the spread of fingers 1 and 2). 

Because fingers one and two can rotate by 180-

degrees, the robot can perform a variety of 

grasps. In other words, even though the robot 

has only three fingers it can more than 

compensate for that because it has not one but 

two opposable thumbs. 

 

Flashlights and Batteries  

 

We used three different flashlights for 

collecting the data in our experiment: 1 Maglite 

flashlight with a standard incandescent lamp 

which used 3 C batteries, 1 LED flashlight which 

used 3 C batteries, and 1 multicolored LED 

flashlight which used 3 AAA batteries.  The  

 

Maglite had a focusable beam, which we set to 

have the tightest possible radius on our testing  

 

surface for one set of trials. We also set it to be 

unfocused for another trial set. The 

Figure 4 - Robot with Flashlight - Simulation 

Figure 5 - Flashlights 

Figure 6 - Red and Green Flashlights 

Figure 7 - Grasping the Flashlight 
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multicolored LED flashlight featured white, red, 

and green LED’s. This allowed us to collect data 

for white, red, and green light beams. In our 

experiment, the flashlight is turned on for the 

robot, as turning the flashlight on and off is 

beyond the scope of this project. It also 

assumed to be grasped as that is also beyond 

the scope of the project.  

 

Experimental Setup 

 

For our experiment, we pointed the robots 

head down at a table and had the robot shine 

the flashlight at the table. The robot then 

observed and recorded the light patterns 

produced on the table in conjunction with its  

 

 

arm’s joint positions. We chose this position 

due to time constrains and others working in  

the lab. Since other groups were conducting 

research at the same time as us, we needed to 

use the robot as it was so as to not interfere. 

This setup should not augment or reduce the 

performance of our method in any way. 

 

 

Software 

 
The robot is controlled using C++ on a UNIX 

platform. OpenCV, an open-source library, was 

used for image processing. Matlab was used to 

handle post-experiment data analysis. A 

simulation/demo program was also created. 

Both the robot program and the simulation take 

in processed image data with corresponding 

joint positions, determine a random point to 

shine the light, and calculate the joint positions 

necessary to shine the light there. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 - Experimental Setup 
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2.2 – Method & Algorithms

Figure 5 - Algorithms and Data Flow 
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Figure 9 outlines the general process we used to 

collect and analyze data and test our program.  

 

Initial data was collected using a program 

developed by Jivko to randomly babble the arm 

to 20 different randomly generated points. The 

points were generated from the 3D plane 

whose corners were defined by the robot’s arm 

in setup while holding the flashlight. First a 

background set was collected by letting the 

robot babble its arm with the flashlight off.  We 

then turned the flashlight on, and the robot 

recorded visual and proprioceptive data. We 

then repeated the babbling process with two 

additional flashlights, one of which had three 

different colors of lights. Each flashlight was 

tested ten times, resulting in a vast collection of 

visual and proprioceptive data. 

 

Our experiment is assuming that the flashlight is 

grasped and turned on as these parameters are 

outside the scope of this project.  

 

The background used for image differencing 

was created by adding all of the images in the 

background set and equally weighting them.  

This background was used in the processing of 

all flashlights.  The background changed during 

some sets so the average background was 

affected, but did not cause the algorithms to 

fail. 

 

In order to process the images, we first took the 

absolute value of the difference between the 

current image and the average background, 

which worked in most cases except where the 

entire frame was lit by the flashlight.  We then 

used Gaussian and blur smoothing on the 

captured images to reduce noise.  The next step 

was to remove the background. To further 

reduce error, we did a binary threshold (in 

color) on the image, shown in the middle image 

of figure 10. After this step, we converted the 

image to grayscale and used a Canny edge 

detection algorithm on it.  We  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

produced contours from the binary output of 

this algorithm and decided to use the largest 

contour to capture the motion of the light.  To 

determine how the light moved, we estimated 

the largest contour with an ellipse (which is 

represented as the closest fitting rectangle in 

OpenCV) and used the center of the ellipse as 

the center of light/motion in each frame.  As 

you can see below, this algorithm worked even 

when most of the background was different 

Figure 6 – Image Processing for White Light 
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from the average background and if the input 

was irregular, as seen in figures 11 and 12. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Matching the proprioceptive data with the right 

image was a relatively short process.  The first 

step was to take the difference between the 

time stamp of the first image and the time 

stamp of the first piece of recorded 

proprioceptive data.  This was used as an 

estimated delay.  The next step was to search 

through the data file and find the time stamp 

that was closest to the current picture time  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

stamp plus the delay.  The proprioceptive time 

stamp with the least difference was used as the 

proprioceptive data for the current image.  This 

proprioceptive data was then output to a text 

file and was followed by the center of light for 

the current image. 

 

Two different files were created from the vision 

and proprioceptive data for each flashlight, a 

data.txt and a test.txt. The data file contained 

80% of the trials and was used as the robot’s 

“memory”. The test file contained the 

remaining 20% of the trials and was used to 

verify the joint positions calculated from the 

data file using data cross-validation. 

Figure 11 - Image Processing for Green Light 

Figure 12 - Image Processing for Red Light 



13 
 

Three different methods were used to find the 

joint positions for the arm in the test program. 

The first method was a guess and check. The 

robot went through data file and randomly 

selected an XY point in its field of vision that 

corresponded to known joint positions. This 

was then compared to the goal XY point, 

generated randomly from the test file. One goal 

for our algorithm was to be more accurate than 

this random process.  

 

The second method was a simple closest point 

method. The robot selected the XY point from 

the data file that was closest to the randomly 

generated goal point from the test file and 

moved to the corresponding joint positions.  

 

The third method was a “3 Nearest Neighbors” 

calculation. A goal XY point was selected from 

the test file. Then, the three closest XY points to 

the goal point were selected. The centroid of 

the triangle formed by these three points was 

calculated. The joint positions for the center of 

the triangle were then calculated by averaging 

the three values for each joint, and the robot 

moved its arm to this location under the 

assumption that these joint positions would 

illuminate the center of the triangle. This XY 

point was named the target point and the 

calculated joint positions were named the 

target joint positions. 

 

These methods utilized data cross-validation to 

determine if our method was accurate. After 

the program calculated the target XY point and 

joint positions, MatLab was used to find the 

average percent error for each joint, the 

average percent error for the whole arm 

position, the average percent error for each 

method for each flashlight, and finally the 

average percent error for each method. 

 

From the percent error data, we were able to 

create maps of the XY visual field showing the 

relative differences between percent errors 

across the visual plane. This also allows us to 

easily compare different methods and 

flashlights. These maps are included in Section 

4.3. 
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2.3 - Pseudo Code 

 

Visual Analysis 

 

AVERAGEBACKGROUNDS() 

for i ← 0 to backgrounds.size() - 1 do 

averageBackground ← averageBackground * (numImages - 1) / 

numImages + backgrounds[i] / numImages 

end for 

return averageBackground 

 

FINDCENTEROFLIGHT(currentImage) 

absDifference(currentImage – averageBackground) 

blurSmooth(currentImage)  

gaussianSmooth(currentImage) 

threshold(currentImage) 

convert2Grayscale(currentImage) 

getCannyEdges(currentImage) 

contourList[] ← findContours(currentImage) 

maxIndex ← 0 

for i ← 0 to contourList.size() – 1 do 

 if area(contourList[i]) > area(contourList[maxIndex]) 

  maxIndex ← i 

 end if 

end for 

return contourList[maxIndex].center 

 

MATCHPROPRIOCEPTIVEDATA(image, proprioceptionData) 

decreasingDifference ← true 

positionTimestamp ← proprioceptionData.getNextTimestamp() 

jointAngles[] ← proprioceptionData.getNextJointAngles(numJoints) 

difference ← positionTimestamp - image.timestamp - DELAY 

while decreasingDifference == true do 

positionTimestamp ← proprioceptionData.getNextTimestamp() 

if (positionTimestamp – image.timestamp - DELAY) < difference do 

difference ←  positionTimestamp - image.timestamp – DELAY 

jointAngles ← getNextJointAngles(numJoints) 

else 

   //don't use these joint angles 

   getNextJointAngles(numJoints) 

   decreasingDifference ← false 

 end if 

end while 

data[numJoints + 2] 
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data[] ← jointAngles 

data[numJoints] ← image.center.x 

data[numJoints + 1] ← image.center.y 

return data[] 

 

 

 

 

Testing 

 

GUESSANDCHECKMETHOD()    

//select random target point from test file 

for i ← 0 to random position in test file do 

test ← xy point and joint positions 

end for 

//select chosen point at random 

for i ← 0 to random position in data file do 

data ← xy point and joint positions 

end for 

fprintf(trial number, data, test) 

printf(trial number, data) 

return 

 

CLOSESTPOINTMETHOD(){ 

//select random target point from test file 

for i ← 0 to random position in test file do 

test ← xy point and joint positions 

end for  

//select closest point from data 

for i ← 0 to length of data file do 

if distance < previous_minimum_distance do 

data ← xy point and joint positions 

 previous_minimum_distance ← distance 

end if 

end for 

fprintf(trial number, data, test) 

printf(trial number, data) 

return 
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INTERPOLATIONMETHOD() 

//select random target point from test file 

for i ← 0 to random position in test file do 

test ← xy point and joint positions 

end for  

//select 3 closest points from data and “interpolates” goal 

for i ← 0 to 3 do 

min_distance ← 800 //corner to corner of field of view  

for j ← 0 to length of dataset do 

  if j == 0 do 

closest[j] ← xy point and joint positions 

closest_distances[j] ← distance 

min_distance ← distance 

else 

if distance < min_distance && distance > 

closest_distances[j-1] do 

closest[j] ← xy point and joint positions 

closest_distances[j] ← distance 

min_distance ← distance 

end if 

  end if  

 end for 

end for 

//interpolate target (finds WAM angles and target point) 

for i ← 0 to 7 do 

target.joints[i] ← (closest[0].joints[i] + closest[1].joints[i] + 

closest[2].joints[i]) / 3.0 

end for 

target.x ← (closest[0].x + closest[1].x + closest[2].x) / 3.0 

target.y ← (closest[0].y + closest[1].y + closest[2].y) / 3.0 

fprintf(trial number, target, test) 

printf(trial number, target) 

return 
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Error Calculation 

 

GETINDIVIDUALJOINTPERCENTERROR() 

for i ← 0 to nPositions do 

 for j ← 0 to nJoints do 

         JointPercentError[i][j] ← abs((calcPosition[i][j]-

goalPosition[i][j])/goalPosition[i][j])*100) 

end for 

end for 

return JointPercentError[][] 

 

GETPOSITIONPERCENTERROR() 

for i ← 0 to nPositions do 

 sum ← 0 

 for j ← 0 to nJoints do 

         sum ← sum + JointPercentError [i][j] 

end for 

PositionPercentError[i] ← sum/nJoints 

end for 

return PositionPercentError[] 

 

GETFLASHLIGHTMETHODPERCENTERROR() 

sum ← 0 

for i ← 0 to nPositions do 

 sum ← sum + PositionPercentError [i] 

end for 

FlashlightMethodPercentError ← sum/nPositions 

return FlashlightMethodPercentError  

 

GETMETHODPERCENTERROR() 

sum ← 0 

for i ← 0 to nFlashlights do 

 sum ← sum + FlashlightMethodPercentError [i] 

end for 

MethodPercentError ← sum/nFlashlights 

return MethodPercentError 
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3 - Evaluation 
 

3.1 – Goals 

 

This project’s goals are developmental in nature 

and build off each other. 

 

Goal 1) Repeat the process with 

different flashlights and bulb 

types. 

Goal 2) Have the robot be able to shine 

the light beam on a given 

position. 

Goal 3) Have the robot self-detect 

control of the changing light in 

its field of vision. 

 

3.2 –Definition of Success 

 

Goal 1: 

Goal 3 ensures the universal 

applicability of our algorithms since the 

different bulbs will alter RGB values of 

illuminated areas. In this stage in 

particular, we will make any 

modifications in the algorithms as 

necessary to solve problems we will 

surely encounter during the 

experiments. Success will be defined as 

the ability for the robot to complete 

Goal 3 with different flashlights with 

different bulb types. 

 

Goal 2: 

The robot will have “learned” how the 

flashlight is manipulated through its 

preliminary data collection. With the 

gained knowledge of the relationship 

between proprioceptive data and visual 

data from previous experiments, the 

robot will be able to adjust the joint 

positions to direct the light beam to 

illuminate the goal point. By considering 

the location of the beam to be the 

center of the light, the algorithms will 

permit for a fairly large margin of error. 

 

Goal 3:  

With real-time analysis of visual and 

proprioceptive data, we will develop 

algorithms to relate joint positions to 

visual changes caused by the moving 

light beam. From this data, we should 

be able to obtain consistent estimates 

of the time difference between motor 

commands (efferent signals) and visual 

movements (afferent signals) to find 

the efferent-afferent delay [3]. 

 

4 - Results 
 

4.1 - Data Analysis 

 

We experienced some very intriguing results 

when collecting our data. We noticed that the 

white LED flashlights and the Maglite showed 

up on the robot’s cameras as one would expect: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 - Maglite (Unfocused) 
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However, when the red and green beams of the 

small silver LED flashlight were used, the images 

detected by the robot’s camera were very 

interesting: 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As you can see, the green LEDs produced a vivid 

electric blue illumination against the 

background. The red LEDs produced an even 

more interesting effect. The middle of the 

illuminated area is not detected by the robot’s 

camera. We’re not sure why, but since a ring of 

illumination is still detected, our algorithm for 

processing the data still works. 

 

4.2 - Test Results 

 

We tested our method using data cross-

validation. This allowed us to test our methods 

in a non-real time environment using the data 

from a single session in the lab. This allowed us 

to compare calculated joint positions to actual 

joint positions and find the percent error 

Figure 8 – Maglite (Focused) 

Figure 9 - Silver LED Flashlight (White LEDs) 

Figure 10 - Yellow Flashlight (White LEDs) 

Figure 15 - Silver LED Flashlight (White LEDs) 

Figure 17 - Silver LED Flashlight (Green LEDs) 

Figure 18 - Silver LED Flashlight (Red LEDs) 
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between the two. This gives a great 

representation of how accurate the method is. 

 

We had originally planned on testing our 

method on the robot by using it to see if the 

target joint positions illuminated the target xy 

point. This would confirm proper calculation of 

the joint positions. We then wanted to see how 

close the target xy point was to the randomly 

generated goal point. However, since we were 

not able to develop a real time approach in the 

time allotted, we tested the method via data 

cross-validation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3 - Error Calculation 

 

A MATLAB analysis of our data showed that 

both of our methods were very accurate. The 

Interpolation method was the most accurate, 

followed closely by Closest Point, and both 

were significantly better than Guess and Check. 

The average percent errors of the flashlights 

(Table 1)  are closely clustered, suggesting that 

our OpenCV visual analysis algorithms were 

able to handle the differences between the 

beam types, such as focused and unfocused, 

and beam color, such as red, green, and white. 

With these overwhelmingly positive results, it is 

evident that our methods could be extended 

into real time exploration methods for robots. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Flashlight Beam Interpolation Closest Point Guess and Check Average

Silver LED White 2.111699 % 2.535617 % 4.618721 % 3.088679 %

Silver LED Green 1.743071 % 2.247754 % 4.181938 % 2.7242543 %

Silver LED Red 1.929001 % 2.218931 % 4.347955 % 2.8319623 %

Yellow LED White 1.741829 % 2.287456 % 4.297386 % 2.775557 %

MagLite Focused 2.162559 % 2.509875 % 3.738037 % 2.8034903 %

MagLite Unfocused 2.000364 % 2.295011 % 4.19247 % 2.8292817 %

Average 1.9480872 % 2.3491073 % 4.2294178 %

Table 1 – Percent Errors of Flashlights and Methods 

Figure 19 - Silver LED Flashlight (White LEDs) Figure 20 - Yellow LED Flashlight (White LEDs) 

The following contour maps plot the percent error of data over the XY visual plane for each flashlight. The 

vertical and horizontal scales are the pixels of the field of view, and the color scale is the percent error. 

One should note that not all the pixel scales are the same. This is because the random exploration was 

different for each set of trials. 



21 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

The next three contour maps plot the 

percent error of data over the XY visual 

plane for each algorithm used. These 

figures illustrate that both the Interpolation 

and Closest Point methods have 

significantly lower error rates than the 

guess and check method. 
 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22 - Silver LED Flashlight (Red LEDs) Figure 11 - Silver LED Flashlight (Green LEDs) 

Figure 23 - MagLite Flashlight (Focused) Figure 24 - MagLite Flashlight (Unfocused) 

Figure 25 - Guess and Check 
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4.4 - Success 

 

We successfully met two of our three goals in 

this experiment. Our second goal, which was to 

program the robot to move its arm to control a 

flashlight, was met. While we did not get into 

the lab, our data cross-verification shows that 

our method produced very low deviations from 

known joint positions when calculating how to 

move the arm. Our “Interpolation” method had 

an average 1.948% error from the known joint 

positions, which was significantly better than 

the “Guess and Check” method’s average 

4.229% error. This means that, using our 

algorithm, the arm would have been in a 

position nearly identical to the positions that 

were known to illuminate the goal xy point. 

When you consider that a flashlight produces a 

very wide beam of light, this means that the 

goal xy point would certainly have been 

illuminated in a real world test. 

 

We also met our third goal, which was to create 

a method robust enough to deal with different 

colors and types of flashlights. Even though the 

red and green flashlights created very odd 

reading on the robot’s camera, we were still 

able to accurately calculate the robot’s arm 

movements. 

 

 

 

 

 

 

 

 

 

 

 

 

Unfortunately we were not able to meet our 

first goal. There are two main reasons for this. 

First, we greatly miscalculated our timeline. We 

were not able to get into the lab to collect our 

preliminary data as early as we wanted. We 

subsequently did not have enough time to 

create a real time version of our method. While 

this would have been an excellent addition to 

our experiment, the data cross-validation is 

more than sufficient to prove the idea behind 

our method. We should, however, complete a 

real time method in the future, as our 

algorithms may prove less accurate in real time. 

 

We also were not able to incorporate the self-

detection part of our project into the 

experiment. Again, because we were not able 

to get into the lab as early as we wanted, we 

did not have time to incorporate this portion of 

the project into the experiment. 

 

Our timeline was simply too ambitious and 

unrealistic. Considering that had to learn new 

programming languages and how to use a very 

complex robot, we did not give ourselves 

enough to complete the project as designed. In 

reality, it took us the first four weeks to develop 

our algorithms and collect preliminary data. The 

fifth week and half of the sixth week were spent 

processing the data and finding results, and the 

Figure 27 – Interpolation Figure 26 - Closest Point 
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last half of the sixth week was spent writing the 

paper.  

 

4.5 - Future Work 

 

Short-Term Research 

 

The first extension of this research would be to 

develop a real time program to run the method 

on the robot. This would allow a greater variety 

of tests to be run, and self-detection could be 

implemented. We hope to be able to continue 

this portion of the research over the summer 

through the REU program at ISU. 

One of the possible tests we would like to see 

done is to detect movement and move the arm 

to illuminate it. This would be quite difficult, but 

the results could be quite rewarding. This would 

fairly easy to implement using our developed 

image processing technique. A video stream 

would be processed on the fly, and if a 

difference was detected, the robot would move 

it’s arm to illuminate the center of the 

movement. This could then be expanded to 

follow a continually moving target 

 

This research could also be combined with the 

button recognition and button pressing 

algorithms to allow the robot to use one hand 

to hold a flashlight to guide its other hand to 

press doorbells in low light to no-light 

conditions [1][2]. 

 

It would also be beneficial to experiment with 

adapting our method to a moving field of view. 

Currently, the method only works on a 

stationary field of view (i.e. the head isn’t 

moving). Being able to move the head and still 

manipulate the flashlight accurately would be 

quite challenging as an additional step would 

need to be conceived to account for the 

rotation of the head. 

 

As described in Section 1.1, it is not always ideal 

to have a single robot perform an operation 

independently. Research could be done in 

having multiple robots working together to 

accomplish an objective. For example, give one 

robot a flashlight to illuminate a button or 

switch across the lab while another robot 

handles pressing the button or switching the 

switch. 

 

Long-Term Extensions 

 

A long-term extension for this research, with 

application of future research topics discussed 

above, would be the utilization of full humanoid 

robots to assist police officers in chasing and 

apprehending fugitives in nighttime scenarios. 

These robots could also work as security guards, 

a scenario where the motion detection 

mentioned in the short-term research would be 

quite helpful 

 

Another similar extension would be the use of 

robots for search and rescue missions. A robot 

with only night vision and infrared sensors 

would likely frighten the victim and increase the 

likelihood of injury or death. The ability to 

utilize flashlights would make the robots seem 

more familiar and would likely make the victim 

more comfortable and calm. We are not saying 

that robots with night vision are inherently bad, 

just that there are some situations in which a 

flashlight would be better. 

 

Robots will certainly be used in the household 

someday, and as everyone knows, the lights in a 

house are not always on. There will certainly be 

times when a robot will need to be able to see 

in the dark. We contended that flashlight 
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manipulation the best solution to this problem 

due to cost and the relationship between 

robots and humans. Equipping a robot with the 

knowledge to learn to use a flashlight is much 

less costly than equipping the same robot with 

an infrared camera or a 3D laser scanner. Also, 

a robot navigating the dark with a flashlight is 

much less scary than a robot that can navigate a 

dark household with no visible light. 
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