1. Calculate the following determinants.

\[
\begin{vmatrix}
-1 & 9 \\
8 & -5
\end{vmatrix} \quad \begin{vmatrix}
3 & -7 \\
6 & 8
\end{vmatrix} \quad \begin{vmatrix}
3 & 0 & 4 \\
2 & 3 & 2 \\
0 & 5 & -1
\end{vmatrix} \quad \begin{vmatrix}
a & b & c \\
a + x & b + x & c + x \\
a + y & b + y & c + y
\end{vmatrix}
\]

2. Show that the value of the determinant does not depend on \(\theta \).

\[
\begin{vmatrix}
sin\theta & -\cos\theta & sin\theta - cos\theta \\
\cos\theta & sin\theta & sin\theta + cos\theta \\
0 & 0 & 1
\end{vmatrix}
\]

3. Calculate the inverse of the given matrix.

\[
\begin{bmatrix}
5 & 10 \\
4 & 7
\end{bmatrix} \quad \begin{bmatrix}
1 & 1 \\
1 & 0
\end{bmatrix} \quad \begin{bmatrix}
1 & 0 & -2 \\
-3 & 1 & 4 \\
2 & -3 & 4
\end{bmatrix} \quad \begin{bmatrix}
0 & 1 & 2 \\
1 & 0 & 3 \\
4 & -3 & 8
\end{bmatrix}
\]

4. Solve the following systems of equations. In (b) describe the set of all \(b \) for which \(Ax = b \) has a solution.

\[
\begin{align*}
5x_1 + 7x_2 &= 3 \\
2x_1 + 4x_2 &= 1
\end{align*}
\]
\[
\begin{align*}
x_1 - 3x_2 - 4x_3 &= b_1 \\
-3x_1 + 2x_2 + 6x_3 &= b_2 \\
5x_1 - x_2 - 8x_3 &= b_3
\end{align*}
\]

5. Let \(u = (3, -1, -5) \), \(v = (0, -1, -3) \), and \(w = (6, -2, 3) \). Compute:

\[
\begin{align*}
(a) \ u \cdot w & \quad (b) \|u\|^2 & \quad (c) \ v \times w & \quad (d) \ dist(u, v) = \|u - v\| & \quad (e) \ proj_v u = \frac{u \cdot v}{\|v\|^2} v
\end{align*}
\]
6. Let \(u = (3, -1, -5) \), \(v = (0, -1, -3) \), and \(w = (6, -2, 3) \). Consider whether the following problems are possible. Compute AND verify the answer if the problem is possible. Otherwise give a SHORT explanation if the problem is not possible.

 (a) Find a vector \(t \in \mathbb{R}^3 \) that is perpendicular to both \(v \) and \(w \).
 (b) Find a vector \(t \in \mathbb{R}^3 \) that is perpendicular to \(u \), \(v \) and \(w \).

7. Find an equation for the plane passing through the given points.

 (a) \(P(3, 7, 4), Q(6, 0, 1), R(1, 1, 3) \)
 (b) \(P(-1, 3, -2), Q(4, 5, 4), R(-8, 5, 0) \)

8. Find the characteristic polynomial and the eigenvalues of the following matrices.

 (a) \[
 \begin{bmatrix}
 7 & 4 \\
 -3 & -1
 \end{bmatrix}
 \]
 (b) \[
 \begin{bmatrix}
 4 & 0 & 0 \\
 5 & 3 & 2 \\
 -2 & 0 & 2
 \end{bmatrix}
 \]
 (c) \[
 \begin{bmatrix}
 4 & -7 & 0 & 2 \\
 0 & 3 & -4 & 6 \\
 0 & 0 & 3 & -8 \\
 0 & 0 & 0 & 1
 \end{bmatrix}
 \]

9. In the following problems, find the \(3 \times 3 \) matrices that produce the described composite 2D transformations, using homogenous coordinates.

 (a) Translate by \((-2, 3)\), and then scale the \(x \)-coordinate by .8 and the \(y \)-coordinate by 1.2.
 (b) Reflect points through the \(x \)-axis, and then rotate \(30^\circ \) about the origin.

10. Given the vector \(v = [x, y]^T \), find a rotation matrix \(R \) which rotates the vector by \(60^\circ \) counterclockwise. Give the values for the vector \(v' = [x', y']^T \) in terms of \(x \) and \(y \), where \(v' = Rv \).

11. Find the equation \(y = B_0 + B_1 x \) of the least-squares line that best fits the data points \((2,1), (5,2), (7,3), (8,3)\).

12. Given the following experimental data points: find the mean, subtract the mean from all data points, construct the sample covariance matrix, and find the principal components of the data. (Hint: \((19, 12)\) is one data point)