

Project Proposals

- Are due today
- Please post the documents on the Wiki.
- Reviews are due on Sunday March 25 -th.

Logistics Meeting

- At least one person from each project group should attend.
- When: Wednesday March 21 @ 3pm
- Location: VRAC conference room.

Readings for Today's Lecture

Maybeck, Peter S. (1979)
Chapter 1 in " ${ }^{\text {Stochastic }}$ models, estimation, and control",

Mathematics in Science and
Engineering Series, Academic Press.

Arthur Gelb, Joseph Kasper, Raymond Nash, Charles Price, Arthur Sutherland (1974)

Applied Optimal Estimation MIT Press.

Readings for Next Time (Monday after Spring Break)

- Particle Filters
- Posted on the class web page

Let's Start With a Demo

- Matlab Program Written by John Burnett (who took the class last semester)
- Posted on the class web page
[www.cse.lehigh.edu/~spletzer/cse398_Spring05/lec011_Localization2.ppt]

A Simple Example

- Consider a ship sailing east with a perfect compass trying to estimate its position.
- You estimate the position x from the stars as $z_{1}=100$ with a precision of $\sigma_{x}=4$ miles

A Simple Example (cont'd)

- Along comes a more experienced navigator, and she takes her own sighting z_{2}
- She estimates the position $x=z_{2}=125$ with a precision of $\sigma_{x}=3$ miles
- How do you merge her estimate with your own?

[www.cse.lehigh.edu/~spletzer/cse398 Spring05/lec011 Localization2.ppt]
A Simple Example (cont'd)

A Simple Example (cont'd)

- With the distributions being Gaussian, the best estimate for the state is the mean of the distribution, so...

$$
x_{2}=\left[\frac{\sigma_{z_{2}}^{2}}{\sigma_{z_{1}}^{2}+\sigma_{z_{2}}^{2}}\right] z_{1}+\left[\frac{\sigma_{z_{1}}^{2}}{\sigma_{z 1}^{2}+\sigma_{z_{2}}^{2}}\right] z_{2}
$$

or alternately

where K_{t} is referred to as the Kalman gain, and must be computed at each time step

A Simple Example (cont'd)

- OK, now you fall asleep on your watch. You wake up after 2 hours, and you now have to re-estimate your position
- Let the velocity of the boat be nominally 20 miles/hour, but with a variance of $\sigma_{w}^{2}=4$ miles ${ }^{2}$ /hour
- What is the best estimate of your current position?

A Simple Example (cont'd)

- OK, this is not a very accurate estimate. So, since you've had your nap you decide to take another measurement and you get $\mathrm{z}_{3}=165$ miles
- Using the same update procedure as the first update, we obtain

$$
\begin{aligned}
x_{3} & =x_{3}^{-}+K_{3}\left(z_{3}-x_{3}^{-}\right) \\
\sigma_{3}^{2} & =\sigma_{3}^{2-}-K_{3} \sigma_{3}^{2-} \\
& =13.76-\left[\frac{13.76}{13.76+16}\right] 13.76=7.40
\end{aligned}
$$

and so on...

Calculating the new mean

A Simple Example (cont'd)

- The next effect is that the gaussian is translated by a distance and the variance of the distribution is increased to account for the uncertainty in dynamics

$$
\begin{array}{ll}
x_{3}^{-}=x_{2}+v \Delta t & \Rightarrow x_{3}^{-}=116+40=156 \\
\sigma_{3}^{2-}=\sigma_{2}^{2}+\sigma_{w}^{2-} \Delta t & \Rightarrow \sigma_{3}^{2-}=5.76+8=13.76
\end{array}
$$

The Predictor-Corrector Approach

- In this example, prediction came from using knowledge of the vehicle dynamics to estimate its change in position
- An analogy with a robot would be integrating information from the robot kinematics (i.e. you give it a desired [$\mathrm{x}, \mathrm{y}, \mathrm{a}$] velocities for a time Δt) to estimate changed in position
- The correction is accomplished through making exteroceptive observations and then fusing this with your current estimate
- This is akin to updating position estimates using landmark information, etc.
- In practice, the prediction rate is typically much higher than the correction

$$
\begin{aligned}
& \mu=\text { Scaling Factor } 1 \\
& z_{1}+\text { Scaling Factor } 2 \\
& z_{2} \\
& \mu=\left[\sigma_{z_{2}}^{2} /\left(\sigma_{z_{1}}^{2}+\sigma_{z_{2}}^{2}\right)\right] z_{1}+\left[\sigma_{z_{1}}^{2} /\left(\sigma_{z_{1}}^{2}+\sigma_{z_{2}}^{2}\right)\right] z_{2}
\end{aligned}
$$

Calculating the new variance

$$
\begin{aligned}
& \sigma^{2}=\underbrace{\text { Scaling Factor } 1 \sigma_{z_{1}}^{2}}_{\left[\sigma_{z_{2}}^{2} /\left(\sigma_{z_{1}}^{2}+\sigma_{z_{2}}^{2}\right)\right]^{2}}+\underbrace{\text { Scaling Facoror } 2_{2}}_{\left[\sigma_{z_{1}}^{2} /\left(\sigma_{z_{1}}^{2}+\sigma_{z_{2}}^{2}\right)\right]^{2}} \sigma_{z_{2}}^{2} \\
& \sigma^{2}=\left[\sigma_{z_{2}}^{2} /\left(\sigma_{z_{1}}^{2}+\sigma_{z_{2}}^{2}\right)\right]_{z_{1}}^{2}+\left[\sigma_{z_{1}}^{2} /\left(\sigma_{z_{1}}^{2}+\sigma_{z_{2}}^{2}\right)\right]_{z_{2}}^{2} \sigma_{z_{2}}^{2}
\end{aligned}
$$

What makes these scaling factors special? Are there other ways to combine the two measurements?

- They minimize the error between the prediction and the true value of X.
- They are optimal in the least-squares sense.

What is the minimum value?

What is the minimum value?

Finding the Minimum Value

- $Y=9 x^{2}-50 x+50$
- $\mathrm{dY} / \mathrm{dx}=18 \mathrm{x}-50=0$
- The minimum is obtained when $x=50 / 18=2.77777(7)$
- The minimum value is

$$
Y\left(x_{\text {min }}\right)=9^{*}(50 / 18)^{2}-50^{*}(50 / 18)+50=-19.44444(4)
$$

Start with two measurements

$$
z_{1}=x+v_{1} \text { and } z_{2}=x+v_{2}
$$

- v_{1} and v_{2} represent zero mean noise

Expected value of the error

$E[e]=E[\hat{x}-x]$
$=E\left[s_{1} z_{1}+s_{2} z_{2}-x\right]$
$=E\left[s_{1}\left(x+v_{1}\right)+s_{2}\left(x+v_{2}\right)-x\right]$
$=s_{1} E[x]+s_{1} E\left[v_{1}\right]+s_{2} E[x]+s_{2} E\left[v_{2}\right]-E[x]$
$=s_{1} E[x]+0+s_{2} E[x]+0-E[x]$
$=s_{1} x+s_{2} x-x=0$

- If the estimate is unbiased this should hold

Find the Mean Square Error

$$
\begin{aligned}
E\left[e^{2}\right] & =E\left[(\hat{x}-x)^{2}\right] \\
& =?
\end{aligned}
$$

Formula for the estimation error

- The new estimate is

$$
\hat{x}=s_{1} z_{1}+s_{2} z_{2}
$$

- The error is

$$
e=\hat{x}-x
$$

\square
which can be rewritten as $s_{2}=1-s_{1}$

Minimize the mean square error

$$
\begin{aligned}
E\left[e^{2}\right] & =s_{1}^{2} \sigma_{1}^{2}+\left(1-s_{1}\right)^{2} \sigma_{2}^{2} \\
\frac{\mathrm{dE}\left[e^{2}\right]}{\mathrm{ds}_{1}} & =2 s_{1} \sigma_{1}^{2}-2\left(1-s_{1}\right) \sigma_{2}^{2} \\
& =2 s_{1} \sigma_{1}^{2}+2 s_{1} \sigma_{2}^{2}-2 \sigma_{2}^{2} \\
& =2 s_{1}\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right)-2 \sigma_{2}^{2}=0
\end{aligned}
$$

Finding S_{1}

$$
\begin{aligned}
2 s_{1}\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right)-2 \sigma_{2}^{2} & =0 \\
2 s_{1}\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right) & =2 \sigma_{2}^{2}
\end{aligned}
$$

- Therefore

$$
s_{1}=\frac{\sigma_{2}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}}
$$

Finally we get what we wanted

$$
\begin{aligned}
\hat{x} & =s_{1} z_{1}+s_{2} z_{2} \\
& =\left(\frac{\sigma_{2}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}}\right) z_{1}+\left(\frac{\sigma_{1}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}}\right) z_{2}
\end{aligned}
$$

Finding S_{2}

$$
\begin{aligned}
s_{2} & =1-s_{1} \\
& =1-\frac{\sigma_{2}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}} \\
& =\frac{\sigma_{1}^{2}+\sigma_{2}^{2}-\sigma_{2}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}} \\
& =\frac{\sigma_{1}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}}
\end{aligned}
$$

Finding the new variance	$\sigma^{2}=s_{1}^{2} \sigma_{1}^{2}+s_{2}^{1} \sigma_{2}^{2}$
	$=\left(\frac{o_{2}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}}\right)^{2} \sigma_{1}^{2}+\left(\frac{o^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}}\right)^{2} \sigma_{2}^{2}$
	$=\frac{\sigma_{0}^{*} \sigma_{1}^{2}+\sigma_{1}^{4} \sigma_{2}^{2}}{\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right)^{2}}$
	$=\frac{\sigma_{1}^{2} \sigma_{2}^{2}\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right)}{\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right)^{2}}$
	$=\frac{\sigma_{2}^{\sigma_{2}^{2} \sigma_{2}^{2}}}{\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right)}$
	$=\frac{\left.\frac{1}{\left(\frac{\sigma^{2}+\sigma^{2}}{\sigma_{2}^{2}} \sigma_{2}^{2} \sigma_{1}^{2}\right.}\right)}{}$
	$=\frac{1}{\frac{1}{\sigma_{1}^{2}} \frac{1}{\sigma_{2}^{2}}}$

Formula for the new variance

$$
\frac{1}{\sigma^{2}}=\frac{1}{\sigma_{1}^{2}}+\frac{1}{\sigma_{2}^{2}}
$$

The process to be estimated

$$
x_{k}=A x_{k-1}+B u_{k}+w_{k-1}
$$

$$
z_{k}=H x_{k}+v_{k}
$$

THE END

