

HCI/ComS 575X: Computational Perception

Instructor: Alexander Stoytchev http://www.cs.iastate.edu/~alex/classes/2007\_Spring\_575X/



HCI/ComS 575X: Computational Perception lowa State University, SPRING 2007 Copyright © 2007, Alexander Stoytchev

# **Project Proposals**

- Are due today
- Please post the documents on the Wiki.
- Reviews are due on Sunday March 25-th.

## **Final Project Demos**

- Wednesday April 25-th
- Two sessions

   9:00 -10:30 am
   2:30 4:00 pm

## Logistics Meeting

- At least one person from each project group should attend.
- When: Wednesday March 21 @ 3pm
- Location: VRAC conference room.

#### Equipment for Checkout

Sample HW4 Solutions (created by the TAs)

Readings for Today's Lecture

Brown and Hwang (1992)

"Introduction to Random Signals and Applied Kalman Filtering"

Ch 5: The Discrete Kalman Filter

Maybeck, Peter S. (1979)

Chapter 1 in ``Stochastic models, estimation, and control",

Mathematics in Science and Engineering Series, Academic Press.

Arthur Gelb, Joseph Kasper, Raymond Nash, Charles Price, Arthur Sutherland (1974)

Applied Optimal Estimation

MIT Press.

### Readings for Next Time (Monday after Spring Break)

- Particle Filters
- Posted on the class web page



- Matlab Program Written by John Burnett (who took the class last semester)
- Posted on the class web page

























What makes these scaling factors special? Are there other ways to combine the two measurements?

- They minimize the error between the prediction and the true value of X.
- They are optimal in the least-squares sense.











 $z_1 = x + v_1$  and  $z_2 = x + v_2$ 

-  $v_1$  and  $v_2$  represent zero mean noise

#### Formula for the estimation error

• The new estimate is

$$\hat{x} = s_1 z_1 + s_2 z_2$$

• The error is

$$e = \hat{x} - x$$



Therefore, 
$$s_1 + s_2 - 1 = 0$$
  
which can be rewritten as  $s_2 = 1 - s_1$ 

Find the Mean Square Error  

$$E[e^2] = E[(\hat{x} - x)^2]$$
  
 $= ?$ 

 $E[e^2] = E[(\hat{x} - x)^2]$ =  $E[\hat{x}^2 - 2\hat{x}x + x^2]$ 

- $= E[(s_1z_1 + s_2z_2)^2 2(s_1z_1 + s_2z_2)x + x^2]$
- $= \ E[(s_1(x+v_1)+s_2(x+v_2))^2-2(s_1(x+v_1)+s_2(x+v_2))x+x^2]$
- $= \ E[s_1^2(x+v_1)^2 + 2s_1s_2(x+v_1)(x+v_2) + s_2^2(x+v_2)^2 2s_1(x+v_1)x 2s_2(x+v_2) + s_2^2(x+v_2) + s$
- $= \ E[\underline{s_1^2x^2} + \underline{2s_1^2v_1x} + s_1^2v_1^2 + \underline{2s_1s_2x^2} + \underline{2s_1s_2v_1x} + \underline{2s_1s_2v_2x} + 2s_1s_2v_1v_2 +$
- $$\begin{split} &+s_2^2x^2+2s_2^2v_2x+s_2^2v_2^2-2s_1v_1x-2s_2v_2x^2-2s_2v_2x+\underline{x}^2]\\ &= E[(s_1^2+2s_1s_2+s_2^2-2s_1-2s_2+1)x^2+\\ &+2(s_1^2v_1+s_1s_2v_1+s_1s_2v_2+s_2^2v_2-s_1v_1-s_2v_2)x+\\ &+s_1^2v_1^2+2s_1s_2v_1v_2+s_2^2v_2^2] \end{split}$$
- $$\begin{split} &+ i T (T + 2s_1 s_2 v_1 v_1 + s_2 T ) \\ &= \left\{ (s_1 + s_2)^2 2 (s_1 + s_2) + 1 \right\} E[x^2] + \\ &+ 2 \left\{ i \overline{c} T (v_1 + s_1 s_2 E(v_1) + s_1 s_2 E(v_2) + s_1^2 E(v_2) s_1 E(v_1) s_2 E(v_2) \right\} E[x] + \\ &+ d \overline{c} E[v] + 2 s_1 s_2 E(v_1) + d \overline{c} E[v] + d \overline{c} E[v] \\ \end{split}$$
- $= \quad (1-2+1)E[x^2] + 2(0+0+0+0-0-0)E[x] + s_1^2E[v_1^2] + 0 + s_2^2E[v_2^2]$
- $= \ s_1^2 E[v_1^2] + s_2^2 E[v_2^2]$
- $= \ s_1^2 \sigma_1^2 + s_2^2 \sigma_2^2$
- $= \ s_1^2 \sigma_1^2 + (1-s_1)^2 \sigma_2^2$

Mean Square Error  

$$E[e^2] = s_1^2 \sigma_1^2 + (1 - s_1)^2 \sigma_2^2$$

Minimize the mean square error  

$$E[e^{2}] = s_{1}^{2}\sigma_{1}^{2} + (1 - s_{1})^{2}\sigma_{2}^{2}$$

$$\frac{dE[e^{2}]}{ds_{1}} = 2s_{1}\sigma_{1}^{2} - 2(1 - s_{1})\sigma_{2}^{2}$$

$$= 2s_{1}\sigma_{1}^{2} + 2s_{1}\sigma_{2}^{2} - 2\sigma_{2}^{2}$$

$$= 2s_{1}(\sigma_{1}^{2} + \sigma_{2}^{2}) - 2\sigma_{2}^{2} = 0$$

Finding S<sub>1</sub>  $2s_1(\sigma_1^2 + \sigma_2^2) - 2\sigma_2^2 = 0$   $2s_1(\sigma_1^2 + \sigma_2^2) = 2\sigma_2^2$ • Therefore  $s_1 = \frac{\sigma_2^2}{\sigma_1^2 + \sigma_2^2}$ 

Finding S<sub>2</sub>  

$$s_2 = 1 - s_1$$

$$= 1 - \frac{\sigma_2^2}{\sigma_1^2 + \sigma_2^2}$$

$$= \frac{\sigma_1^2 + \sigma_2^2 - \sigma_2^2}{\sigma_1^2 + \sigma_2^2}$$

$$= \frac{\sigma_1^2}{\sigma_1^2 + \sigma_2^2}$$

Finally we get what we wanted  

$$\hat{x} = s_1 z_1 + s_2 z_2 \\
= \left(\frac{\sigma_2^2}{\sigma_1^2 + \sigma_2^2}\right) z_1 + \left(\frac{\sigma_1^2}{\sigma_1^2 + \sigma_2^2}\right) z_2$$

| Finding the  | $\sigma^2 = s_1^2 \sigma_1^2 + s_2^1 \sigma_2^2$                                                                                                |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| new variance | $= \left(\frac{\sigma_2^2}{\sigma_1^2 + \sigma_2^2}\right)^2 \sigma_1^2 + \left(\frac{\sigma_1^2}{\sigma_1^2 + \sigma_2^2}\right)^2 \sigma_2^2$ |
|              | $= \frac{\sigma_2^4 \sigma_1^2 + \sigma_1^4 \sigma_2^2}{\left(\sigma_1^2 + \sigma_2^2\right)^2}$                                                |
|              | $= \frac{\sigma_{1}^{2}\sigma_{2}^{2}\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right)}{\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right)^{2}}$               |
|              | $= \frac{\sigma_1^2 \sigma_2^2}{\left(\sigma_1^2 + \sigma_2^2\right)}$                                                                          |
|              | $= \frac{1}{\left(\frac{\sigma_1^2 + \sigma_2^2}{\sigma_2^2 \sigma_1^2}\right)}$                                                                |
|              | $= \frac{1}{\frac{1}{\sigma_1^2} + \frac{1}{\sigma_2^2}}$                                                                                       |





The process to be estimated  $x_{k} = Ax_{k-1} + Bu_{k} + w_{k-1}$   $z_{k} = Hx_{k} + v_{k}$ 



