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Project Proposals 

• Are due today

• Please post the documents on the Wiki.

• Reviews are due on Sunday March 25-th.

Final Project Demos

• Wednesday April 25-th 

• Two sessions
– 9:00 -10:30 am
– 2:30 - 4:00 pm

Logistics Meeting

• At least one person from each project 
group should attend. 

• When: Wednesday March 21 @ 3pm 

• Location: VRAC conference room.

Equipment for Checkout
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Sample HW4 Solutions
(created by the TAs) Readings for Today’s Lecture

Brown and Hwang (1992)

“Introduction to Random Signals 
and Applied Kalman Filtering”

Ch 5: The Discrete Kalman Filter

Maybeck, Peter S. (1979)

Chapter 1 in ``Stochastic 
models, estimation, and control'',

Mathematics in Science and 
Engineering Series, Academic 

Press.

Arthur Gelb, Joseph Kasper, 
Raymond Nash, Charles Price, 

Arthur Sutherland (1974)

Applied Optimal Estimation

MIT Press.

Readings for Next Time
(Monday after Spring Break)

• Particle Filters 

• Posted on the class web page
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Let’s Start With a Demo

• Matlab Program Written by John Burnett 
(who took the class last semester)

• Posted on the class web page

Another Example

A Simple Example

• Consider a ship sailing east with a perfect compass 

trying to estimate its position.

• You estimate the position x from the stars as 

z1=100 with a precision of σx=4 miles

x100

[www.cse.lehigh.edu/~spletzer/cse398_Spring05/lec011_Localization2.ppt]

A Simple Example (cont’d)

• Along comes a more experienced navigator, and 

she takes her own sighting z2

• She estimates the position x= z2 =125 with a 

precision of σx=3 miles

• How do you merge her estimate with your own?

x100 125

[www.cse.lehigh.edu/~spletzer/cse398_Spring05/lec011_Localization2.ppt]

A Simple Example (cont’d)

xx2=116
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[www.cse.lehigh.edu/~spletzer/cse398_Spring05/lec011_Localization2.ppt]

• With the distributions being Gaussian, the best 

estimate for the state is the mean of the 

distribution, so…

or alternately 

where Kt is referred to as the Kalman gain, and 

must be computed at each time step 
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A Simple Example (cont’d)
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Correction Term

[www.cse.lehigh.edu/~spletzer/cse398_Spring05/lec011_Localization2.ppt]
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• OK, now you fall asleep on your watch.  You wake 

up after 2 hours, and you now have to re-estimate 

your position

• Let the velocity of the boat be nominally 20 

miles/hour, but with a variance of σ2
w=4 

miles2/hour

• What is the best estimate of your current position?

A Simple Example (cont’d)

xx2=116 x-
3 =?

[www.cse.lehigh.edu/~spletzer/cse398_Spring05/lec011_Localization2.ppt]

• The next effect is that the gaussian is translated 

by a distance and the variance of the distribution 

is increased to account for the uncertainty in 

dynamics

A Simple Example (cont’d)
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[www.cse.lehigh.edu/~spletzer/cse398_Spring05/lec011_Localization2.ppt]

• OK, this is not a very accurate estimate.  So, since you’ve 

had your nap you decide to take another measurement and 

you get z3=165 miles

• Using the same update procedure as the first update, we 

obtain

and so on…

A Simple Example (cont’d)
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[www.cse.lehigh.edu/~spletzer/cse398_Spring05/lec011_Localization2.ppt]

• In this example, prediction came from using knowledge of the 

vehicle dynamics to estimate its change in position

• An analogy with a robot would be integrating information from 

the robot kinematics (i.e. you give it a desired [x, y, α] 

velocities for a time ∆t) to estimate changed in position

• The correction is accomplished through making exteroceptive

observations and then fusing this with your current estimate

• This is akin to updating position estimates using landmark 

information, etc.

• In practice, the prediction rate is typically much higher than the 

correction

The Predictor-Corrector Approach

[www.cse.lehigh.edu/~spletzer/cse398_Spring05/lec011_Localization2.ppt]

Calculating the new mean

Scaling Factor 1 Scaling Factor 2
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Calculating the new variance

Scaling Factor 1 Scaling Factor 2

What makes these scaling factors 
special? Are there other ways to 
combine the two measurements?

• They minimize the error between the 
prediction and the true value of X.

• They are optimal in the least-squares 
sense.

How can we minimize the error? What is the minimum value?

[http://home.ubalt.edu/ntsbarsh/Business-stat/otherapplets/function.gif]

What is the minimum value?

[http://home.ubalt.edu/ntsbarsh/Business-stat/otherapplets/function.gif]

Finding the Minimum Value

• Y= 9x2 - 50x + 50

• dY/dx = 18 x -50 =0

• The minimum is obtained when  
x=50/18=2.77777(7)

• The minimum value is
Y(xmin) = 9*(50/18)2 -50*(50/18) +50 = -19.44444(4)
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Start with two measurements 

• v1 and v2 represent zero mean noise

Formula for the estimation error

• The new estimate is

• The error is 

Expected value of the error

• If the estimate is unbiased this should hold

Find the Mean Square Error

=    ?
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Mean Square Error Minimize the mean square error

Finding S1

• Therefore

Finding S2

Finally we get what we wanted
Finding the 
new variance
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Formula for the new variance Kalman Filter Diagram

[Brown and Hwang (1992)]

The process to be estimated

THE END


