Recursion (part 1)

October 24, 2007

Recursion

Recursion is a fundamental programming technique that can provide an elegant solution certain kinds of problems.

Recursive Thinking

• A recursive definition is one which uses the word or concept being defined in the definition itself

• When defining an English word, a recursive definition is often not helpful

• But in other situations, a recursive definition can be an appropriate way to express a concept

• Before applying recursion to programming, it is best to practice thinking recursively

Circular Definitions

• Debugger – a tool that is used for debugging

Recursive Definitions

• Consider the following list of numbers:

 24, 88, 40, 37

• Such a list can be defined as follows:

 A LIST is a: number
 or: number comma LIST

• That is, a LIST is defined to be a single number, or a number followed by a comma followed by a LIST

• The concept of a LIST is used to define itself
Recursive Definitions

- The recursive part of the LIST definition is used several times, terminating with the non-recursive part:

  ```java
  number comma LIST
  24, 88, 40, 37
  number comma LIST
  88, 40, 37
  number comma LIST
  40, 37
  number
  37
  ```

- All recursive definitions have to have a non-recursive part
- If they didn’t, there would be no way to terminate the recursive path
- Such a definition would cause infinite recursion
- This problem is similar to an infinite loop, but the non-terminating "loop" is part of the definition itself
- The non-recursive part is often called the base case

Example: Factorial_Iterative.java

Example: Factorial_Recursive.java
Recursive Programming

- A method in Java can invoke itself; if set up that way, it is called a recursive method.
- The code of a recursive method must be structured to handle both the base case and the recursive case.
- Each call to the method sets up a new execution environment, with new parameters and local variables.
- As with any method call, when the method completes, control returns to the method that invoked it (which may be an earlier invocation of itself).

Consider the problem of computing the sum of all the numbers between 1 and any positive integer N.

This problem can be recursively defined as:

\[\sum_{i=1}^{N} i = N + \sum_{i=1}^{N-1} i \]

\[= N + (N-1) + \sum_{i=1}^{N-2} i \]

\[= N + (N-1) + (N-2) + \sum_{i=1}^{N-3} i \]

Example: Sum_Iterative.java

Example: Sum_Recursive.java