Comparing Data & the ‘switch’ Statement

September 26, 2007

HW 5 is out
• Due next Friday

Quick review of last lecture

The if Statement
• The if statement has the following syntax:

```
if (condition)
  statement;
```

- The condition must be a boolean expression. It must evaluate to either true or false.
- If the condition is true, the statement is executed.
- If it is false, the statement is skipped.

The if-else Statement
• An else clause can be added to an if statement to make an if-else statement

```
if (condition)
  statement1;
else
  statement2;
```

- If the condition is true, statement1 is executed.
- If the condition is false, statement2 is executed.
- One or the other will be executed, but not both
Logic of an if-else statement

- **condition evaluated**
 - true
 - false

- **statement1**
- **statement2**

Logical NOT

- The logical NOT operation is also called logical negation or logical complement
- If some boolean condition \(a \) is true, then \(\neg a \) is false; if \(a \) is false, then \(\neg a \) is true
- Logical expressions can be shown using a truth table

<table>
<thead>
<tr>
<th>(a)</th>
<th>(\neg a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
</tr>
</tbody>
</table>

Logical Operators

- A truth table shows all possible true-false combinations of the terms
- Since \&\& and | each have two operands, there are four possible combinations of conditions \(a \) and \(b \)

<table>
<thead>
<tr>
<th>(a)</th>
<th>(b)</th>
<th>(a) && (b)</th>
<th>(a)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>true</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
</tr>
</tbody>
</table>

Boolean Expressions

- Specific expressions can be evaluated using truth tables

<table>
<thead>
<tr>
<th>total < MAX</th>
<th>found</th>
<th>!found</th>
<th>total < MAX && !found</th>
<th>found</th>
</tr>
</thead>
<tbody>
<tr>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
</tr>
<tr>
<td>true</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>true</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>false</td>
</tr>
</tbody>
</table>

Indentation Revisited

- Remember that indentation is for the human reader, and is ignored by the computer

```
if (total > MAX)
    System.out.println("Error!!");
    errorCount++;
```

Despite what is implied by the indentation, the increment will occur whether the condition is true or not
Block Statements

- Several statements can be grouped together into a **block statement** delimited by braces.
- A block statement can be used wherever a statement is called for in the Java syntax rules.

```java
if (total > MAX)
{  
    System.out.println("Error!!");
    errorCount++;
}
```

See **Guessing.java** (page 216).

The Conditional Operator

- Java has a **conditional operator** that uses a boolean condition to determine which of two expressions is evaluated.
- Its syntax is:

  ```java
  condition ? expression1 : expression2
  ```
- If the **condition** is true, **expression1** is evaluated; if it is false, **expression2** is evaluated.
- The value of the entire conditional operator is the value of the selected expression.

Another example:

```java
System.out.println("Your change is "+ count +
  ((count == 1) ? "Dime": "Dimes"));
```
- If count equals 1, "Dime" is printed.
- If count is anything other than 1, "Dimes" is printed.

Nested if Statements

- The statement executed as a result of an **if** statement or **else** clause could be another **if** statement.
- These are called **nested if statements**.
- See **MinOfThree.java** (page 219).
- An else clause is matched to the last unmatched **if** (no matter what the indentation implies).
- Braces can be used to specify the **if** statement to which an else clause belongs.
The Coin Class

- Let’s examine a class that represents a coin that can be flipped
- Instance data is used to indicate which face (heads or tails) is currently showing
- See CoinFlip.java (page 213)
- See Coin.java (page 214)

Example: Guessing.java (page 216)

Chapter 5
Sections 5.3 – 5.4

The switch Statement

- The switch statement provides another way to decide which statement to execute next
- The switch statement evaluates an expression, then attempts to match the result to one of several possible cases
- Each case contains a value and a list of statements
- The flow of control transfers to statement associated with the first case value that matches

The switch Statement

- Often a break statement is used as the last statement in each case’s statement list
- A break statement causes control to transfer to the end of the switch statement
- If a break statement is not used, the flow of control will continue into the next case
- Sometimes this may be appropriate, but often we want to execute only the statements associated with one case

The switch Statement

- An example of a switch statement:

```
switch (option) {
    case 'A':
        aCount++;
        break;
    case 'B':
        bCount++;
        break;
    case 'C':
        cCount++;
        break;
}
```
The switch Statement

• A switch statement can have an optional default case
• The default case has no associated value and simply uses the reserved word default
• If the default case is present, control will transfer to it if no other case value matches
• If there is no default case, and no other value matches, control falls through to the statement after the switch

The switch Statement

• The expression of a switch statement must result in an integral type, meaning an integer (byte, short, int, long) or a char
• It cannot be a boolean value or a floating point value (float or double)
• The implicit boolean condition in a switch statement is equality
• You cannot perform relational checks with a switch statement
• See GradeReport.java (page 225)

The switch Statement

• The general syntax of a switch statement is:

```
switch (expression)
{
    case value1:
    statement-list1
    case value2:
    statement-list2
    case value3:
    statement-list3
    case ...
}
```

switch and case are reserved words

Example: GradeReport.java (page 225)

THE END