Compiling and Compiler Errors

August 22, 2007

Chapter 1
Introduction

Our First Program

```java
// comments about the class
class MyProgram {
    // comments about the method
    public static void main(String[] args) {
        System.out.println("Hello World");
    }
}
```

Java Program Structure

```java
// comments about the class
class MyProgram {
    // comments about the method
    public static void main(String[] args) {
        System.out.println("Hello World");
    }
}
```

Comments

- Comments in a program are called **inline documentation**
- They should be included to explain the purpose of the program and describe processing steps
- They do not affect how a program works
- Java comments can take three forms:
 - `//` this comment runs to the end of the line
 - `/*` this comment runs to the terminating symbol, even across line breaks `*/`
 - `/**` this is a javadoc comment `*/`
Our First Program

```java
// comments about the class
public class MyProgram {
    // comments about the method
    public static void main (String[] args) {
        System.out.println("Hello World");
    }
}
```

Identifiers

- **Identifiers** are the words a programmer uses in a program.
- An identifier can be made up of letters, digits, the underscore character (_), and the dollar sign.
- Identifiers cannot begin with a digit.
- Java is case sensitive; **Total**, **total**, and **TOTAL** are different identifiers.
- By convention, programmers use different case styles for different types of identifiers, such as:
 - **title case** for class names - **Lincoln**
 - **upper case** for constants - **MAXIMUM**

Identifiers

- Sometimes we choose identifiers ourselves when writing a program (such as **Lincoln**).
- Sometimes we are using another programmer’s code, so we use the identifiers that he or she chose (such as **println**).
- Often we use special identifiers called **reserved** words that already have a predefined meaning in the language.
- A reserved word cannot be used in any other way.

Reserved Words

- The Java reserved words:
 - **abstract**
 - **assert**
 - **boolean**
 - **break**
 - **byte**
 - **case**
 - **catch**
 - **char**
 - **class**
 - **const**
 - **continue**
 - **default**
 - **do**
 - **double**
 - **else**
 - **enum**
 - **extends**
 - **false**
 - **finally**
 - **float**
 - **for**
 - **goto**
 - **if**
 - **implements**
 - **import**
 - **instanceof**
 - **int**
 - **interface**
 - **long**
 - **native**
 - **new**
 - **null**
 - **package**
 - **private**
 - **protected**
 - **public**
 - **short**
 - **static**
 - **strictfp**
 - **super**
 - **switch**
 - **synchronized**
 - **this**
 - **throw**
 - **throws**
 - **transient**
 - **true**
 - **try**
 - **void**
 - **volatile**
 - **while**
 - **wild**
 - **yield**

White Space

- Spaces, blank lines, and tabs are called **white space**.
- White space is used to separate words and symbols in a program.
- Extra white space is ignored.
- A valid Java program can be formatted many ways.
- Programs should be formatted to enhance readability, using consistent indentation.
- See **Lincoln2.java** (page 34)
- See **Lincoln3.java** (page 35)

This code is still valid, but hard to read

```java
// comments about the class
public class MyProgram {
    // comments about the method
    public static void main (String[] args) {
        System.out.println("Hello World");
    }
}
```
Run examples from the book

Hardware and Software
- **Hardware**
 - the physical, tangible parts of a computer
 - keyboard, monitor, disks, wires, chips, etc.
- **Software**
 - programs and data
 - a program is a series of instructions
- A computer requires both hardware and software
- Each is essentially useless without the other

A Computer Specification
- Consider the following specification for a personal computer:
 - 2.8 GHz Pentium 4 Processor
 - 512 MB RAM
 - 80 GB Hard Disk
 - 48x CD-RW / DVD-ROM Combo Drive
 - 17” Video Display with 1280 x 1024 resolution
 - 56 Kb/s Modem
- What does it all mean?

CPU and Main Memory
- Chip that executes program commands
 - Intel Pentium 4
 - Sun ultraSPARC III
- Primary storage area for programs and data that are in active use
- Synonymous with RAM

The Central Processing Unit
- A CPU is on a chip called a **microprocessor**
- It continuously follows the **fetch-decode-execute cycle**:

 ![Diagram of the fetch-decode-execute cycle](Image)

 - **fetch**: Retrieve an instruction from main memory
 - **decode**: Determine what the instruction is
 - **execute**: Carry out the instruction

Secondary Memory Devices
- Information is moved between main memory and secondary memory as needed
 - Hard disks
 - Floppy disks
 - ZIP disks
 - Writable CDs
 - Writable DVDs
 - Tapes
Input / Output Devices

Central Processing Unit

Monitor
Keyboard

Main Memory

Hard Disk
Floppy Disk

Monitor screen
Keyboard
Mouse
Joystick
Bar code scanner
Touch screen

I/O devices facilitate user interaction

Software Categories

• Operating System
 • controls all machine activities
 • provides the user interface to the computer
 • manages resources such as the CPU and memory
 • Windows XP, Unix, Linux, Mac OS

• Application program
 • generic term for any other kind of software
 • word processors, missile control systems, games

• Most operating systems and application programs have a graphical user interface (GUI)

Analog vs. Digital

• There are two basic ways to store and manage data:

 • Analog
 • continuous, in direct proportion to the data represented
 • music on a record album - a needle rides on ridges in the grooves that are directly proportional to the voltages sent to the speaker

 • Digital
 • the information is broken down into pieces, and each piece is represented separately
 • music on a compact disc - the disc stores numbers representing specific voltage levels sampled at specific times

Digital Information

• Computers store all information digitally:
 • numbers
 • text
 • graphics and images
 • video
 • audio
 • program instructions

• In some way, all information is digitized - broken down into pieces and represented as numbers

Representing Text Digitally

• For example, every character is stored as a number, including spaces, digits, and punctuation

• Corresponding upper and lower case letters are separate characters

Hi, Heather.

72 105 44 32 72 101 97 116 104 101 114 46

Binary Numbers

• Once information is digitized, it is represented and stored in memory using the binary number system

• A single binary digit (0 or 1) is called a bit

• Devices that store and move information are cheaper and more reliable if they have to represent only two states

• A single bit can represent two possible states, like a light bulb that is either on (1) or off (0)

• Permutations of bits are used to store values
Bit Permutations

<table>
<thead>
<tr>
<th>1 bit</th>
<th>2 bits</th>
<th>3 bits</th>
<th>4 bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>00</td>
<td>000</td>
<td>1000</td>
</tr>
<tr>
<td>1</td>
<td>01</td>
<td>001</td>
<td>0001</td>
</tr>
<tr>
<td>10</td>
<td>010</td>
<td>0010</td>
<td>1010</td>
</tr>
<tr>
<td>11</td>
<td>011</td>
<td>0011</td>
<td>1011</td>
</tr>
<tr>
<td>100</td>
<td>0100</td>
<td>1100</td>
<td>1100</td>
</tr>
<tr>
<td>101</td>
<td>0101</td>
<td>1101</td>
<td>1101</td>
</tr>
<tr>
<td>110</td>
<td>0110</td>
<td>1110</td>
<td>1110</td>
</tr>
<tr>
<td>111</td>
<td>0111</td>
<td>1111</td>
<td>1111</td>
</tr>
</tbody>
</table>

Each additional bit doubles the number of possible permutations.

Each permutation can represent a particular item.

There are 2^N permutations of N bits.

Therefore, N bits are needed to represent 2^N unique items.

How many items can be represented by:
- 1 bit: $2^1 = 2$ items
- 2 bits: $2^2 = 4$ items
- 3 bits: $2^3 = 8$ items
- 4 bits: $2^4 = 16$ items
- 5 bits: $2^5 = 32$ items

More about binary numbers later...

Program Development

- The mechanics of developing a program include several activities:
 - writing the program in a specific programming language (such as Java)
 - translating the program into a form that the computer can execute
 - investigating and fixing various types of errors that can occur
 - Software tools can be used to help with all parts of this process

Programming Languages

- Each type of CPU executes only a particular machine language
- A program must be translated into machine language before it can be executed
- A **compiler** is a software tool which translates source code into a specific target language
- Often, that target language is the machine language for a particular CPU type
- The Java approach is somewhat different

Java Translation

- The Java compiler translates Java source code into a special representation called bytecode
- Java bytecode is not the machine language for any traditional CPU
- Another software tool, called an **interpreter**, translates bytecode into machine language and executes it
- Therefore the Java compiler is not tied to any particular machine
- Java is considered to be architecture-neutral
Java Translation

Syntax and Semantics

• The syntax rules of a language define how we can put together symbols, reserved words, and identifiers to make a valid program.

• The semantics of a program statement define what that statement means (its purpose or role in a program).

• A program that is syntactically correct is not necessarily logically (semantically) correct.

• A program will always do what we tell it to do, not what we meant to tell it to do.

Basic Program Development

Errors

• A program can have three types of errors:

 • The compiler will find syntax errors and other basic problems (compile-time errors).

 ▪ If compile-time errors exist, an executable version of the program is not created.

 • A problem can occur during program execution, such as trying to divide by zero, which causes a program to terminate abnormally (run-time errors).

 • A program may run, but produce incorrect results, perhaps using an incorrect formula (logical errors).

Development Environments

• There are many programs that support the development of Java software, including:

 ▪ Sun Java Development Kit (JDK)
 ▪ Sun NetBeans
 ▪ IBM Eclipse
 ▪ Borland JBuilder
 ▪ MetroWerks CodeWarrior
 ▪ BlueJ
 ▪ jGRASP

 • Though the details of these environments differ, the basic compilation and execution process is essentially the same.

HW 1 is out

• Posted on the class web page.
THE END