1. Give an example of a field of sets that is not a \(\sigma \)-field.

2. Let \(A \) and \(B \) be events with probabilities \(P(A) = 3/4 \) and \(P(B) = 1/3 \). Show that \(\frac{1}{12} \leq P(A \cap B) \leq \frac{1}{3} \) and show that both upper and lower bounds are possible. Find corresponding bounds for \(P(A \cup B) \).

3. Let \(A_1, A_2, \ldots, A_n \) be events where \(n \geq 2 \). Show that
\[
P(\bigcup_{i=1}^{n} A_i) = \sum_{i} P(A_i) - \sum_{i<j} P(A_i \cap A_j) + \sum_{i<j<k} P(A_i \cap A_j \cap A_k) - \ldots + (-1)^{n+1} P(A_1 \cap A_2 \cap \cdots \cap A_n)
\]

4. For events \(A_1, A_2, \ldots, A_n \) satisfying \(P(\bigcap_{i=1}^{n} A_i) > 0 \), prove that
\[
P(\bigcap_{i=1}^{n} A_i) = P(A_1)P(A_2|A_1)P(A_3|A_1 \cap A_2) \cdots P(A_n|A_1 \cap A_2 \cdots \cap A_{n-1}).
\]

5. Show that the conditional independence of \(A \) and \(B \) given \(C \) neither implies, nor is implied by the independence of \(A \) and \(B \).

6. We roll a die \(n \) times. Let \(A_{ij} \) be the event that the \(i^{th} \) and the \(j^{th} \) rolls produce the same number. Show that the events \(\{A_{ij} : 1 \leq i < j \leq n \} \) are pairwise independent but not independent.

7. Show that the probability that exactly one of the events \(A \) and \(B \) occurs is
\[
P(A) + P(B) - 2P(A \cap B)
\]

8. Show that
\[
P(\bigcup_{r=1}^{n} A_r) \geq \sum_{r=1}^{n} P(A_r) - \sum_{r<k} P(A_r \cap A_k)
\]

9. You are given a circle that has 15% of its circumference colored red and the remaining part colored blue. Show that you can inscribe a square in the circle such that all four vertices in the square are colored blue. \textit{Hint: Consider choosing an inscribed square at random.}

10. There are two roads from city A to city B and two roads from city B to city C. Each of the four roads has probability \(p \) of being blocked by snow, independently of the others. What is the probability that there is an open road from A to C.