### IOWA STATE UNIVERSITY

Department of Electrical and Computer Engineering

### Implementation and Results of a Revised ABET Assessment Process

Diane Rover, Doug Jacobson, Ahmed Kamal, and Akhilesh Tyagi

June 24, 2013

**ASEE Annual Conference** 

### Background

- All engineering programs in the college were reviewed during fall 2012.
- The ECE Department has 3 programs:
  - Computer engineering
  - Electrical engineering
  - Software engineering (co-administered with CS)
- Motivation to revise the process for assessing student outcomes:
  - Current engineering accreditation criteria
  - Efficiency
  - Sustainability

#### IOWA STATE UNIVERSITY

Department of Electrical and Computer Engineering

1

### Outline

- Current criteria and principles of assessing student learning at the program level
- Faculty involvement in the assessment process
- Multilevel assessment approach
  - Efficient data collection
  - Sufficient data to make decisions
- Assessment examples
- Evaluation of assessment results
- Conclusions

### Criteria for Accrediting Engineering Programs

d)

e)

- 1. STUDENTS
- 2. PROGRAM EDUCATIONAL OBJECTIVES
- 3. STUDENT OUTCOMES
- 4. CONTINUOUS IMPROVEMENT
- 5. CURRICULUM
- 6. FACULTY
- 7. FACILITIES
- 8. INSTITUTIONAL SUPPORT PROGRAM CRITERIA

- an ability to apply knowledge of mathematics, science, and engineering
- an ability to design and conduct experiments, as well as to analyze and interpret data
- c) an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
  - an ability to function on multidisciplinary teams
  - an ability to identify, formulate, and solve engineering problems
- f) an understanding of professional and ethical responsibility
- g) an ability to communicate effectively
- h) the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context
- i) a recognition of the need for, and an ability to engage in life-long learning
- j) a knowledge of contemporary issues
- an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice

### Criteria (continued)

- Criterion 6. Faculty: ... The program faculty must have appropriate qualifications and must have and demonstrate sufficient authority
  - to ensure the proper guidance of the program, and
  - to develop and implement processes for the evaluation, assessment, and continuing improvement of the program, its educational objectives and outcomes.

Okay, wait. What were we studying again?



#### IOWA STATE UNIVERSITY

### **ABET Training Materials**

http://www.abet.org/pev-refresher-training-module4/

Student Learning Outcomes: Criteria 3 and 4

The focus of the data collection is to answer the question:

Can the program demonstrate the level to which students have attained the student outcomes?

IOWA STATE UNIVERSITY Department of Electrical and Computer Engineering

# Principles of Assessing Student Learning at the Program Level

- Focus of Criterion 4 is on:
  - Assessment of the program, not individual students.
  - *Cumulative learning* of students, not assessment of individual courses.
  - Information for decision making.
- A program does not have to:
  - Collect data on every student in every course.
  - Collect more than one data point on each student in the program cohort.
  - Assess every outcome every year.
- Student outcomes should be defined.

IOWA STATE UNIVERSITY Department of Electrical and Computer Engineering



If I'd known they wanted me to use all this info, I would never have asked for it!

IOWA STATE UNIVERSITY

#### Faculty Involvement ECE Course Curr. Instructors Comm. ABET Comm. SD Portfolio Comm. Comm. **SD** Advisors

#### IOWA STATE UNIVERSITY

### Faculty Involvement (continued)

- Faculty committees and groups involved over 40% of the faculty in targeted ways in student outcomes assessment.
  - 55 faculty members in the department at tenured, tenure-track, and lecturer ranks
  - Curriculum committee: 7
  - ABET committee: 7
  - Senior design committee: 7
  - Portfolio review committee: 8
  - With some overlap, more than 20 faculty members participated in these committees.

### Faculty Involvement (continued)

- Spreads the workload among the faculty
- Division of responsibility aligns well with the scope of each committee
- Creates a community of practice around student
  outcomes assessment
  - Supports instructors who conduct course-level outcomes assessment
  - Shares responsibility for program improvement
  - Creates greater awareness of how to assess student learning
- Challenge: consistency and uniformity in reviewing and scoring student work using rubrics

IOWA STATE UNIVERSITY Department of Electrical and Computer Engineering

#### Multilevel Assessment Approach

- Involves various faculty
- Incorporates various proven assessment tools and practices

→ Integrated and coordinated use of tools/ practices by the faculty committees represents a creative approach to department-wide student outcomes assessment across multiple programs.

Related approaches: Auburn University (ASEE 2011), U.S. Military Academy (ASEE 2007)

IOWA STATE UNIVERSITY Department of Electrical and Computer Engineering

#### Multilevel Assessment (continued)

IOWA STATE UNIVERSITY



## Student Outcomes Assessment Tools for the Computer Engineering Program

| Direct Assessment Tool                                   | ABET Student Outcomes |              |              |              |              |   |              |   |              |              |   |
|----------------------------------------------------------|-----------------------|--------------|--------------|--------------|--------------|---|--------------|---|--------------|--------------|---|
|                                                          | a                     | b            | c            | d            | e            | f | g            | h | i            | j            | k |
| Level 1: Employer survey from internships                | $\checkmark$          | $\checkmark$ | $\checkmark$ | $\checkmark$ |              |   |              |   | $\checkmark$ |              |   |
| Level 2: Senior design scoring by industry panel         |                       |              | $\checkmark$ |              | $\checkmark$ |   | $\checkmark$ |   |              |              |   |
| Level 2: Senior design rubric scoring by faculty advisor | $\checkmark$          |              | $\checkmark$ | $\checkmark$ |              |   | $\checkmark$ |   |              |              |   |
| Level 2: Senior design rubric scoring by instructor      |                       |              | $\checkmark$ |              |              |   |              |   |              |              |   |
| Level 2: Portfolio rubric scoring by faculty             |                       |              |              |              |              |   |              |   | $\checkmark$ | $\checkmark$ |   |
| Level 3: Course-based rubric scoring by instructor       |                       |              | _            |              |              | _ |              |   |              |              |   |
| CPRE 281: Digital Logic                                  |                       | $\checkmark$ |              |              |              |   |              |   |              |              |   |
| EE 230: Electronic Circuits and Systems                  |                       |              |              |              |              |   |              |   |              |              |   |
| CPRE 288: Embedded Systems                               |                       |              |              |              |              |   |              |   |              |              |   |
| CPRE 381: Computer Organization                          |                       |              |              |              |              |   |              |   |              |              |   |
| CPRE 310: Theoretical Foundations of Comp. Eng.          |                       |              |              |              |              |   |              |   |              |              |   |
| CPRE 394: Program Exploration                            |                       |              |              |              |              |   |              |   |              |              |   |

#### IOWA STATE UNIVERSITY

14

### Assessment Example: Level 1

#### Table 1. Core competencies in engineering at Iowa State.

| Analysis and Judgment | Engineering Knowledge | Planning            |
|-----------------------|-----------------------|---------------------|
| Communication         | General Knowledge     | Professional Impact |
| Continuous Learning   | Initiative            | Quality Orientation |
| Cultural Adaptability | Innovation            | Safety Awareness    |
| Customer Focus        | Integrity             | Teamwork            |

- Workplace competencies are associated with the practice of engineering at the professional level.
- There is a mapping of the competencies to the ABET (a-k) student outcomes.
- Supervisors respond to this question: "When given the opportunity, how often does the student perform the key action?" (5) always/almost always; (4) often; (3) usually; (2) sometimes; and (1) never or almost never

IOWA STATE UNIVERSITY

#### Assessment Example: Level 1



IOWA STATE UNIVERSITY

#### Four-point Performance Scale Used in the Level 2 and 3 Rubrics



4

- ← 75% achievement threshold
- Accomplished
- Competent
- Satisfactory

2

1

Developing

Beginning

Unsatisfactory

- Partly Satisfactory
- Exemplary
- Exceptional
- Beyond Satisfactory

IOWA STATE UNIVERSITY

### Assessment Example: Level 2 - Portfolios

- Main elements of a portfolio used for assessment:
  - Career objective and resume
  - General education component and reflection
  - Examples of prior work
  - Technical work experience
  - Senior design project
  - Cumulative reflection
- The general education reflection and cumulative reflection elements include specific questions to gather information relevant to particular student outcomes.

### Assessment Example: Level 2 - Portfolios

Student outcome (i): a recognition of the need for, and an ability to engage in life-long learning

| Performance                                                                                                                                                                                             | Proficiency/Performance Scale                                                                                                                                           |                                                                                                                                                        |                                                                                                                                                                          |                                                                                                                        |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Indicators                                                                                                                                                                                              | 1: Beginning                                                                                                                                                            | 2: Developing                                                                                                                                          | 3: Accomplished                                                                                                                                                          | 4: Exemplary                                                                                                           |  |  |  |  |  |  |
| (i.A)<br>Description / discussion of<br>use of external sources of<br>information to complete class<br>projects and other problem-<br>solving tasks                                                     | Cannot use materials<br>outside of what is<br>explained in class.<br>Assumes that all learning<br>takes place within the<br>confines of the classroom.                  | Seldom brings<br>information from outside<br>sources to assignments.<br>Completes only what is<br>required.                                            | Multiple examples of use<br>of external sources of<br>information, including<br>library resources,<br>professional journals,<br>experts in field, and other<br>students. | Demonstrates ability<br>to learn independently<br>– goes beyond what is<br>required in<br>completing an<br>assignment. |  |  |  |  |  |  |
| (i.B)<br>Awareness of learning<br>activities outside of the<br>classroom, including<br>participation in professional<br>and technical societies,<br>learning communities,<br>industry experiences, etc. | Shows little or no interest<br>in outside learning<br>resources, including<br>professional and/or<br>technical societies,<br>learning communities,<br>internships, etc. | Co-curricular and/or<br>extra-curricular learning<br>experience. Occasionally<br>participates in the<br>activities of local<br>learning opportunities. | Multiple co-curricular<br>and/or extra-curricular<br>learning experiences.<br>Active participation in<br>local learning activities.                                      | Participates and takes<br>a leadership role in<br>learning opportunities<br>available to the<br>student body.          |  |  |  |  |  |  |
| (i.C)<br>Acknowledgement of how the<br>college experience<br>contributes to understanding<br>the need to continuously<br>update professional skills to<br>solve new problems                            | Has difficulty in recognizing own shortcomings.                                                                                                                         | Acknowledges the need<br>to take responsibility for<br>own learning.                                                                                   | Demonstrates connection<br>between short/long term<br>goals and life-long<br>learning.                                                                                   | Demonstrates<br>responsibility for<br>creating one's own<br>learning<br>opportunities.                                 |  |  |  |  |  |  |

#### IOWA STATE UNIVERSITY

20

### Assessment Example: Level 2 - Portfolios



#### IOWA STATE UNIVERSITY

### Assessment Example: Level 2 – Sr. Des.



C1 - Develops a design strategy based on project and client needs and constraints.

C2 - Thinks holistically: sees the whole as well as the parts

C3 - Supports design procedure with documentation and references

C4 - Considers all the relevant technical, nontechnical constraints and design tradeoffs.

#### IOWA STATE UNIVERSITY

### Assessment Example: Level 3

- Assessment results for student outcome (b) in CPRE 281:
  - Specific lab experiment: programming the DE2 board to perform binary addition
  - Focuses on experimenting with the board, and collecting and analyzing data

Student outcome B: an ability to design and conduct experiments, as well as to analyze and interpret data - CPR E 281



#### IOWA STATE UNIVERSITY

#### Assessment Example: Level 3

- Course-based outcomes assessment is implemented as orthogonal to the primary grading assessment in a course.
  - An outcome rubric score is focused on specific aspects of student learning.
  - A course grade reflects comprehensive learning in a course.

### **Evaluation of Assessment Results**

#### ABET committee evaluation of student outcomes for each assessment method.

| Assessment Method           |       | Student Outcomes                                                           |  |  |   |  |  |   |   |  |  |
|-----------------------------|-------|----------------------------------------------------------------------------|--|--|---|--|--|---|---|--|--|
|                             | X: St | X: Student outcome does not meet expectations based on assessment results. |  |  |   |  |  |   |   |  |  |
|                             | a     | a b c d e f g h i j k                                                      |  |  |   |  |  |   |   |  |  |
| Survey of Interns/Employers |       |                                                                            |  |  |   |  |  |   |   |  |  |
| Senior Design Rubrics       |       |                                                                            |  |  |   |  |  |   |   |  |  |
| Portfolio Rubrics           |       |                                                                            |  |  |   |  |  | Х | Х |  |  |
| Course-based Rubrics        |       |                                                                            |  |  | X |  |  |   |   |  |  |

### **Evaluation (continued)**

#### Summary of performance areas that need attention.

| Assessment Method           | Student Outcomes                                                       |                       |  |    |    |  |    |     |     |     |     |
|-----------------------------|------------------------------------------------------------------------|-----------------------|--|----|----|--|----|-----|-----|-----|-----|
|                             | Non-blank: Specified performance indicator does not meet expectations. |                       |  |    |    |  |    |     |     |     |     |
|                             | а                                                                      | a b c d e f g h i j k |  |    |    |  |    |     |     |     |     |
| Survey of Interns/Employers |                                                                        |                       |  |    |    |  |    |     |     |     |     |
| Senior Design Rubrics       |                                                                        |                       |  | d1 |    |  | gl |     |     |     |     |
|                             |                                                                        |                       |  |    |    |  | go | 1.D | • • | 100 | 1.D |
| Portfolio Rubrics           |                                                                        |                       |  |    |    |  |    | hB  | 1A  | JB2 | kВ  |
|                             |                                                                        |                       |  |    |    |  |    |     | iB  | јС  |     |
|                             |                                                                        |                       |  |    |    |  |    |     | iC  |     |     |
| Course-based Rubrics        |                                                                        |                       |  |    |    |  |    |     |     |     |     |
| CPRE 281: Digital Logic     |                                                                        |                       |  |    |    |  |    |     |     |     |     |
| EE 230: Electronic Circuits |                                                                        | b4                    |  |    | e1 |  |    |     |     |     |     |
| and Systems                 |                                                                        |                       |  |    | e2 |  |    |     |     |     |     |
|                             |                                                                        |                       |  |    | e3 |  |    |     |     |     |     |

etc.

## **Evaluation (continued)** ECE Curr. Comm. ABET Comm. SD Comm.

#### IOWA STATE UNIVERSITY

## Conclusions Related to Efficiency and Faculty Involvement

- Having a small committee of faculty knowledgeable about the accreditation process adds significantly to the quality of assessment results.
- Using knowledgeable committee members as shepherds is an important and efficient way to involve other faculty.
- Faculty engaged in meaningful discussions about teaching and learning.
- Faculty generally perceived the process as reasonable in terms of time and effort.