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Abstract—We present shared-memory parallel methods for
Maximal Clique Enumeration (MCE) from a graph. MCE is
a fundamental and well-studied graph analytics task, and is
a widely used primitive for identifying dense structures in a
graph. Due to its computationally intensive nature, parallel
methods are imperative for dealing with large graphs. However,
surprisingly, there do not yet exist scalable and parallel methods
for MCE on a shared-memory parallel machine. In this work, we
present efficient shared-memory parallel algorithms for MCE,
with the following properties: (1) the parallel algorithms are
provably work-efficient relative to a state-of-the-art sequential
algorithm (2) the algorithms have a provably small parallel depth,
showing that they can scale to a large number of processors, and
(3) our implementations on a multicore machine shows a good
speedup and scaling behavior with increasing number of cores,
and are substantially faster than prior shared-memory parallel
algorithms for MCE.

I. INTRODUCTION

We study the problem of Maximal Clique Enumeration
(MCE) from a graph, which requires to enumerate all cliques
(complete subgraphs) in the graph that are maximal. A clique
C in a graph G = (V,E) is a dense subgraph such that every
pair of vertices in C are directly connected by an edge. A
clique C is said to be maximal when there is no clique C ′

such that C is a proper subgraph of C ′. Maximal cliques are
perhaps the most fundamental dense subgraphs, and MCE has
been widely used in diverse research areas, e.g. the works of
Palla et al. [1] on discovering protein groups by mining cliques
in a protein-protein network, of Koichi et al. [2] on discovering
chemical structures using MCE on a graph derived from large-
scale chemical databases. Other applications of MCE include
mining biological data [3], [4], [5], [6], [7], [8], [9], and
inference from graphical models [10].

MCE is a computationally hard problem since it is harder
than the problem of finding the maximum sized clique,
which is a classical NP-hard combinatorial problem. Note
that maximal clique and maximum clique are two related, but
distinct notions. A maximum clique is also a maximal clique,
but a maximal clique need not be a maximum clique. The
computational cost of enumerating maximal cliques can be
higher than the cost of finding the maximum clique, since the
output size (set of all maximal cliques) may itself be very
large, in the worst case. Moon and Moser [11] showed that a
graph on n vertices can have as many as 3n/3 maximal cliques,
which is proven to be a tight bound. Real-world networks

typically do not have cliques of such high complexity and it
is possible to enumerate maximal cliques from large graphs.
The literature is rich on sequential algorithms for MCE. Bron
and Kerbosch [12] introduced a backtracking search method
to enumerate maximal cliques. Tomita et. al [13] used the
idea of “pivoting” in the backtracking search, which led to a
significant improvement in the runtime. This has been followed
up by further work such as due to Eppstein et al. [14], who
used a degeneracy-based vertex ordering scheme on top of the
pivot selection strategy.

Sequential approaches to MCE can lead to high runtimes
on large graphs. Based on our experiments, a real-world
network orkut with approximately 3 million vertices, 117
million edges requires approximately 8 hours to enumerate all
maximal cliques using an efficient sequential algorithm due to
Tomita et al. [13]. Graphs that are larger and/or more complex
cannot be handled by sequential algorithms with a reasonable
turnaround time, and the high computational complexity of
MCE calls for parallel methods.

In this work, we consider shared memory parallel methods
for MCE. In the shared memory model, the input graph can
reside within globally shared memory, and multiple threads
can work in parallel on enumerating maximal cliques. Shared
memory parallelism is attractive today since machines with
tens to hundreds of cores and hundreds of Gigabytes of shared
memory are readily available. The advantage of using shared
memory approach over a distributed memory approach are:
(1) Unlike distributed memory, it is not necessary to divide
the graph into subgraphs and communicate the subgraphs
among processors. In shared memory, different threads can
work with a single shared copy of the graph (2) Subproblems
generated during MCE are often irregular, and it is hard to
predict which subproblems are small and which are large,
while initially dividing the problem into subproblems. With
a shared memory method, it is easy to further subdivide
subproblems and process them in parallel. With a distributed
memory method, handling such irregularly sized subproblems
in a load-balanced manner requires greater coordination and
is more complex.

Prior works on parallel MCE have largely focused on dis-
tributed memory algorithms [15], [16], [17], [18], [19]. There
are a few works on shared-memory parallel algorithms [20],
[21], [22]. However, these algorithms do not scale to larger
graphs due to memory or computational bottlenecks – either



the algorithms miss out significant pruning opportunities as
in [21] or they need to generate a large number of non-
maximal cliques as in [20], [22].

A. Our Contributions
We design shared-memory parallel algorithms for enumer-

ating all maximal cliques in a simple graph. Our contributions
are as follows:

Theoretically Efficient Parallel Algorithm: We present
a shared-memory parallel algorithm ParTTT that takes as
input a graph G and enumerates all maximal cliques in G.
ParTTT is an efficient parallelization of the algorithm due
to Tomita et al. [13]. Our analysis of ParTTT using a work-
depth model [23] of computation shows that it is work-efficient
when compared with [13] and has a low parallel depth. To our
knowledge, this is the first shared memory parallel algorithm
for MCE with such provable properties.

Optimized Parallel Algorithm: We present the following
ideas to further improve the practical performance of ParTTT,
leading to Algorithm ParMCE. First, instead of starting with a
single task that spawns recursive subtasks as it proceeds, which
leads to a lack of parallelism at the top level of recursion, we
start with multiple parallel subtasks. To achieve this, we con-
sider per-vertex parallelization, where a separate subproblem is
created for each vertex and the different subproblems are pro-
cessed in parallel. Each subproblem is required to enumerate
cliques that contain the assigned vertex, where care is taken to
prevent overlap between subproblems, and to balance the load
between subproblems. Each per-vertex subproblem is further
processed in parallel using ParTTT. This additional (recursive)
level of parallelism is useful since the different per-vertex
subproblems may have significantly different computational
costs, having each run as a separate sequential task may lead
to uneven load balance. To further address load balance, we
consider different methods for ranking the vertices, so that the
ranking functions can be used in creating subproblems that are
balanced as much as possible. For ranking the vertices, we use
metrics such as degree, triangle count, and degeneracy number
of the vertices.

Experimental Evaluation: We experimentally evaluate our
algorithm and show that ParMCE is 15x-31x faster than an
efficient sequential algorithm (due to Tomita et al. [13]) on
a multicore machine with 32 physical cores and 256G RAM.
For example, on the orkut network with around 3M vertices,
117M edges, and 2B maximal cliques 1, ParTTT achieves a
14x parallel speedup over the sequential algorithm, and the
optimized ParMCE achieves a 16x speedup. In contrast, prior
shared memory parallel algorithms for MCE [20], [21], [22]
failed to handle the input graphs that we considered, and either
ran out of memory ([20], [22]) or did not complete in 5 hours
([21]).

Roadmap. The rest of the paper is organized as follows. We
present preliminaries in Section III, followed by a description
of the algorithm and analysis in Section IV, an experimental
evaluation in Section V, and conclusions in Section VI.

1M and B stand for million and billion respectively.

II. RELATED WORK

Maximal Clique Enumeration (MCE) from a graph is a
fundamental problem that has been extensively studied for
more than two decades, and there are multiple prior works on
sequential and parallel algorithms. We first discuss sequential
algorithms for MCE, followed by parallel algorithms.

Sequential MCE: Bron and Kerbosch [12] presented an
algorithm for MCE based on depth-first-search. Following
their work, a number of algorithms have been presented [24],
[25], [13], [26], [27], [28], [14]. The algorithm of Tomita et
al. [13] has a worst-case time complexity O(3

n
3 ) for an n

vertex graph, which is optimal in the worst-case, since the
size of the output can be as large as O(3

n
3 ) [11]. Eppstein

et al. [14], [29] present an algorithm for sparse graphs whose
complexity can be parameterized by the degeneracy of the
graph, a measure of graph sparsity.

Another approach to MCE is a class of “output-sensitive”
algorithms whose time complexity for enumerating maximal
cliques is a function of the size of the output. There exist many
such output-sensitive algorithms for MCE, including [25],
[27], [24], which can be viewed as instances of a general
paradigm called “reverse-search” [30]. The output-sensitive
algorithm due to Makino and Uno [27] provides the best
theoretical worst-case time complexity among output-sensitive
algorithms. In terms of practical performance, the best output-
sensitive algorithms [25], [27] are not as efficient as the
best depth-first-search based algorithms such as [13], [14].
Other sequential methods for MCE include algorithms due to
Kose et al. [31], Johnson et al. [32], and Cheng et al. [33].
Recent works has considered the maintenance of maximal
cliques [34], [35], [36] and maximal bicliques [37] on a
dynamic graph.

Parallel MCE: There are multiple prior works on parallel
algorithms for MCE [20], [38], [15], [16], [17], [39], [18],
[19]. We first discuss shared memory algorithms and then
distributed memory algorithms. Zhang et al. [20] presented
a shared memory parallel algorithm based on the sequential
algorithm due to Kose et al. [31]. This algorithm computes
maximal cliques in an iterative manner, and in each iteration,
it maintains a set of cliques that are not necessarily maximal
and for each such clique, maintains the set of vertices that
can be added to form larger cliques. This algorithm does not
provide a theoretical guarantee on the runtime and suffers for
large memory requirement. Du et al. [38] present a output-
sensitive shared-memory parallel algorithm for MCE, but their
algorithm suffers from poor load balancing as also pointed out
by Schmidt et al. [16]. Lessley et al. [22] present a shared
memory parallel algorithm that generates maximal cliques
using an iterative method, where in each iteration, cliques of
size (k − 1) are extended to cliques of size k. The algorithm
of [22] is memory-intensive, since it needs to store a number
of intermediate non-maximal cliques in each iteration. Note
that the number of non-maximal cliques may be far higher
than the number of maximal cliques that are finally emitted,
and a number of distinct non-maximal cliques may finally lead



to a single maximal clique. In the extreme case, a complete
graph on n vertices has (2n − 1) non-maximal cliques, and
only a single maximal clique. We present a comparison of our
algorithm with [22], [20], [38] in later sections.

Distributed memory parallel algorithms for MCE include
works due to Wu et al. [15], designed for the MapReduce
framework, Lu et al. [17], which is based on the sequential
algorithm due to Tsukiyama et al. [24], Xu et al. [19], and
Svendsen et al. [18].

Other works on parallel algorithms for enumerating dense
subgraphs from a massive graph include parallel algorithms
for enumerating k-cores [40], [41], [42], [43], k-trusses [43],
[44], [45], nuclei [43], and distributed memory algorithms for
enumerating bicliques [46].

III. PRELIMINARIES

We consider a simple undirected graph without self loops
or multiple edges. For graph G, let V (G) denote the set of
vertices in G and E(G) denote the set of edges in G. Let n
denote the size of V (G), and m denote the size of E(G). For
vertex u ∈ V (G), let ΓG(u) denote the set of vertices adjacent
to u in G. When the graph G is clear from the context, we use
Γ(u) to mean ΓG(u). Let C(G) denote the set of all maximal
cliques in G.

Sequential Algorithm TTT: The algorithm due to Tomita,
Tanaka, and Takahashi. [13], which we call TTT, is a recursive
backtracking-based algorithm for enumerating all maximal
cliques in an undirected graph, with a worst-case time com-
plexity of O(3n/3) where n is the number of vertices in the
graph. In practice, this is one of the most efficient sequential
algorithms for MCE. Since we use TTT as a subroutine in our
parallel algorithms, we present a short description here.

In any recursive call, TTT maintains three disjoint sets of
vertices K, cand, and fini where K is a candidate clique to
be extended, cand is the set of vertices that can be used to
extend K, and fini is the set of vertices that are adjacent to
K, but need not be used to extend K (these are being explored
along other search paths). Each recursive call iterates over
vertices from cand and in each iteration, a vertex q ∈ cand is
added to K and a new recursive call is made with parameters
K∪{q}, candq , and finiq for generating all maximal cliques
of G that extend K∪{q} but do not contain any vertices from
finiq . The sets candq and finiq can only contain vertices
that are adjacent to all vertices in K ∪ {q}. The clique K is
a maximal clique when both cand and fini are empty.

The ingredient that makes TTT different from the algorithm
due to Bron and Kerbosch [12] is the use of a “pivot” where
a vertex u ∈ cand∪ fini is selected that maximizes |cand∩
Γ(u)|. Once the pivot u is computed, it is sufficient to iterate
over all the vertices of cand \ Γ(u), instead of iterating over
all vertices of cand. The pseudo code of TTT is presented in
Algorithm 1. For the initial call, K and fini are initialized
to an empty set, cand is the set of all vertices of G.

Parallel Cost Model: For analyzing our shared-memory
parallel algorithms, we use the CRCW PRAM model [47],
which is a model of shared parallel computation that assumes

Algorithm 1: TTT(G,K, cand, fini)

Input: G - The input graph
K - a clique to extend,

cand - Set of vertices that can be used extend K,
fini - Set of vertices that have been used to extend K
Output: Set of all maximal cliques of G containing K

and vertices from cand but not containing any
vertex from fini

1 if (cand = ∅) & (fini = ∅) then
2 Output K and return

3 pivot← (u ∈ cand ∪ fini) such that u maximizes the
size of cand ∩ ΓG(u)

4 ext← cand− ΓG(pivot)
5 for q ∈ ext do
6 Kq ← K ∪ {q}
7 candq ← cand ∩ ΓG(q)
8 finiq ← fini ∩ ΓG(q)
9 cand← cand− {q}

10 fini← fini ∪ {q}
11 TTT(G,Kq, candq, finiq)

concurrent reads and concurrent writes. Our parallel algorithm
can also work in other related models of shared memory
such as EREW PRAM (exclusive reads and exclusive writes),
with a logarithmic factor increase in work as well as parallel
depth. We measure the effectiveness of the parallel algorithm
using the work-depth model [23]. Here, the “work” of a
parallel algorithm is equal to the total number of operations
of the parallel algorithm, and the “depth” (also called the
“parallel time” or the “span”) is the longest chain of dependent
computations in the algorithm. A parallel algorithm is said to
be work-efficient if its total work is of the same order as the
work due to the best sequential algorithm2. We aim for work-
efficient algorithms with a low depth, ideally poly-logarithmic
in the size of the input. Using Brent’s theorem [47], it can be
seen that a parallel algorithm on input size n with a depth of
d can theoretically achieve Θ(p) speedup on p processors as
long as p = O(n/d).

IV. PARALLEL MCE ALGORITHMS

In this section, we present new shared-memory parallel
algorithms for MCE. We first describe a parallel algorithm
ParTTT, a parallelization of the sequential TTT algorithm and
an analysis of its theoretical properties. Then, we discuss
bottlenecks in ParTTT that arise in practice, leading us to
another algorithm ParMCE with better practical performance.
ParMCE uses ParTTT as a subroutine – it creates appropriate
subproblems that can be solved in parallel, and hands off the
enumeration task to ParTTT.

2Note that work-efficiency in the CRCW PRAM model does not imply
work-efficiency in the EREW PRAM model



A. Algorithm ParTTT

Our first algorithm ParTTT is a work-efficient paralleliza-
tion of the sequential TTT algorithm. The two main compo-
nents of TTT (Algorithm 1) are (1) Selection of the pivot
element (Line 3) and (2) Sequential backtracking for extend-
ing candidate cliques until all maximal cliques are explored
(Line 5 to Line 11). We discuss how to parallelize each of
these steps.

Parallel Pivot Selection: Within a single recursive call
of ParTTT, the pivot element is computed in parallel using
two steps, as described in ParPivot (Algorithm 2). In the
first step, the size of the intersection cand∩Γ(u) is computed
in parallel for each vertex u ∈ cand ∪ fini. In the second
step, the vertex with the maximum intersection size is selected.
The parallel algorithm for selecting a pivot is presented in
Algorithm 2.

Algorithm 2: ParPivot(G,K, cand, fini)

Input: K - a clique in G that may be further extended
G - Input graph
cand - Set of vertices that may extend K
fini - vertices that have been used to extend K
Output: pivot vertex u ∈ cand ∪ fini

1 for w ∈ cand ∪ fini do in parallel
2 In parallel, compute

tw ← |intersect(cand,ΓG(w))|
3 In parallel, find v ← argmax({tw : w ∈ cand ∪ fini})
4 return v

Parallelization of Backtracking: We first note that there is
a sequential dependency among the different iterations within
a recursive call of TTT. In particular, the contents of the sets
cand and fini in a given iteration are derived from the
contents of cand and fini in the previous iteration. Such
sequential dependence of updates of cand and fini restricts
us from calling the recursive TTT for different vertices of ext
in parallel. To remove this dependency, we adopt a different
view of TTT which enables us to make the recursive calls in
parallel. The elements of ext, the vertices to be considered
for extending a maximal clique, are arranged in a predefined
total order. Then, we unroll the loop and explicitly compute
the parameters cand and fini for recursive calls.

Suppose 〈v1, v2, ..., vκ〉 is the order of vertices in ext to be
processed in sequence. Each vertex vi ∈ ext, once added to
K, should be removed from further consideration from cand.
To ensure this, instead of incrementally updating cand and
fini with vi as in TTT, in ParTTT, we explicitly remove
vertices v1, v2, ..., vi−1 from cand and add them to fini,
before making the recursive calls. This way, the parameters of
the ith iteration are computed independently of prior iterations.

B. Algorithm ParMCE

While ParTTT is a theoretically work-efficient parallel
algorithm (see Section IV-C), we note that it is not that

Algorithm 3: ParTTT(G,K, cand, fini)

Input: G - The input graph
K - a non-maximal clique to extend

cand - Set of vertices that may extend K
fini - vertices that have been used to extend K
Output: Set of all maximal cliques of G containing K

and vertices from cand but not containing any
vertex from fini

1 if (cand = ∅) & (fini = ∅) then
2 Output K and return

3 pivot← ParPivot(G, cand, fini)
4 ext[1..κ]← cand− ΓG(pivot) // in parallel
5

6 for i ∈ [1..κ] do in parallel
7 q ← ext[i]
8 Kq ← K ∪ {q}
9 candq ← intersect(cand \ ext[1..i− 1],ΓG(q))

10 finiq ← intersect(fini ∪ ext[1..i− 1],ΓG(q))
11 ParTTT(G,Kq, candq, finiq)

efficient in practice. One of the reasons is the implementation
of ParPivot. While the worst case work complexity of
ParPivot matches that of the pivoting routine in TTT, in
practice, it may have a higher overhead, since the pivoting
routine in TTT may take time less than O(n2). This can cause
ParTTT to have greater work than TTT, resulting in a lower
speedup than the theoretically expected one.

We set out to improve on this to derive a more effi-
cient parallel implementation through a more selective use
of ParPivot in that the cost of pivoting can be reduced
by carefully choosing many pivots in parallel instead of a
single pivot element as in ParTTT at the beginning of the
algorithm. We first note that the cost of ParPivot is the
highest during the iteration when the parameter K (clique so
far) is empty. During this iteration, the set of vertices still
to be considered, cand ∪ fini, can be high, as large as the
number of vertices in the graph. To improve upon this, we
can perform the first few steps of pivoting, when K is empty,
using a sequential algorithm. Once the set K has at least one
element in it, the number of the vertices in cand ∪ fini still
to be considered, drops down to no more than the size of the
intersection of neighborhoods of all vertices in K, which is
typically a number much smaller than the number of vertices
in the graph (it is smaller than the smallest degree of a vertex
in K). Problem instances with K set to a single vertex can be
seen as subproblems and on each of these subproblems, the
overhead of ParPivot is much smaller since the number of
vertices that have to be dealt with is also much smaller.

Based on this observation, we present a parallel algorithm
ParMCE that works as follows. The algorithm can be viewed
as considering for each vertex v ∈ V (G), a subgraph Gv that
is induced by the vertex v and its neighborhood ΓG(v). It
enumerates all maximal cliques from each subgraph Gv in



parallel using ParTTT. While processing subproblem Gv , it
is important to not enumerate maximal cliques that are being
enumerated elsewhere, in other subproblems. To handle this,
the algorithm considers a specific ordering of all vertices in V
such that v is the least ranked vertex in each maximal clique
enumerated from Gv . The subgraphs Gv for each vertex v are
handled in parallel – these subgraphs need not be processed
in any particular order. However, the ordering allows us to
populate the cand and fini sets accordingly, so that each
maximal clique is enumerated in exactly one subproblem. The
order in which the vertices are considered is defined by a
“rank” function rank, which indicates the position of a vertex
in the total order. The specific ordering that is used influences
the total work of the algorithm, as well as the load balance of
the parallel implementation.

Load Balancing: Observe that the sizes of the subgraphs
Gv may vary widely because of two reasons: (1) the subgraphs
themselves may be of different sizes, depending on the vertex
degrees, and (2) the number of maximal cliques and the sizes
of the maximal cliques containing v can vary widely from
one vertex to another. Clearly, the subproblems that deal with
a large number of maximal cliques or maximal cliques of a
large size are more expensive than others.

In order to maintain the size of the subproblems approx-
imately balanced, we use an idea from PECO [18], where
we choose the rank function on the vertices in such a way
that for any two vertices v and w, rank(v) > rank(w) if the
complexity of enumerating maximal cliques from Gv is higher
than the complexity of enumerating maximal cliques from Gw.
By giving a higher rank to v than w, we are decreasing the
complexity of the subproblem Gv , since the subproblem at Gv
need not enumerate maximal cliques that involve any vertex
whose rank is less than v. Hence, the higher the rank of vertex
v, the lower is its “share” (of maximal cliques it belongs to)
of maximal cliques in Gv . We use this idea for approximately
balancing the workload across subproblems. The additional
enhancements in ParMCE, when compared with the idea from
PECO are as follows: (1) In PECO the algorithm is designed
for distributed memory so that the subgraphs and subproblems
have to be explicitly copied across the network, and (2) In
ParMCE, the vertex specific subproblem, dealing with Gv is
itself handled through a parallel algorithm, ParTTT. However,
in PECO, the subproblem for each vertex was handled through
a sequential algorithm.

Note that it is computationally expensive to accurately count
the number of maximal cliques within Gv , and hence it
is not possible to compute the rank of each vertex exactly
according to the complexity of handling Gv . Instead, we
estimate the complexity of handling Gv using some easy-to-
evaluate metrics on the subgraphs. In particular, we consider
the following:
• Degree Based Ranking: For vertex v, define rank(v) =

(d(v), id(v)) where d(v) and id(v) are degree and
identifier of v respectively. For two vertices v and w,
rank(v) > rank(w) if d(v) > d(w) or d(v) = d(w) and
id(v) > id(w); rank(v) < rank(w) otherwise.

• Triangle Count Based Ranking: For vertex v, define
rank(v) = (t(v), id(v)) where t(v) is the number of
triangles containing vertex v. This is more expensive to
compute than degree based ranking, but may yield a better
estimate of the complexity of maximal cliques within Gv .

• Degeneracy Based Ranking [14]: For a vertex v, define
rank(v) = (degen(v), id(v)) where degen(v) is the
degeneracy of a vertex v. A vertex v has degeneracy
number k when it belongs to a k-core but no (k + 1)-
core where a k-core is a maximal induced subgraph with
minimum degree of each vertex k in that subgraph. A
computational overhead of using this ranking is due to
computing the degeneracy of the vertices which takes
O(n+m) time where n is the number of vertices and m
is the number of edges.

The different implementations of ParMCE using degree, tri-
angle, and degeneracy rankings are called as ParMCEDegree,
ParMCETri, ParMCEDegen respectively.

Algorithm 4: ParMCE(G)

Input: G - The input graph
Output: C(G) - set of all maximal cliques of G

1 for v ∈ V (G) do in parallel
2 Create Gv , the subgraph of G induced by ΓG(v)∪ {v}
3 K ← {v}
4 cand← φ
5 fini← φ
6 for w ∈ ΓG(v) do in parallel
7 if rank(w) > rank(v) then
8 cand← cand ∪ {w}
9 else

10 fini← fini ∪ {w}

11 ParTTT(Gv,K, cand, fini)

C. Analysis

In this section we will discuss the efficiency of ParTTT in
terms of work and depth in Lemma 2 and work optimality in
Corollary 1. Note that, the theoretical properties of ParTTT

are also preserved in ParMCE because ParMCE uses ParTTT

as a subroutine. First we show the work and depth analysis of
parallel pivot selection of ParTTT in the following lemma:

Lemma 1. The total work of ParPivot is
O(
∑
w∈cand∪fini(min{|cand|, |Γ(w)|}), which is O(n2),

and depth is O(log n).

Proof: If the sets cand and Γ(w) are stored as hashsets,
then for vertex w the size tw = |intersect(cand,Γ(w))|
can be computed sequentially in time O(min{|cand|, |Γ(w)|})
– the intersection of two sets S1 and S2 can be found by
considering the smaller set among the two, say S2, and
searching for its elements within the larger set, say S1. It is
possible to parallelize the computation of intersect(S1, S2)



by executing the searches elements in S2 in parallel, followed
by counting the number of elements that lie in the intersection,
which can also be done in parallel in a work-efficient manner
using logarithmic depth. Since computing the maximum of
a set of n numbers can be accomplished using work O(n)
and depth O(log n), for vertex w, tw can be computed using
work O(min{|cand|, |Γ(w)|}) and depth O(log n). Once the
different tw are computed, argmax({tw : w ∈ cand ∪
fini}) can be computed using additional work |cand∪fini|
and depth O(log n). Hence, the total work of ParPivot

is O(
∑
w∈cand∪fini(min{|cand|, |Γ(w)|}). Since the size of

cand, fini, and Γ(w) are bounded by n, this is O(n2), but
typically much smaller.

Lemma 2. Total work of ParTTT (Algorithm 3) is O(3n/3)
and depth is O(M log n) where n is the number of vertices in
the graph and M is the size of maximum clique in G.

Proof: First, we analyze the total work. Note that the
computational tasks in ParTTT is different from TTT at Line 9
and Line 10 of ParTTT where at an iteration i, we remove all
vertices {v1, v2, ..., vi−1} from cand and add all these vertices
to fini as opposed to the removal of a single vertex vi−1 from
cand and addition of that vertex to fini as in TTT (Line 9
and Line 10 of Algorithm 1). Therefore, in ParTTT, additional
O(n) work is required due to independent computations of
candq and finiq . The total work, excluding the call to
ParPivot is O(n2). Adding up the work of ParPivot,
which requires O(n2) work, requires O(n2) total work for
each single call of ParTTT excluding further recursive calls
(Algorithm 3, Line 11), which is same as in original sequential
algorithm TTT (Section 4, [13]). Hence, using Lemma 2 and
Theorem 3 of [13], we infer that the total work of ParTTT is
the same as the sequential algorithm TTT and is bounded by
O(3n/3).

Next we analyze the depth of the algorithm. The depth of
ParTTT consists of the (sum of the) following components:
(1) Depth of ParPivot, (2) Depth of computation of ext,
(3) Maximum depth of an iteration in the for loop from Line 6
to Line 11. According to Lemma 1, the depth of ParPivot

is O(log n). The depth of computing ext is O(log n) because
it takes O(1) time to check whether an element in cand is in
the neighborhood of pivot by doing a set membership check
on the set of vertices that are adjacent to pivot. Similarly, the
depth of computing candq and finiq at Line 8 and Line 9
are O(log n) each. The remaining is the depth of the call of
ParTTT at Line 10. Observe that the recursive call of ParTTT
continues until there is no further vertex to add for expanding
K, and this depth can be at most the size of the maximum
clique which is M because, at each recursive call of ParTTT
the size of K is increased by 1. Thus, the overall depth of
ParTTT is O(M log n).

Corollary 1. Using P parallel processors that share memory,
ParTTT (Algorithm 3) is a parallel algorithm for MCE, and
can achieve a worst case parallel time of O

(
3n/3

M logn + P
)

using P parallel processors. This is work-efficient as long as

P = O( 3n/3

M logn ), and also work-optimal.

Proof: The parallel time follows from using Brent’s
theorem [47], which states that the parallel time using P
processors is O(w/d + P ), where w and d are the work
and the depth of the algorithm respectively. If the number of
processors P = O

(
3n/3

M logn

)
, then using Lemma 2 the parallel

time is O
(

max{ 3
n/3

P ,M log n}
)

= O
(

3n/3

P

)
. The total work

across all processors is O(3n/3), which is worst-case optimal,
since the size of the output can be as large as 3n/3 maximal
cliques (Moon and Moser [11]).

V. EXPERIMENTS

In this section, we present results from an experimental
evaluation of the performance of parallel algorithms for MCE.
For our experiments, we used an Intel Xeon (R) CPU on a
Compute Engine in the Google Cloud Platform, with 32 phys-
ical cores and 256 GB RAM. We implement all algorithms
using java 1.8 with a maximum of 100 GB heap memory for
the JVM.

A. Datasets

We use large real world network datasets from
KONECT [48], SNAP [49], and Network Repository [50].
Table I contains a summary of the datasets. All networks,
used in our experiments, were undirected graphs. Self-loops
are removed, and if the input graph was directed, we ignored
the direction on the edges to derive an undirected graph.

B. Implementation of the algorithms

In our implementation of ParTTT and ParMCE, we
implement a parallel For loop using the primitive
parallelStream() provided by java 1.8. For computing
the intersection of two sets as is required for computing pivot

and updating cand and fini in Algorithm 3, we perform a
sequential implementation. This is because the sizes of the sets
cand and fini are typically not large so that we can benefit
from the use of parallelism. For the garbage collection in java
we use flag -XX:+UseParallelGC so that parallel garbage
collection is run by JVM whenever required.

To compare with prior works in maximal clique enumera-
tion, we implemented some of them [13], [14], [21], [18], [20]
in Java, except the sequential algorithm GreedyBB [51], and
the parallel algorithm Hashing [22], for which we used the
executables provided by the authors (code written in C++).
See Subsection V-D for more details.

We compute the degeneracy number and triangle count
for each vertex using sequential procedures. While the com-
putation of per-vertex triangle counts and the degeneracy
ordering could be potentially parallelized, implementing a
parallel method to rank vertices based on their degeneracy
number or triangle count is in itself a non-trivial task. We
decided not to parallelize these routines since the degeneracy-
and triangle-based ordering did not yield significant benefits



Dataset |V | |E| # maximal cliques avg. size of a maximal clique size of the maximum clique

dblp-coauthors 540,486 15,245,729 139,340 11 337
orkut 3,072,441 117,184,899 2,270,456,447 20 51
as-skitter 1,696,415 11,095,298 37,322,355 19 67
wiki-talk 2,394,385 4,659,565 86,333,306 13 26

TABLE I: Undirected graphs used for evaluation, and their properties.

when compared with degree-based ordering, where as degree-
based ordering is trivially available, without any additional
computation.

We assume that the entire graph is stored in available in
shared global memory. The runtime of ParMCE consists of
(1) the time required to rank vertices of the graph based on the
ranking metric used in the algorithm, i.e. degree, degeneracy
number, or triangle count of vertices and (2) the time required
to enumerate all maximal cliques. For ParMCEDegen and
ParMCETri algorithms, the runtime of ranking is also reported.
Figures 1 and 2 show the parallel speedup (with respect to
the runtime of TTT) and and the total computation time of
ParMCE using different vertex ordering strategies, respectively.
Table III shows the breakdown of the runtime into time for
ordering and the time for clique enumeration.

C. Performance of Parallel Clique Enumeration Algorithms

The total runtimes of the parallel algorithms with 32 threads
are shown in Table II. We observe that ParTTT achieves a
speedup of 12x to 14x over the sequential algorithm TTT.
The three versions of ParMCE, ParMCEDegree, ParMCEDegen,
ParMCETri achieve a speedup of 15x to 31x with 32 threads,
when we consider only the runtime for maximal clique enu-
meration. This speedup are smaller for ParMCEDegen and
ParMCETri when we add up the time taken by ranking
strategies (See Figure 1).

The reason for the higher runtimes of ParTTT when com-
pared with ParMCE is the greater cumulative overhead of
computing the pivot and in processing the cand and fini

sets in ParTTT. For example, for dblp-coauthors graph,
in ParTTT, the cumulative overhead of computing pivot is
248 sec. and cumulative overhead of updating the cand and
fini is 38 sec. whereas in ParMCE, these number are 156 sec.
and 21 sec. respectively and these reduced cumulative times
in ParMCE are reflected in the overall reduction in the parallel
enumeration time of ParMCE over ParTTT by a factor of 2.

a) Impact of vertex ordering on overall performance of
ParMCE: Next we consider the influence of different vertex
ordering strategies, degree, degeneracy, and triangle count,
on the performance of ParMCE. The total computation time
when using different vertex ordering strategies are presented
in Table III. Overall, we observe that degree based ordering
(ParMCEDegree) usually achieves the smallest (or close to
the smallest) runtime for clique enumeration, even when we
don’t take into account the time to compute the ordering. If
we add in the time for computing the ordering, degree based
ordering is clearly better than triangle count or degeneracy
based orderings, since degree based ordering is available for

free, while the degeneracy based ordering and triangle based
ordering require additional computational overhead.

b) Scaling up with the degree of parallelism: As the
number of threads (and the degree of parallelism) increases,
the runtime of ParMCE and of ParTTT decreases, and the
speedup as a function of the number of threads is shown in
Figure 1 and the runtimes are shown in Figure 2. We see that
ParMCEDegree achieves a speedup of more than 15x on all
graphs, using 32 threads. On the dblp-coauthors graph,
the speedup with 32 threads was nearly 30x.

To get a better understanding of the variation of speedups
achieved on different input graphs, we plotted the distribution
of the sizes of maximal cliques for different input graphs,
see Figure 3. We observe that the speedup of ParMCE is
higher on those graphs that have large maximal cliques. For
instance, there are many maximal cliques of size in the
range 100 to 330 for dblp-coauthors, and we observed
the highest speedup, of nearly 30x with 32 threads, for
dblp-coauthors. A good speedup of nearly 20x was also
observed for the orkut graph, which has a large number
of maximal cliques, which are of relatively large sizes (the
average size of a maximal clique is 20). Overall, we see that
the speedup obtained is roughly correlated with the complexity
of the graph, measured in terms of the presence of large
maximal cliques, as well as the number of such large maximal
cliques.

D. Comparison with prior work

We compare the performance of ParMCE with prior se-
quential and parallel algorithms for MCE. We consider the
following sequential algorithms: GreedyBB due to Segundo et
al. [51], TTT due to Tomita et al. [13], and BKDegeneracy

due to Eppstein et al. [14]. For the comparison with parallel
algorithm, we consider algorithm CliqueEnumerator due to
Zhang et al. [20], Peamc due to Du et al. [21], PECO due
to Svendsen et al. [18], and most recent parallel algorithm
Hashing due to Lessley et al. [22]. The parallel algorithms
CliqueEnumerator, Peamc, and Hashing are designed for
the shared memory model, while PECO is designed for dis-
tributed memory. We modified PECO to work with shared
memory, by reusing the method for subproblem construction,
and eliminating the need to communicate subgraphs by storing
a single copy of the graph in shared memory. We considered
three different ordering strategies for PECO, which we call
PECODegree, PECODegen, and PECOTri. The comparison of
performance of ParMCE with PECO is presented in Table IV.
We note that ParMCE is significantly better than that of PECO,
no matter which ordering strategy was considered.



DataSet TTT ParTTT ParMCEDegree ParMCEDegen ParMCETri

dblp-coauthors 356 28 14 21.4 152.2
orkut 26,407 1886 1362 2141.1 2278
as-skitter 807 60 45 71.9 85.6
wiki-talk 1022 85 62 70.1 89.2

TABLE II: Total computation time (in sec.) of ParMCE with vertex orderings, ParTTT (with 32 threads), and TTT.
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(a) dblp-coauthor (b) orkut (c) as-skitter (d) wiki-talk

Fig. 1: Parallel speedup w.r.t. TTT (sequential algo. due to Tomita et al. [13]) as a function of the number of threads.
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Fig. 2: Total computation time of ParMCE with vertex orderings and ParTTT as a function of the number of threads.
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Fig. 3: Frequency distribution of sizes of maximal cliques across different input graphs.

DataSet
ParMCEDegree

ParMCEDegen ParMCETri
RT ET TT RT ET TT

dblp-coauthors 14 8.4 13 21.4 138.2 14 152.2
orkut 1362 599.1 1542 2141.1 786.7 1492 2278
as-skitter 45 26.9 45 71.9 43.6 42 85.6
wiki-talk 62 8.1 62 70.1 30.2 59 89.2

TABLE III: Total computation time (in sec.) of ParMCE with vertex orderings. Total Computation Time (TT) = Ranking
Time (RT) + Enumeration Time (ET).

DataSet PECODegree ParMCEDegree PECODegen ParMCEDegen PECOTri ParMCETri

dblp-coauthors 73 14 78 14 74 13
orkut 2001 1362 7502 1542 2500 1492
as-skitter 272 45 450 45 267 42
wiki-talk 1423 62 1776 62 1534 59

TABLE IV: Comparison of parallel enumeration time (in sec.) of ParMCE with PECO (modified to use shared memory),
using 32 threads. Three different variants are considered for each algorithm, based on the ordering strategy used.



DataSet ParMCEDegree Hashing Clique Enumerator Peamc

dblp-coauthors 14 run out of memory in 3 min. run out of memory in 10 min. did not complete in 5 hours.
orkut 1362 run out of memory in 7 min. run out of memory in 20 min. did not complete in 5 hours.

as-skitter 45 run out of memory in 5 min. run out of memory in 10 min. did not complete in 5 hours.
wiki-talk 62 run out of memory in 10 min. run out of memory in 20 min. did not complete in 5 hours.

TABLE V: Comparison of total computation time (in sec.) of ParMCE with Hashing.

The comparison of ParMCE with other shared memory al-
gorithms Peamc, CliqueEnumerator, and Hashing is shown
in Table V. The performance of ParMCE is seen to be much
better than that of any of these prior shared memory parallel
algorithms. For the graph dblp-coauthor, Peamc did not
finish within 5 hours, whereas ParMCE takes around 50 secs
for enumerating 139K maximal cliques. The poor running
time of Peamc is due to two following reasons: (1) the
algorithm does not apply efficient pruning techniques such
as pivoting, used in TTT, and (2) the method to determine
the maximality of a clique in the search space is not efficient.
The CliqueEnumerator algorithms run out of memory after a
few minutes. The reason is that CliqueEnumerator maintains
a bit vector for each vertex that is as large as the size of
the input graph, and additionally, needs to store intermediate
non-maximal cliques. For each such non-maximal clique, it
is required to maintain a bit vector of length equal to the
size of the vertex set of the original graph. Therefore, in
CliqueEnumerator a memory issue is inevitable for a graph
with millions of vertices.

A recent parallel algorithm in the literature, Hashing also
has a significant memory overhead, and ran out of memory on
the input graphs that we considered. The reason for its high
memory requirement is that Hashing enumerates intermedi-
ate non-maximal cliques before finally outputting maximal
cliques. The number of such intermediate non-maximal cliques
may be very large, even for graphs with few number of
maximal cliques. For example, a maximal clique of size c
contains 2c − 1 non-maximal cliques.

Next, we compare the performance of ParMCE with that of
sequential algorithms BKDegeneracy and a recent sequential
algorithm GreedyBB – results are in Table VI. For large
graphs, the performance of BKDegeneracy is almost similar to
TTT whereas GreedyBB performs much worse than TTT. Since
our ParMCE algorithm outperforms TTT, we can conclude that
ParMCE is significantly faster than other sequential algorithms.

E. Summary of Experimental Results

We found that both ParTTT and ParMCE yield signifi-
cant speedups over the sequential algorithm TTT, sometimes
as much as the number of cores available. ParMCE using
the degree-based vertex ranking always performs better than
ParTTT. The runtime of ParMCE using degeneracy/triangle
count based vertex ranking is sometimes worse than ParTTT

due to the overhead of sequential computation of vertex
ranking – note that this overhead is not needed in ParTTT.
The parallel speedup of ParMCE is better when the input graph
has many large sized maximal cliques. Overall, ParMCE con-

sistently outperforms prior sequential and parallel algorithms
for MCE.

VI. CONCLUSION

We presented shared memory parallel algorithms for
enumerating maximal cliques from a graph. ParTTT is a
work-efficient parallelization of a sequential algorithm due
to Tomita et al. [13], and ParMCE is a practical adaptation
of ParTTT that has more opportunities for parallelization
and better load balancing. Our algorithms are significant
improvements compared with the current state-of-the-art on
MCE. Our experiments show that ParMCE has a speedup of
up to 31x (on a 32 core machine) when compared with an
efficient sequential baseline. In contrast, prior shared memory
parallel methods for MCE were either unable to process the
same graphs in a reasonable time, or ran out of memory.
Many questions remain open : (1) Can these methods scale to
even larger graphs, and to machines with larger numbers of
cores (2) How can one adapt these methods to other parallel
systems such as a cluster of computers with a combination of
shared and distributed memory, or GPUs?
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