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Abstract—We present V2V, a method for embedding each ver-
tex in a graph as a vector in a fixed dimensional space. Inspired
by methods for word embedding such as word2vec, a vertex
embedding is computed through enumerating random walks in
the graph, and using the resulting vertex sequences to provide
the context for each vertex. This embedding allows one to use
well-developed techniques from machine learning to solve graph
problems such as community detection, graph visualization, and
vertex label prediction. We evaluate embeddings produced by
V2V through comparing results obtained using V2V with results
obtained through a direct application of a graph algorithm,
for community detection. Our results show that V2V provides
interesting trade-offs among computation time and accuracy.

I. INTRODUCTION

A graph is a fundamental abstraction in computing, and
graph algorithms are among the most widely used methods
for data analysis. One difficulty with many graph problems
is that their algorithmic complexity can be quite high. For
instance, various versions of graph community detection are
NP-complete [1] – this includes the version that maximizes
the modularity metric [2]. Hence, exact algorithms for such
problems are not scalable to large graphs, and approximate
algorithms are necessary. The time complexity of graph al-
gorithms can be a bottleneck for approximate algorithms and
heuristics also – the algorithms of Clauset et al. [3] and of
Girvan and Newman [4] for community detection both have a
time complexity of O(mn) in the worst case, where m is the
number of edges and n the number of vertices in the graph
(though in typical cases, the algorithm of [3] is expected to be
faster). Further, graph algorithms may be sensitive to small
errors in inputs, or to missing data. In addition, data may
include, in addition to edges and hyperedges, directions on
the edges, timestamps, weights and labels. In such cases, it
may not be easy to modify a graph algorithm designed for
an undirected and unweighted graph to incorporate additional
properties. Overall, the complexity of graph problems has
led to a rich literature on graph algorithms, with techniques
tailored to the context and to the problem.

Machine learning (ML) is an approach to data analysis
where there are a few general problems overall, such as
classification, regression, and clustering, and there is a vast
repository of methods that can be applied, based on the type
of data involved, the data distribution, and the result desired.
The techniques typically do not come with approximation

guarantees, but are quite flexible to work with different types
of data.

In this work, we consider how we can leverage ML methods
to solve problems on data that are naturally represented as
graphs. In particular, we consider embedding a graph into a
vector space, representing each vertex in a graph through a
vector. If this can be done, we can leverage the power of
various ML techniques to analyze data that was originally
structured as a graph. We investigate the power and weak-
nesses of this approach, and try to understand to what extent
such a translation from graphs to a vector space can help in
solving a graph problem, and how such methods compared
with direct graph algorithms.

We present V2V (Vertex to Vector), an approach for learn-
ing the vector representation for graph-based data, and its
applications. By vectorizing graph-based data, we are able
to take advantage of the machine learning techniques to:
(1) solve problems on graph-based data with useful tradeoffs
between runtime and accuracy, when compared with exact
graph algorithms; (2) gain a new perspective on data that is
useful in tasks such as visualization, and (3) handle errors in
data in a natural manner, through the use of robust machine
learning techniques.

Inspired by Word2Vec [5], a vector representation of words
that are learnt from the linguistic context of each word in
a large corpus, we leverage the Continuous Bag of Words
- CBOW [6] neural network model, to learn the embedded
vector for each vertex in the graph, in which each vertex
is represented by a fixed-dimensional vector embedding in a
continuous space. We show the utility of V2V in a variety
of tasks, including community detection, graph visualization,
and feature prediction among vertices, through evaluating it on
synthetic as well as real-world networks. We note that there
have been multiple prior works on finding vector embeddings
of graphs [7], [8], [9], [10], [11] – a comparison is presented in
Section VI. A main difference with our work is that previous
works do not have a detailed study of applications of such
vector embeddings, especially a comparison with a direct
graph-based approach, like we do here.

Community detection is a key analysis task in understand-
ing the structure of complex networks. Due to its diverse
applications, community detection is well studied problem [4],
[1], [3], [12], [13], [14]. In contrast with existing algorithms
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that work directly on the graph, we consider an approach that
uses a clustering algorithm in the embedding space to derive
communities that can be mapped back to the original graph
space. Clustering in a vector space is well studied, and there
are many efficient algorithms that scale to large data sets, for
instance, Lloyd’s algorithm for k-means clustering [15], and
k-means++ [16], [17]. Our finding is that the V2V approach
to community detection yields good quality communities.
While these are not as precise as the communities that are
discovered by graph-based algorithms [4], [3], they run in
a fraction of the time taken by graph-based algorithms (20x
faster on graphs that we considered, with 1000 vertices and
25000 edges).

Embeddings produced by V2V give us a new perspective on
the data, which is also helpful in graph visualization. This
is a natural outcome of the vector representation of vertices,
since the visualization of vectors is well-studied and there
are principled approaches based on the Principal Component
Analysis (PCA) [18] and t-SNE [19] to explore non-obvious
aspects of the data. By projecting data along the first few
principal components, we gain interesting visualizations that
demonstrate relationships between vertices in the original
graph.

In summary, our contributions include:
• V2V model, an approach to represent graph-based data in

a low-dimensional vector space. V2V stands for a class
of approaches which learn a vector representation of a
vertex with the help of random walks in the network.

• A study on the application of V2V in various applications,
including community detection, data visualization, and
feature prediction, using machine learning approaches on
the vector representation of vertices.

• An empirical study to evaluate the performance of V2V
applied to community detection, when compared to direct
graph-based approaches.

Clearly, the embedding approach applies to only a certain
class of graph problems. We lose some basic graph structure
by transforming to the vector representation, e.g., we cannot
exactly find the 1-hop neighbors for a given vertex, and there is
not much reason to expect this representation to help identify
shortest paths between vertices. However, this representation
captures certain aspects of the global structure of the graph,
such as graph communities, that can lead to useful tradeoffs
between time and accuracy, and improved robustness for some
of these problems.

II. LEARNING V2V REPRESENTATION VECTOR

In this section, we present our approach to learning vector
embeddings of vertices. The goal is to represent each vertex
by a vector in a low-dimensional (10-1000 dimensions) space,
in which the structure of the graph is captured by the positions
of the vectors in the embedding space. The representation
vector of a vertex is learned from the context where that vertex
appears. In general, the context of a node can be constructed
through the interactions this node is involved in.
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Fig. 1: Learning procedure overview. First, a biased random
walk extracts random paths from graph-based data. Then the
CBOW model is applied in random path sequences to learn
the embedded vectors.

For instance, in a computer network consisting of client
machines and workstations machines, when a workstation
receives a request from a client, it may serve the request
directly, or send a sub-request to other workstations, in order
to serve the client’s request. The “context“ of a node in this
scenario could be defined as the other nodes that are involved
in servicing the same request. If the network is modeled as a
graph, each request forms a path in the graph, and nodes that
service a request appear in a sequence in the corresponding
path. In this example, node contexts are already provided in
data in the form of paths through the network.

For a general input graph where such path data is not
available, we generate contexts for nodes with the help of
random walks. Figure 1 shows an overview of our approach.
We first generate a set of random walks in the graph – each
random walk is a sequence of vertices. In these sequences,
for each vertex, the surrounding vertices are considered as
the context for the vertex. Using these sequences, we learn
the vector embedding for each vertex through the Continuous
Bag-Of-Words (CBOW) [5] model. The outcome is a vector
embedding representing each vertex in the original graph.

A. Constrained Random Walks

Let G denote the input graph on edge set (V,E). We use
random walks on G to generate vertex sequences. Let t > 0 be
an integer parameter. Starting from each vertex in G, perform
t independent random walks, for a total of t × |V | random
walks. Each random walk is of length `. Note that the results
can be expected to be similar if we choose t × |V | random
walks, each starting from a uniformly randomly chosen vertex
in the graph. In our work, the default values of t and ` are set
to 1000.

The basic random walk for an undirected graph starts from
a vertex and moves to a randomly chosen neighboring vertex,
and continues doing so for a specified number of steps. This
can be constrained to take into account a variety of graph
properties such as:

– Edge direction: If the original graph is directed, the
random walk follows the direction of the edges in each
step, by choosing a random outgoing edge from each
vertex, rather than choosing a random neighbor. The random
walk terminates when there is no outgoing edge from a vertex.
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Fig. 2: CBOW applied to graphs: For each vertex vi as the
output, the surrounding vertices that appear within n steps
from vi in a random walk sequence, are fed to input layer of
the neural network.

– Edge/vertex weight: Each edge may have a weight, which
measures significance of the relationship between two vertices
that the edge connects. e.g., traffic between 2 nodes in a
network; number of times an author cites the works of other
author; etc.. It is possible to take weights into account in a ran-
dom walk – for instance, we assign the probability of choosing
an edge to be proportional to the edge weight. In case the edge
is unweighted but the vertices have associated weights, we use
a similar procedure: in each step, the probability of choosing
an edge is proportional to the weight of the target vertex.

– Time stamps: If edges have timestamps associated with
them, we can further constrain the random walk, by requiring
them to obey the timestamp order. For each step of the random
walk, the preceding steps are earlier in time. Such a random
walk has a length that is bounded by the length of the longest
time-increasing path in the network. We can also impose
additional constraints on the random walk, by requiring that
two consecutive edges in the random walk have timestamps
that are within a time window threshold of each other. This
creates paths that have greater relevance in a temporal sense.

Thus the context for each vertex can be created in a
flexible manner, through customizing them according to the
problem characteristics. This flexibility, of being able to work
with different types of graphs, including undirected, directed,
and time-stamped graphs, is a strength of V2V for graph
processing.

B. Learning V2V Vectors from Random Walks

Continuous Bag Of Words (CBOW), introduced by Mikolov
et al. [6], [5], is a full connected feed-forward neural network
that was originally proposed and used in natural language
processing. Once it has been trained on a large text corpus,
CBOW can produce for each unique word, a vector in a fixed-
dimensional space in which linguistic contexts of words are
preserved. It represents words by encoding the contexts of their
surrounding words into vectors. CBOW is used in the popular
Word2Vec word embedding. See Fig. 2 for the use of CBOW
in our work.

The CBOW neural network architecture has three layers:
input, hidden, and output. The input layer takes in a window
of n words preceding the current word wi and n words
succeeding wi in a sentence. The output layer is for wi. Each
word is encoded into the model using its index in a vocabulary.
The index vector for a word is an 1 × D vector with D
being the vocabulary’s size, and only the index of that word
is 1 while the other positions of the index vector are 0s. The
embedded vector for each word wi is the trained weight in the
hidden layer with N dimensions, which is the number of the
dimensions of the vector space. To compute embedded vector
for wi, CBOW first takes the sum of the vectors of the 2n input
context words, and computes the product of the sum vector
and the input-to-hidden weight matrix WV×N (shared for all
words):

V (wi) =
∑

j=(i−n)...(i+n),j 6=i

wj ·WV×N

V (wi) is the embedded vector for wi. The window size is
2n. WV×N is the input-to-hidden weight matrix. The training
criterion is to derive the input-to-hidden weight matrix WV×N
and the hidden-to-output weight matrix W ′N×V such that
CBOW correctly classifies the current word w = wi for all
words. Further details can be found in [5].

We adapt the CBOW model to learn vertex embeddings
as follows. The vocabulary is the set of all vertices in the
graph, each “word” is a vertex, and each “sentence” is a path.
The training data consists of a sequence of paths. Since we
use stochastic gradient descent for training, the training time
depends on the size of the training corpus, which depends on
the number of random walks and the length of the random
walks. We set the window size n = 5 in default, while we
various the number of dimensions in our experiments.

III. V2V FOR COMMUNITY DETECTION

Community structure is an important property of networks,
which can often be split into groups of vertices that are
closely knit with strong connections within a group, but with
weaker connections across groups. Identifying the community
structure in a network is an important task that is widely
studied in different types of networks, including social net-
works [20], [21], collaboration networks [22], the Internet and
the Web [23], [24]. This can be posed as an unstructured
machine learning problem.

There is much prior work on detecting community structure
within a network. As an example of the different approaches
considered, Clauset et al. [3] presented a top-down approach
to decompose a graph into dense portions by starting with the
entire graph as a single cluster, followed by recursive partition-
ing of clusters. Girvan and Newman [4] presented a bottom-up
approach that starts out with each vertex in its own cluster,
and arrives at the final result through recursive merging. A
combination of top-down and bottom-up approaches has been
proposed by Sobolevsky et al. [12].

We propose a novel approach to community detection based
on V2V. The idea at a high level is simple: we first generate
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the vector embeddings for each vertex in the graph using V2V;
it is expected that vertices that belong to dense communities
in the original graph are close to each other in the embedding
space. We then apply a clustering algorithm in the embedding
space to cluster the vectors. Vertices whose embeddings belong
to the same cluster are grouped together as a community in
the graph.

More concretely, let V = v1, v2, ..., vn be the vertex em-
beddings. We use k-means clustering, which partitions V into
k < n clusters S = {S1, S2, ..., Sk} such that the sum of the
squares of the distances to the cluster centers are minimized.
Let µi denote the cluster center for cluster Si. The problem
is to minimize:

min
S

k∑
i=1

∑
v∈Si

‖v − µi‖2

where µi =
1
|Si|

∑
v∈Si

v. We use Lloyd’s algorithm [25] to solve

the k-means optimization. Since Lloyd’s algorithm may lead
to a local minimum, to improve the quality of the results, we
repeat the algorithm 100 times and choose the best solution
(using the above metric).

We conducted experiments to evaluate the effectiveness of
V2V representation on a synthetic dataset, in which we have
the ground truth for the community structure.

A. Synthetic Dataset

In order to observe the performance of V2V on graphs with
various densities, we generated a sequence of graphs, each
with a well-defined community structure, but with different
levels of strength within a community. Each graph has 1000
vertices that are partitioned into 10 groups (communities),
G1, G2, ..., G10, with 100 vertices per group. Each group Gi

is converted into an α quasi-clique, by generating uniformly
at random α × |Gi|(|Gi| − 1) edges connecting vertices in
that group. Note that |Gi|(|Gi| − 1) is number of edges
needed to make Gi a clique; for parameter 0 < α < 1, a
subgraph is an α quasi-clique when it contains an α fraction
the number of edges required to make it a clique. α = 0
leads to a purely random graph where the density of each
subgraph approximately equal the density of the whole graph.
Meanwhile, α = 1 makes each group a clique. In addition
to intra-group edges, there are 200 edges connecting vertices
between different groups.

Figure 3 shows a visualization of graphs with different
values of α, using the ForceAtlas algorithm [26]. The whole
network is connected, but the connections are heavily within
a community. In Figure 3(c), α is 1.0, which makes each
group a clique, while smaller values of α, such as α = 0.1 in
Figure 3(a) and 0.5 in Figure 3(b) give us a weaker connection
within each group. The algorithms are given these graphs, but
are not told which vertices belong to which community.

B. Evaluation

We conducted experiments to evaluate how well the V2V
vector embeddings capture the community structure of vertices

as they are in the graph. Ideally, the community structure in
the graph maps closely to the clusters in the embedding space.
After applying V2V to learn the vector embeddings from
the generated graph, we use Principal Component Analysis
(PCA) [18] to visualize the arrangement of the learned vectors.
Figure 4 shows the projection of the vectors along the first
and second principal components with the setting of k = 10,
vector embeddings are 50 dimensions, that are learned from
the graph with α = 0, 1. The centroid µj of each cluster as
well as the boundary between clusters are highlighted. We
colored the vectors according to the group the vertex belonged
to in the graph (the ground truth). Note that the color was not
provided as input to the algorithm – they were added during
visualization for presentation purposes only.

It can be seen that the vectors naturally separated into
clusters, even when viewed through a 2-dimensional projec-
tion. Since the learning procedure for V2V is unsupervised,
in which each vertex is treated equally and V2V has no
information about the community structure of the graph, the
arrangement of the vectors shows that the V2V embedding
captures the community structure of the original graph. We
showed further applications of V2V in data visualization in
Section IV.

We conducted experiment to quantitatively measure the
relationship between community structure in the graph and
the arrangement of vectors in vector embedding space. In
order to quantitatively measure how well the clusters in vector
space capture the dense structures of the graph, we compare
the ground truth community G1, G2, ..., G10 of vertices in the
original graph with the clusters S1, S2, ..., Sk of the vector
embeddings. We use pairwise precision and recall to mea-
surement how accurate the clusters matches the communities.
In other words, for a given pair of vertices that are from the
same community Gi, whether or not the corresponding vectors
belong to the same cluster Sj .

Precision is defined as the fraction of vector pairs that
belong to the same community out of all vector pairs have
been assigned to the same cluster. Recall is the fraction of
vertex pairs that have been clustered together, out of all vertex
pairs that belong within the same community (group).

Precision =
|{(vi, vj) | ∃Gt, Sk : vi, vj ∈ Gt; vi, vj ∈ Sk}|

|{(vi, vj) | ∃Sk : vi, vj ∈ Sk}|

Recall =
|{(vi, vj) | ∃Gt, Sk : vi, vj ∈ Gt; vi, vj ∈ Sk}|

|{(vi, vj) | ∃Gt : vi, vj ∈ Gt}|
The higher precision the more likely that vectors, which are
clustered together, correspond to vertices that actually belong
to the same group. Meanwhile, the higher recall the more
likely that vertices belonging to the same group have vector
embeddings that are clustered together.

Figures 5 and 6 show the precision and recall, respectively,
with different settings of α and number of dimensions of the
V2V vector space. Not surprisingly, as α increases, both the
precision and the recall of our algorithm increase. That is
because a higher α naturally leads to a stronger community
structure, which should be easier to find.
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(a) α = 0.1 (b) α = 0.5 (c) α = 1.0

Fig. 3: Synthetic random graphs with 10 communities each. The strength of a community is controlled by α – each community
is an α-maximal clique on 100 vertices.
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Fig. 4: PCA visualization of the V2V vector embeddings of
the vertices (dimension = 50, the top two principal components
are chosen) when α = 0.1. The color of a vertex indicates the
community it belongs to in the original graph.

Figure 7, shows how the training time of V2V is sensitive
to the structure of the original graph. With small α, the input
graph has weak community structure and V2V takes more
training time to learn the vector embeddings. When α is in-
creased, the input graph has stronger community structure, and
V2V requires less training time to converge into a stationary
stage and provide higher accuracies, both precision and recall,
in detecting the communities.

C. Comparison with Graph-based Algorithms

We compared the results of V2V community detection,
though clustering in vector space, with the results of the
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Fig. 5: Precision of V2V community detection as a function
of α, the strength of a community.

traditional graph-based algorithms that aimed to find the
communities in the graph. We compared our approach, with
two algorithms that work directly on the graphs, the CNM
algorithm and the Girvan-Newman algorithm – these two
methods are instances of the top-down and bottom-up methods
for community detection, respectively. We used the implemen-
tation of CNM and Girvan-Newman from [27]. Table I shows
the results comparing our approach using the V2V embedding,
with graph-based algorithms.

– Accuracy: The graph-based algorithms have better results in
term of precision and recall. Indeed, for most instances, CNM
and Girvan-Newman can correctly detect the communities
fitting the ground truth. Our approach is lower in precision
and recall, averaging 95.2% and 98.6%, respectively, over the
different values of α considered.

– Runtime: On the other hand, V2V tremendously outper-
forms the graph-based algorithms in running time. While CNM
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TABLE I: Community Detection: Comparison of V2V on 10-dimensional vector space to CNM and Girvan-Newman algorithms.
Time is shown in seconds.

α
V2V CNM Girvan-Newman

Precision Recall Trainning time Running time Precision Recall Running time Precision Recall Running time

0.1 0.961 0.973 341.265 0.00765 0.998 0.998 464.0064 0.998 0.998 447.928
0.2 0.948 0.985 334.519 0.00743 1.00 1.00 1133.0545 1.00 1.00 1131.316
0.3 0.983 0.996 325.651 0.00746 1.00 1.00 2244.0256 1.00 1.00 2151.287
0.4 0.948 0.989 285.015 0.00722 1.00 1.00 3567.8170 1.00 1.00 3490.294
0.5 0.983 0.995 258.618 0.00664 1.00 1.00 5090.1243 1.00 1.00 4998.118
0.6 0.913 0.976 250.185 0.00725 1.00 1.00 6697.0080 1.00 1.00 6600.254
0.7 0.931 0.984 229.204 0.00716 1.00 1.00 8156.5426 1.00 1.00 8014.215
0.8 0.913 0.977 226.910 0.00700 1.00 1.00 9666.2279 1.00 1.00 9399.932
0.9 0.983 0.995 223.136 0.00722 1.00 1.00 10680.3451 1.00 1.00 10608.498
1.0 0.954 0.988 219.177 0.00706 1.00 1.00 11693.1782 1.00 1.00 11628.913

avg. 0.952 0.986 269.368 0.00721 1.000 1.000 5939.2330 1.000 1.000 5847.0755
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Fig. 6: Recall of V2V community detection as a function of
α, the strength of a community.
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Fig. 7: Accuracy and training time of V2V, 600 dimensions, as
a function of α. As α increases, the communities get stronger,
and the training time decreases.

and Girvan-Newman require a run time of multiple hours, V2V
takes an average of 4 minutes for the learning phrase, less than
0.01 seconds for the actual clustering! Further, we note that the
learning phase is a one-time cost. Once vector embeddings are

computed, they can be used without change for many further
tasks, including community detection, visualization, etc, as we
explain further.
– Graph Size: We note that the runtimes of the graph-
based algorithms increase as the number of edges increase.
IN particular, as α changes from 0.1 to 1 (i.e. number of
edges increases by a factor of 10), the runtimes increase by
a factor of more than 20. In contrast, the training time for
V2V decreases as α increases. This is because the stronger
community structure within the graph allows the training to
reach a (locally) optimal value quicker for the underlying
gradient descent algorithms. Thus, we can expect this approach
to community detection to scale more easily to larger graphs.
– Errors: We can also expect the V2V approach to be
less sensitive to errors in data than the pure graph-based
approaches. This aspect needs further investigation.

IV. V2V FOR DATA VISUALIZATION

The V2V vector embeddings give us a new point of view
to the data that captures the structure of the graph and lets
us explore relationships between vertices. In this section, we
demonstrate the usefulness of V2V vector embeddings in
visualizing vertices in a graph, with the help of Principal
Component Analysis (PCA) [18].

PCA is a statistical technique that is widely applied in
data analysis. PCA projects data into a number of orthogonal
components, called the principal components, which enables
to view data in a low dimension. One importance usage of
PCA is to display data as points [28], [29] in two or three
dimensional space. We applied PCA on the generated V2V
vector embeddings, to get the set of principal components.
By projecting the vector space into the first and second
components, we have the 2-dimensional (2D) visualization.
Similar, with the first, second and third components, we have
3-dimensional (3D) visualization.

In Section III, we showed the utility of V2V visualization
by visualizing data from a synthetic graph. As seen, the
visualization allows us to see the community structure in
data, even in a 2D representation. In this section, we further
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demonstrate the usefulness of V2V visualization on a real-
world dataset.

A. Visualizing the OpenFlights dataset

We collected a real-world dataset, which we call the Open-
Flights dataset, from website OpenFlights.org [30]. The dataset
contains information about different airlines and their flight
routes connecting airports around the world. The flight route
map can be viewed as a graph of more than 67 thousand
directed edges (routes) and more than 10 thousand nodes
(airports).

With the OpenFlights dataset, we first use V2V to derive the
representation vectors for airports. The associate information
of the airports, such that location, attitude, nation, etc., are
not included in the learning phase. We consider the routes
map as the directed graph where airports, as the vertices, are
connected by flight routes as the directed edges. Then, we
applied PCA [18] in the embedded vector space to generate
the illustration of the airports around the world.

Figure 8(a) shows the 2D visualization and Figure 8(b)
shows the 3D visualization of the 100-dimensions embedded
vector space. In both figures, we color the vectors by the
continents of the corresponding airports. Interestingly, rep-
resentation vectors of airports from each continent are well
grouped together, which show that the distances between
the embedded vectors reflect geometric proximity between
airports. The embedded vectors are learned from the nature of
the air flight routes between airports. None of the geographic
information of an airport such as its country, continent, lati-
tude, and longitude, were included in the training input.

V. V2V FOR FEATURE PREDICTION

In this section, we evaluate V2V in the application of feature
prediction. We aim to predict the unknown value of a particular
feature of a vertex, using known values from other vertices.
Feature prediction is practically useful in multiple scenarios.
The most common use case is dealing with missing data. When
the label of a vertex is lost, it can be recovered based on its
relationships with other vertices, whose labels are known.

We formulate the problem of predicting the vertex’s feature
as a classification task of the corresponding vector embed-
ding. In the embedded V2V vector space, we used the well-
known k-nearest neighbors (k-NN) algorithm [31] to classify
the vector’s label, using supervised learning on the set of
vectors whose labels are known. With the k-NN algorithm,
the predicted label of an unlabeled vector is the majority vote
from its k, k > 0, nearest neighbor vectors. In special case
k = 1, the given vector is simply assigned the same label
as its nearest neighbor. The proximity of vectors is measured
by the cosine distance. Even k-NN is not the best accuracy
classification algorithm, from our knowledge, though such a
simple algorithm still yield impressive results.

We conducted an experiment using the OpenFlights
dataset [30], in which each embedded vector are labeled by
the country of the corresponding airport that vector represents.
We hide the country labels of a portion of airports and try

to predict those hidden information using the learned V2V
vector embeddings and the known country labels of the others.
We conducted 10-fold cross validation in which we randomly
divided the airports into 10 folds that are equal in size. Each
time, one testing fold hides its labels while the 9 other folds,
with the visible national labels, are used to train the classifier.
The classifier is used to predict the labels of airports in the
testing fold. The result is the average of 10 runs, each with a
different fold to be the testing fold. We measure the accuracy
of the classification as the ratio between the number of airports
that were correctly classified to the number of airports that
were tested. We repeated the experiment 10 times and report
the average results.

Figure 9 shows the accuracy of classification with different
settings of V2V vector dimensions. For each selection of
k - the number of neighbor that involves to the votes, the
accuracy initially increases when we increase the number of
dimensions. That is because the embedded vector with a low
dimensional setting, 10 - 30 dimensions, cannot well capture
the nature of the data. e have the best accuracy of 90%
which the setting of 50 dimensions and k = 3. When we
continue to increase the dimension of the embedded vector,
the accuracy decreases. That is the overfiting phenomenon.
The more complicated model, with higher dimension, requires
more learning data to be trained properly. Meanwhile, we
trained the V2V, with different settings of dimensions, in the
same set of random walk paths. That leads to the overfitting
in the high-dimensional models. Consequently, the accura-
cy decreases when we increase the dimension further. This
dimensional-sensitivity shows how the number of dimensions
of the vector embeddings affect the prediction’s accuracy.
While that is data-driven, in our experiment, the models with
40 - 70 dimensions give us the good results.

In using k-NN algorithm, the number k - the number of
neighbors involving to the vote - is an essential parameter.
Figure 10 show how the parameter k affects the classification’s
accuracy. For most of the settings of dimension, we have
the best accuracy with k = 3, which is when we assign the
country of a hidden airport by the majority vote of its 3 nearest
neighbors, we have the best accuracy prediction.

In general, these high accuracy predictions, 85% to 90%,
show that the V2V vector well captures the nature of the data,
and enables prediction of vertex labels for this dataset.

VI. RELATED WORK

Vectorization of graph-based data has been studied by
multiple prior works. Tang et al. [32], [33] focus on social
network data, and propose a latent representation for creating
social dimensions of data. Starting from the social network as
a graph, where vertices represent people and edges represent
friendships, the authors use metadata of the relationships to
learn features that help assign affiliations to vertices. This work
is specific for social networks and uses metadata as important
component to derive the representation.

Recent works [7], [8], [9], [10], [11], [34] follow an
approach broadly similar to our work, by using paths in
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Fig. 8: PCA Visualizations of the V2V vector (dimension = 50) embeddings of the OpenFlights dataset. The vector space is
projected into top two and top three principal components to create the 2D and 3D display, respectively. Airports are colored
by the continent for visualize purpose.
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Fig. 9: Accuracy of predicting the country of airports as a
function of the number of dimensions of embedded vectors. k
is number of neighbors involving to the vote.

a graph to construct a vector representation for vertices.
Scarselli et al. [7] proposed using a recursive neural networks
model, trained from random walk sequences, to map a graph
and one of its vertices to a vector of reals. Others [8], [9], [10]
have used SkipGram [5], a single hidden layer feedforward
neural network, to learn vector representations of vertices
from their usage contexts. The usage context are defined in
different ways. Perozzi et al. [8] proposed using truncated
random walks; Tang et al. [9] used paths based on breadth
first search; while Grover et al. [10] combined breadth first
search and depth first search strategies into a random walk
process.

Our work V2V uses the Continuous Bag of Word
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Fig. 10: Accuracy of predicting the country of airports as a
function of k – number of neighbors involving to the vote.

(CBOW) [6] neural network model to learn the vector em-
beddings for vertices. We train our model from the paths that
are constructed using random walks that can be specialized
according to graph properties, such as e.g., edge direction,
edge and vertex weights, and edge timestamps. Further, in
existing works, embedded vectors have been applied mostly
in classification. We showed that the V2V representation is
useful in a broad range of applications that include both
machine learning oriented applications, such as classification,
clustering, feature prediction, etc., as well as graph oriented
applications, such as community detection. The comparison
with direct graph algorithms shows that V2V provides interest-
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ing trade-offs between runtime and accuracy, when compared
with graph-based algorithms.

VII. CONCLUSION

We introduced V2V, an approach to represent vertices in the
graph by vector embeddings, which are learnt from the con-
texts in which the vertices appear in constrained random walks
through the graph. The vector embedding of different vertices
captures many aspects of the global structure of the graph,
which are useful in detecting communities, in predicting roles
(labels) of vertices, and in predicting relationships between
pairs of vertices. Our experiments indicate that methods based
on vector embeddings provide useful tradeoffs when compared
with direct graph-based methods. For instance, in community
detection, their accuracy was high but worse that of direct
graph-based algorithms. On the other hand, they ran much
faster than direct graph-based algorithms.

There are many improvements possible and to be inves-
tigated, in addition to open questions. One is a principled
manner of selecting the various parameters for representation
learning – these should be chosen keeping in mind the time
complexity of learning as well as their accuracy. Another is
to find characterizations of the types of problems that can be
solved using such embeddings, and the types of problems they
are not good for. Another direction is experiments on larger
scale networks, and on graphs with missing or incorrect data.
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