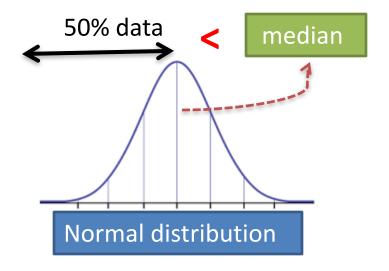
Estimating Quantiles from the Union of Historical and Streaming Data

Sneha Aman Singh, *Iowa State University*Divesh Srivastava, *AT&T Labs - Research*Srikanta Tirthapura, *Iowa State University*

Quantiles

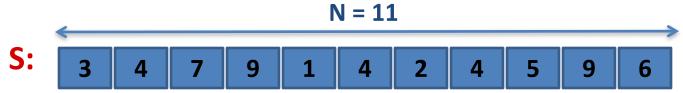
- Quantile A statistical measure used to characterize distribution of data sets
- Indicates a point in a data distribution at or below which a given fraction of the entire data set falls



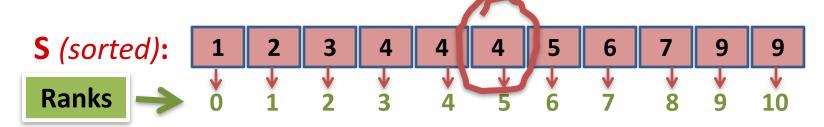
- Fundamental database query.
- An operator in many big data tools, such as R and Apache Spark

φ – Quantile of a Set

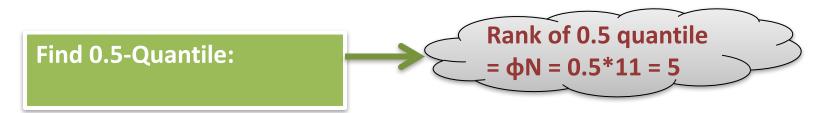
 Rank of an element x in a set S is the number of elements with value less than or equal to x



For instance, rank of elements in above set S



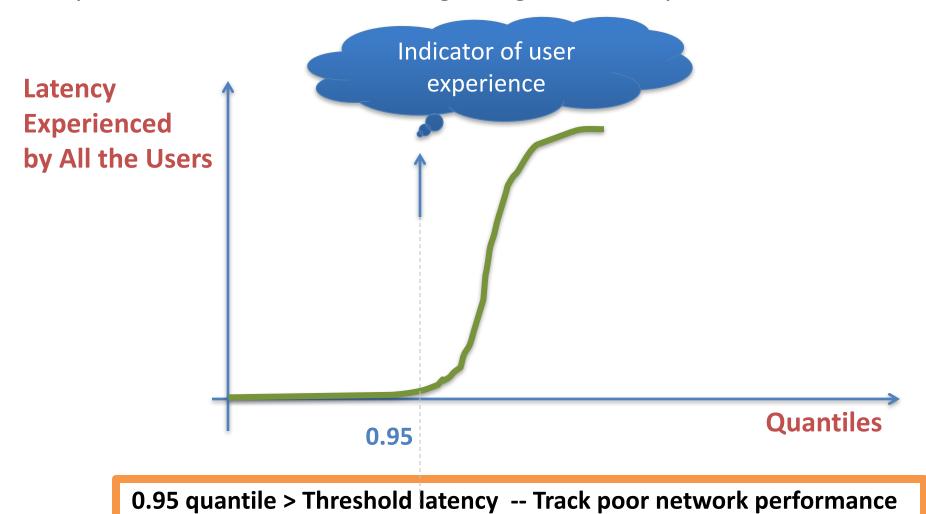
φ-quantile is an element of rank φN, for 0<φ<1



0-quantile is the minimum and 1-quantile is the maximum of S.

Application – Web Latency

Web Latency – delay experienced by a user between sending a request to the web server and getting back a response.



Outline

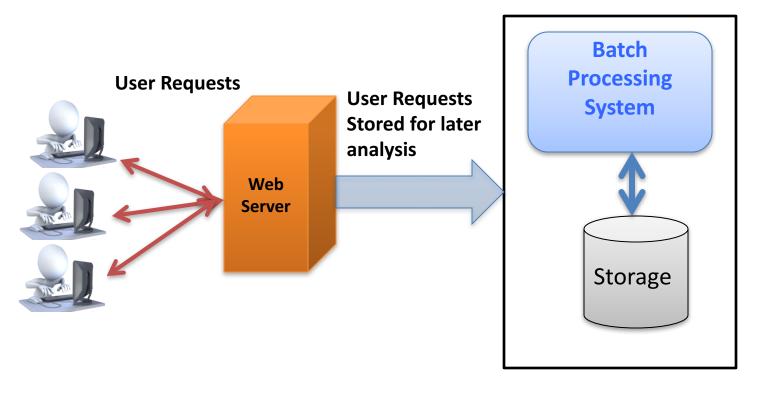
- 1. Description of quantile
- 2. Historical and Streaming Data
- 3. Contribution
- 4. High Level Algorithm Description
- 5. Experimental Evaluation

Historical Data

Historical Data — Data collected and stored for later analysis.

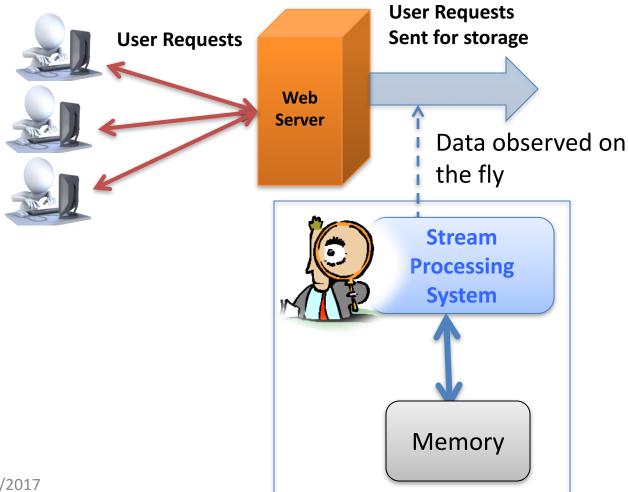
Web **user requests collected at the server end**: to analyze user trends / behavior and web site performance

6

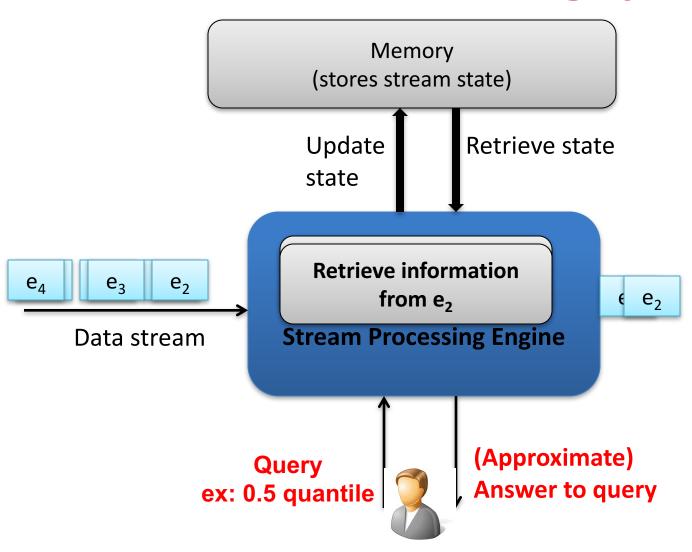


Streaming Data

Data Stream: Continuous sequence of data observed in the form of events, messages, tuples, in a single pass or limited number of pass.



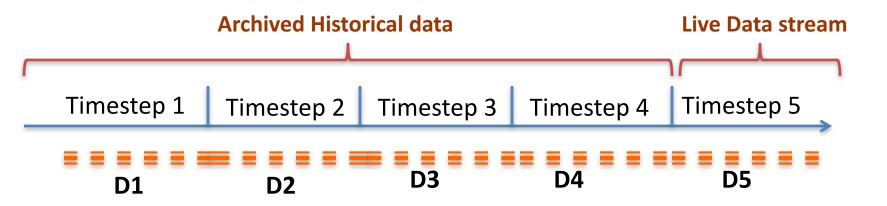
Stream Processing System



Continuous update of the state of the data, with every incoming element

Integrated Processing of Historical and Streaming Data

Long term data analysis with higher accuracy in real time



- Correlation of historical data with live streaming data
- Predictive analysis

Historical vs Stream Processing System

Batch Processing System	Stream Processing System
Data stored and can be traversed multiple times	Single or limited pass over data
Accurate results of user query	Approximate results of user query
Latency due to disk I/O	Fast processing time

Can we have our cake and eat it too?

Our Focus: (Approximate) Quantile Computation

N : size of data stream

 ε-approximate quantiles – Find an element of rank ρ from a dataset of size N, such that,

$$(\phi-\epsilon)N \le \rho \le (\phi+\epsilon)N$$
, $0 < \epsilon << \phi < 1$

- ε : approximation parameter
- rank of element e in D : $|\{x \in D \mid x < e\}|$

Prior Work on Approximate Quantile Computation

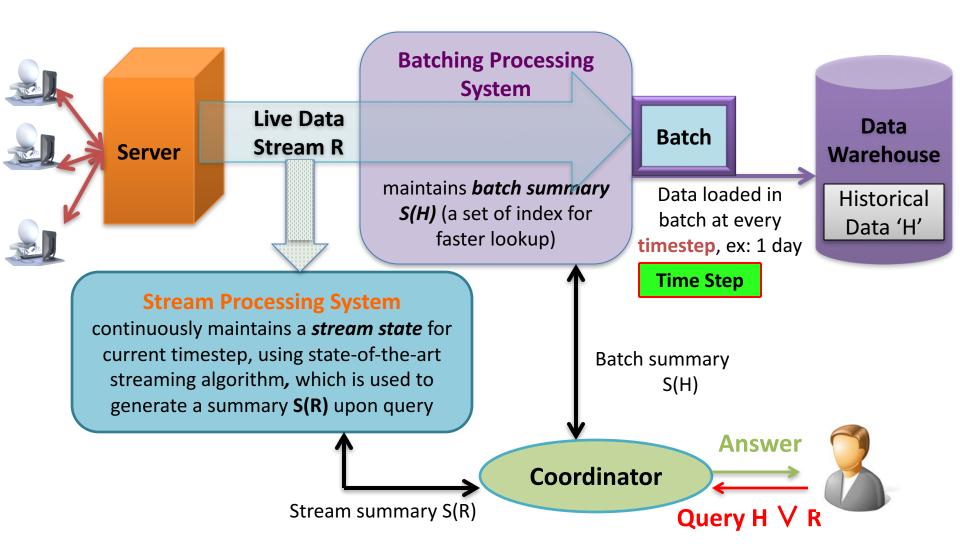
Space efficient **\varepsilon**-approximate streaming algorithms:

- Manku et al [MRL98] with space cost O(1/ε log²(εN))
- Greenwald-Khanna [GK01] with space cost O(1/ε log(εN))
- Qdigest [SBAS04] with space cost O(1/ε log(U))
 - N: size of data stream,
 - U: universe size,
 - ε: approximation parameter, 0 < ε < 1

Outline

- 1. Description of quantile
- 2. Historical and Streaming Data
- 3. Contribution
- 4. High Level Algorithm Description
- 5. Experimental Evaluation

Processing Historical Data + Streaming Data



Contribution

 An algorithm that returns an element of rank ρ as a φquantile from a union of historical and streaming data, such that

$$\phi N - \epsilon m \le \rho \le \phi N + \epsilon m$$
,
 $m << N$

compared to $\phi N - \epsilon N \le \rho \le \phi N + \epsilon N$ by streaming algorithms

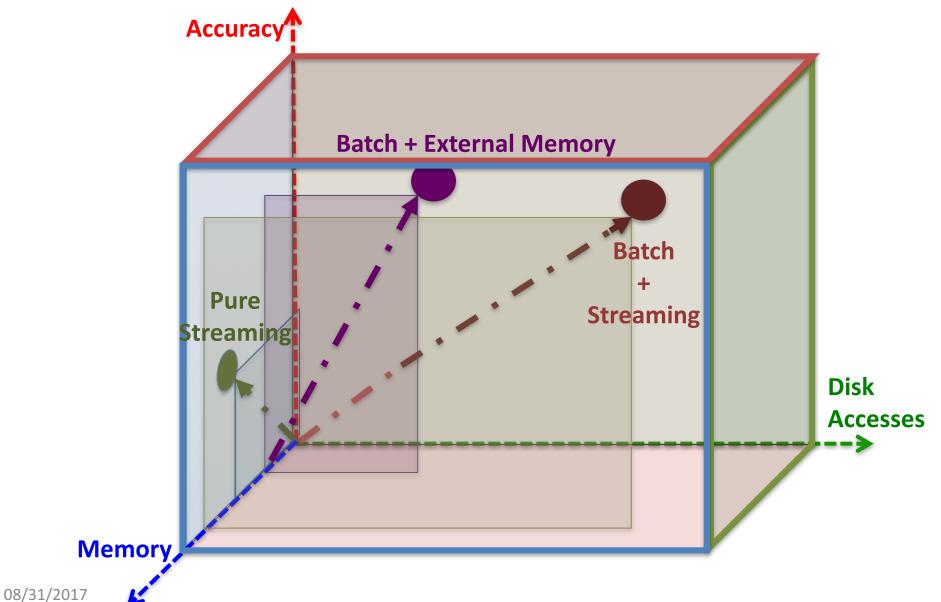
- The algorithm is memory efficient requiring O $\left(\frac{\log(\varepsilon N)}{\varepsilon}\right)$ memory
 - m : size of data stream,
 - rank of an element e in S : $|\{x \in S \mid x < e\}|$
 - ε: approximation parameter, 0<ε<1
 - T : no of time steps

Contribution

• Small processing time for updating historical data in the warehouse at every timestep, using amortized $O((m/B)\log(n/B))$ disk accesses per timestep,

- Real time querying using amortized $O(\log^2(\varepsilon m/B)\log(T))$ disk accesses
 - n: size of historical data
 - B: block size of the data warehouse
 - T : no of time steps
 - ε: approximation parameter, 0<ε<1

3-way Tradeoff between Accuracy, Disk Accesses & Memory



Comparison of Our Algorithm with Pure Streaming Algorithms

	GK (streaming)	Qdigest (streaming)	Our Algorithm
Relative Error	${\cal E}$	${\cal E}$	$\frac{\varepsilon m}{N}$
Memory	$O\left(\frac{\log(\varepsilon N)}{\varepsilon}\right)$	$O\left(\frac{\log(U)}{arepsilon} ight)$	$O\left(\frac{\log(\varepsilon N)}{\varepsilon}\right)$

N: total size of historical and streaming data

• m: data stream size, m << N

T: no of time steps

• U: universe size

Outline

- 1. Description of quantile
- 2. Historical and Streaming Data
- 3. Contribution
- 4. High Level Algorithm Description
- 5. Experimental Evaluation

High Level Algorithm Steps

Memory
Update SS Retrieve SS

Live Data Stream R

08/31/2017

Stream Processing System

- For each element observed in R, in current time step, update stream state SS (reset SS for new time step)
- On query, generate summary S(R) using SS

Memory

Update S(H)

Batch Processing System

- Collect data during the time step
- At the end of each time step,
 - load the collected data in H
 - Update batch summary S(H) upon each load

S(H)

Coordinator

When a query is posed over $\zeta = H \lor R$

- 1. Retrieve S(H) & S(R) and use these to generate approximate answer
- 2.Retrieve Access data warehouse to improve accuracy of answer

Additional disk accesses

Data Warehouse

Historical Data 'H'

Improved Accuracy

Approximate Answer

20

High Level Algorithm Steps

Memory

Update SS

Retrieve SS

Memory

Update S(H)

Live Data Stream R

Stream Processing System

- For each element observed in R, in current time step, update stream state SS (reset SS for each time step)
- On query, generate summary S(R) using SS

Batch Processing System

- Collect data during the time step
- At the end of each time step,
 - load the collected data in H
 - Update batch summary S(H) upon each load

S(H)

Coordinator

When a query is posed over $\zeta = H \vee R$

- 1. Retrieve S(H) & S(R) and use these to generate approximate answer
- 2.Retrieve Access data warehouse to improve accuracy of answer

Additional disk accesses

Data Warehouse

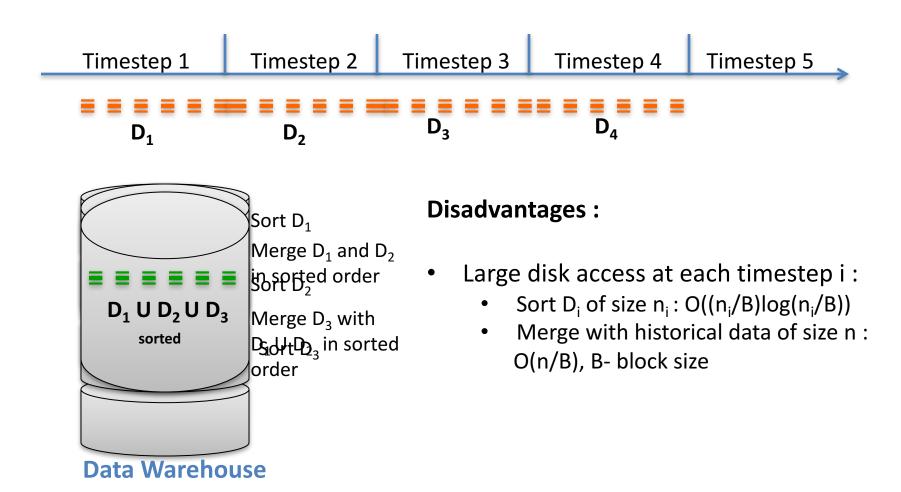
Historical Data 'H'

Approximate Answer

Improved Accuracy

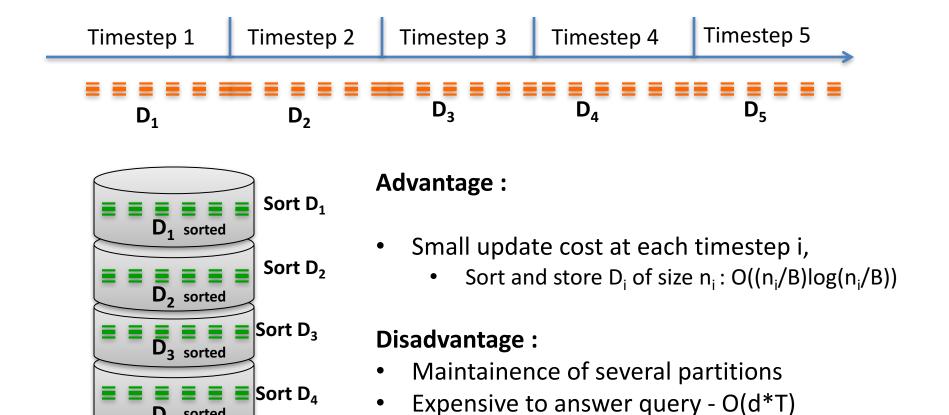
Historical Data Update at Each Time Step: Approach 1

Merge the newly arrived dataset with older historical data at every time step



Historical Data Update at Each Time Step: Approach 2

Add the new arrived dataset at each time step as a new partition in data warehouse



T: no of timesteps

08/31/2017

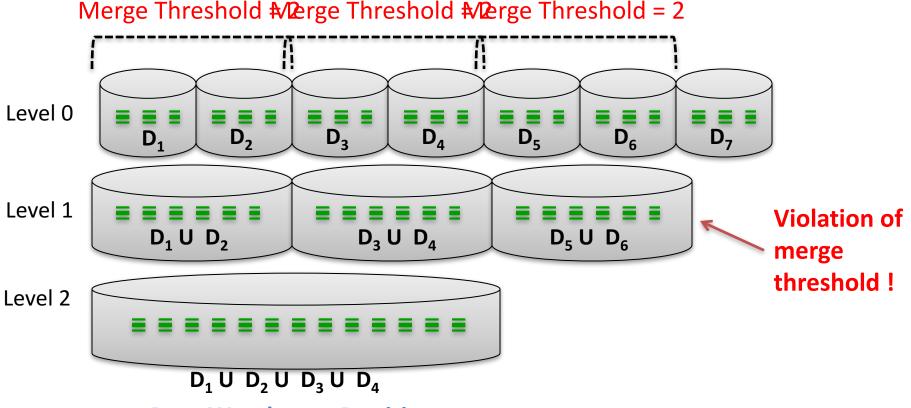
 $\mathbf{D}_{\mathbf{\Lambda}}$ sorted

Data Warehouse

d: no of disk access / timestep to answer a query

Historical Data Update: Our Approach

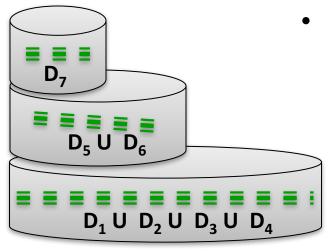
- Dataset D_i arrives at timestep i
- Data stored in sorted format in data partitions using levels



Data Warehouse Partitions

- Each level has at most κ data partitions. In the figure, κ=2, κ merge threshold
- At most $log_{\kappa}T$ data partitions at the end of T time steps.

Historical Data Update at Each Time Step: Our Approach



Advantages:

- Relatively small update cost since the entire historical data is not accessed at each time step
- Small query time

High Level Algorithm Steps

Memory

Update SS

Retrieve SS

Memory

Update S(H)

Live Data Stream R

Stream Processing System

- For each element observed in R, in current time step, update stream state SS (reset SS for new time step)
- On query, generate summary S(R) using SS

Batch Processing System

- Collect data during the time step
- At the end of each time step,
 - load the collected data in H
 - **Update batch summary S(H)** upon each load

S(H)

Coordinator

When a query is posed over $\zeta = H \vee R$

- 1. Retrieve S(H) & S(R) and use these to generate approximate answer
- 2. Retrieve Access data accuracy of answer

Additional disk accesses

Data Warehouse

Historical Data Ή'

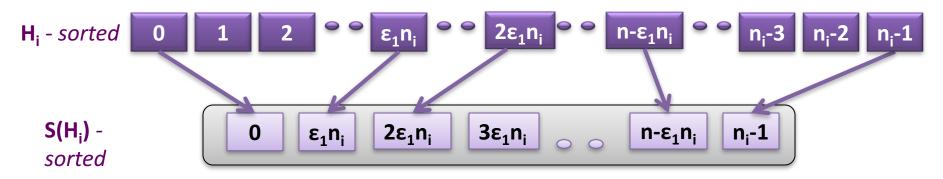
warehouse to improve

Approximate Answer 08/31/2017

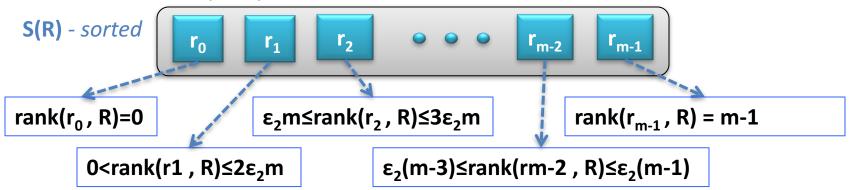
Improved Accuracy

Batch and Stream Summary

Batch Summary S(H_i) – $((1/\epsilon_1)+1)$ elements and their database index, for each disk partition H_i of size n_i, updated at the end of each time step



• Stream Summary S(R) – use stream state SS to get $((1/\epsilon_2)+1)$ elements of approximate ranks $\epsilon_2 m$, $2\epsilon_2 m$, $3\epsilon_2 m$ and so on, with a max error of $\epsilon_2 m$, created when a query is made



High Level Algorithm Steps

Memory

Update SS

Retrieve SS

Memory

Update S(H)

Live Data Stream R

08/31/2017

Stream Processing System

- For each element observed in R, in current time step, update stream state SS (reset SS for new time step)
- On query, generate summary S(R) using SS

Batch Processing System

- Collect data during the time step
- At the end of each time step,
 - load the collected data in H
 - Update batch summary S(H) upon each load

S(H)

Coordinator

When a query is posed over $\zeta = H \vee R$

- 1. Retrieve S(H) & S(R) and use these to generate approximate answer
- 2.Retrieve Access data warehouse to improve accuracy of answer

Additional disk accesses

Data Warehouse

Historical Data 'H'

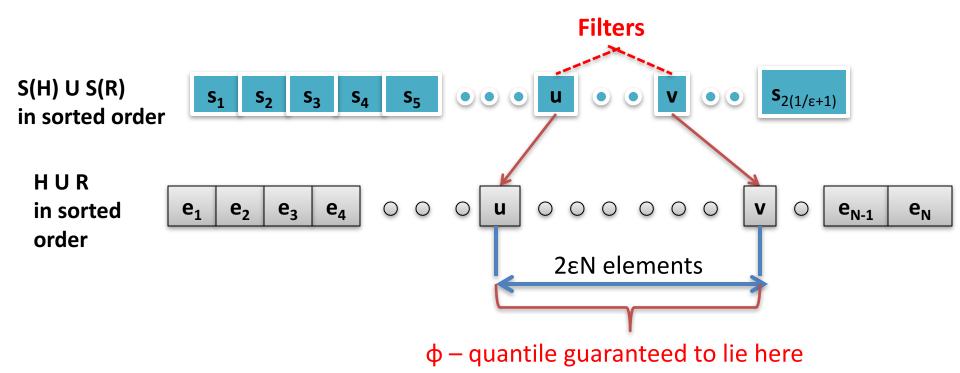
Approximate Answer

Improved Accuracy

Answer a Query: Find a Range within which Quantile is Guaranteed to lie

H: historical data of size n; R: live data stream of size m; N=(n+m);

Find elements \mathbf{u} and \mathbf{v} from S(H) U S(R), such that the quantile is guaranteed to lie between $[\mathbf{u}, \mathbf{v}]$ in the union of historical and streaming data



High Level Algorithm Steps

Memory

Update SS

Retrieve SS

Memory

Update S(H)

Live Data Stream R

Stream Processing System

- For each element observed in R, in current time step, update stream state SS (reset SS for new time step)
- On query, generate summary S(R) using SS

Batch Processing System

- Collect data during the time step
- At the end of each time step,
 - load the collected data in H
 - Update batch summary S(H) upon each load

S(R)

Coordinator

When a query is posed over $\zeta = H \vee R$

- 1. Retrieve S(H) & S(R) and use these to generate approximate answer
- 2.Retrieve Access data warehouse to improve accuracy of answer

S(H)

Additional disk accesses

Data Warehouse

Historical Data 'H'

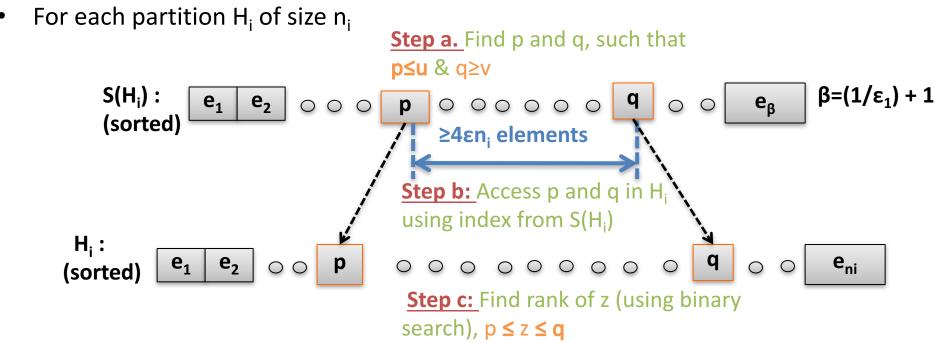
Approximate Answer

Improved Accuracy

Additional Disk Accesses to Improve Accuracy

The filter range [u, v] is narrowed down recursively to zero down on error due to batch.

• At each recursion, Compute rank of z = (u+v)/2 in all data partitions and stream



- Rank of $z = \sum (rank of z in each partition) + rank of z in data stream$
- Choose [u, z] or [z, v] as the new filter for next recursion, depending on which contains the quantile

Outline

- 1. Description of quantile
- 2. Historical and Streaming Data
- 3. Problem Statement and Motivation
- 4. Contribution
- 5. High Level Algorithm Description
- 6. Experimental Evaluation

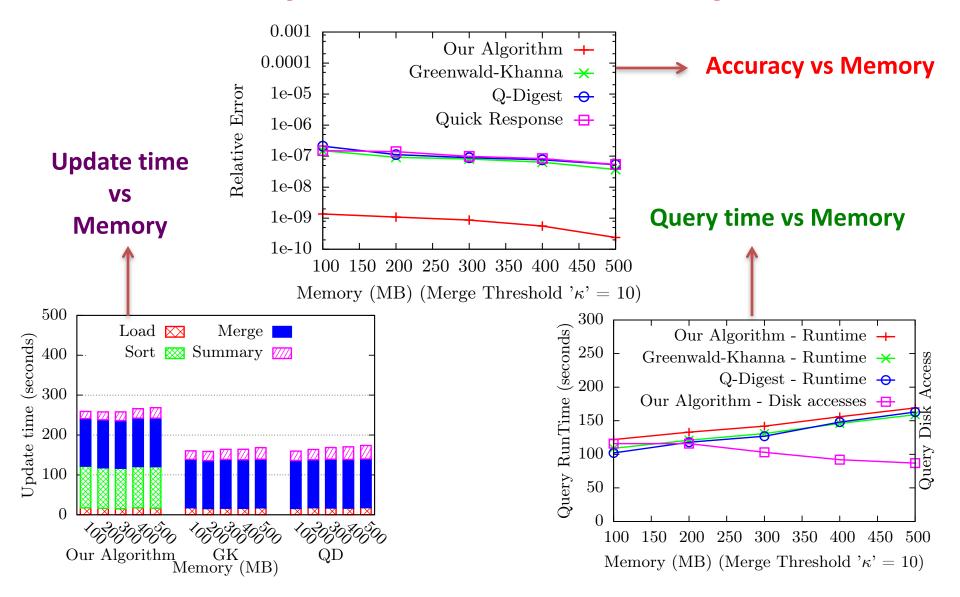
Experimental Setup

Datasets	Wikipedia	Network traces	Uniform Random	Normal
Data Size (GB)	58.5	60	100	100
Tuples / time step (million)	50	60	100	100

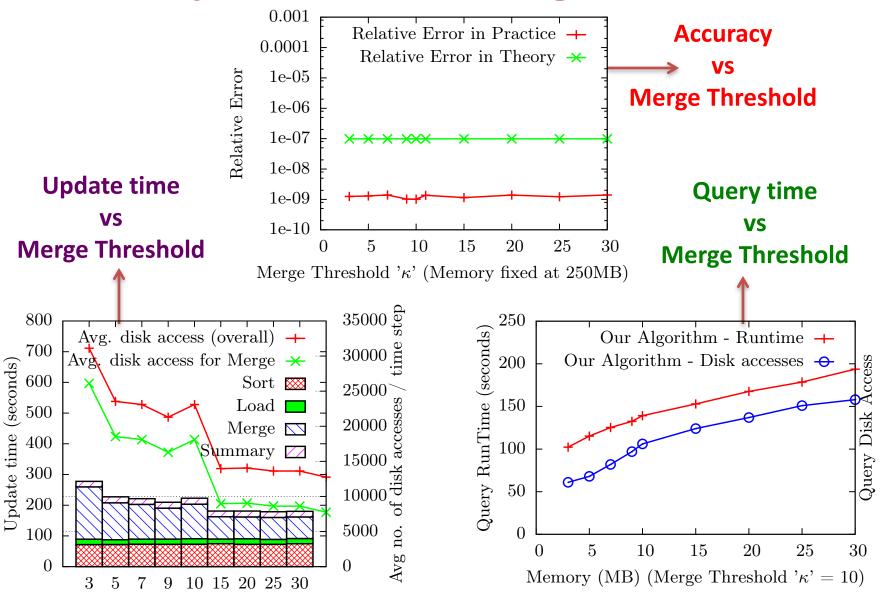
Algorithms Greenwald-Khanna Qdigest Our	
---	--

Performance Metric	Accuracy	Processing time	Query time
Description	Measure relative error : φN - r / φN	Runtime and no. of disk accesses	Runtime and no. of disk accesses

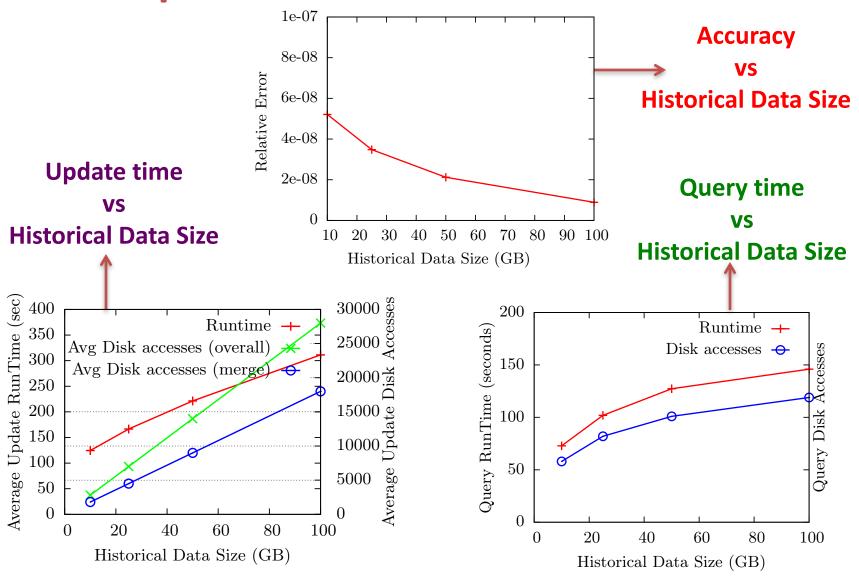
Dependence On Memory



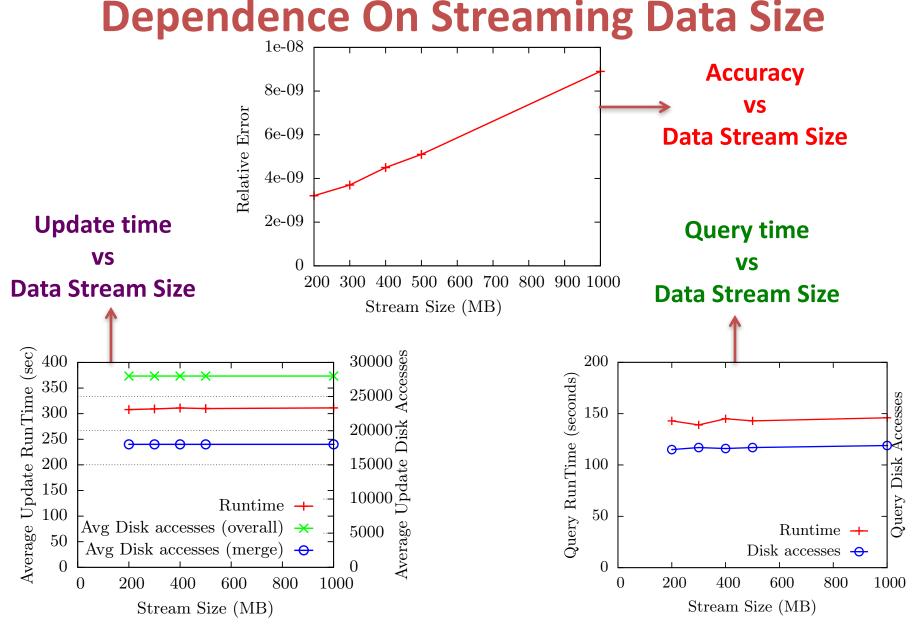
Dependence On Merge Threshold



Dependence On Historical Data Size



Normal Dataset (streamind data size: 1GB, memory: 250 MB, merge threshold: 10)



Normal Data (historical data size: 100GB, memory: 250 MB, merge threshold: 10)

Conclusion

- We present an algorithm that identifies quantile from a union of historical and streaming data in real time
 - with accuracy significantly better than pure streaming algorithms
 - using memory similar to pure streaming algorithms
 - using few additional disk accesses

Future Work

- Analysis on the tradeoff between accuracy and disk accesses
- Improve the window adaptation of algorithm
- Parallel methods for processing historical data
- Other aggregates over a union of historical and streaming data

Thank You