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Abstract We study the problem of maintaining a sketch of
recent elements of a data stream. Motivated by applications
involving network data, we consider streams that are asyn-
chronous, in which the observed order of data is not the same
as the time order in which the data was generated. The notion
of recent elements of a stream is modeled by the sliding time-
stamp window, which is the set of elements with timestamps
that are close to the current time. We design algorithms for
maintaining sketches of all elements within the sliding time-
stamp window that can give provably accurate estimates of
two basic aggregates, the sum and the median, of a stream of
numbers. The space taken by the sketches, the time needed
for querying the sketch, and the time for inserting new ele-
ments into the sketch are all polylogarithmic with respect
to the maximum window size. Our sketches can be easily
combined in a lossless and compact way, making them use-
ful for distributed computations over data streams. Previous
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works on sketching recent elements of a data stream have
all considered the more restrictive scenario of synchronous
streams, where the observed order of data is the same as the
time order in which the data was generated. Our notion of
recency of elements is more general than that studied in pre-
vious work, and thus our sketches are more robust to network
delays and asynchrony.

Keywords Data streams · Asynchronous streams ·
Distributed streams · Sliding window · Sum ·Median

1 Introduction

Enormous quantities of data flow through today’s computer
networks everyday. Often, it is necessary to analyze this mas-
sive volume of data “on the fly” to compute aggregates and
statistics, and detect trends and anomalies in traffic. The need
for processing such data has led to a study of the data stream
model of computation, where the data has to be processed in
a single pass using workspace that is typically much smaller
than the size of the stream.

In many applications, only the most recent elements in the
data stream are important in computing aggregates and sta-
tistics, while the old ones are not. For example, in a stream of
stock market data, a software may need to track the moving
average of the price of a stock over all observations made
in the last hour. In network monitoring, it is useful to mon-
itor the volume of traffic destined to a given node during
the most recent window of time. In sensor networks, only
the most recent sensed data might be relevant, for exam-
ple, measurements of seismic activity in the past few min-
utes. Motivated by such applications, there has been much
work [1,3,6,7,9,13] on designing algorithms for maintaining
aggregates over a sliding window of the most recent elements

123



360 B. Xu et al.

of a data stream. So far, all work on maintaining aggregates
over a sliding window has assumed that the arrival order of
the data in a stream is the same as the time order in which
the data was generated. However, this assumption may not
be realistic in distributed systems, as we explain next.

Asynchronous streams. In many real-life situations
involving distributed stream processing, it is necessary to
deal with the inherent asynchrony in the network through
which data is being transmitted. Nodes often have to pro-
cess composite data streams that consist of interleaved data
from multiple data sources. One consequence of the network
asynchrony is that in such composite data streams, the order
of arrival of stream elements is not necessarily the order in
which the elements were generated.

For example, nodes in a sensor network generate obser-
vations, each tagged with a timestamp. When the observa-
tions are transmitted to an aggregator node (sometimes also
referred to as a sink), the inherent network asynchrony and
differing link delays may cause an observation with an ear-
lier timestamp to reach the aggregator later than an obser-
vation with a more recent timestamp. We call such a data
stream, where the order of receipt of elements is not neces-
sarily the order of generation of the data, as an asynchronous
data stream. Thus, in asynchronous data streams the order
of “recency” of the data may not be preserved. The notion of
recency can be captured with the help of a timestamp asso-
ciated with the observation. The greater the timestamp of an
observation, the more recent the data.

Asynchronous data streams are inevitable anytime two
streams of observations, say A and B, fuse with each other
and the data processing has to be done on the stream formed
by the interleaving of A and B. Even if individual streams A
or B are not inherently asynchronous, i.e., elements within A
or within B arrive in increasing order of timestamps, when
the streams are fused, the stream could become asynchro-
nous. For example, if the network delay in receiving stream
B is greater than the delay in receiving elements in stream A,
then the aggregator may consistently observe elements with
earlier timestamps from B after elements with more recent
timestamps from A.

All previous work on maintaining aggregates on a sliding
window of a data stream have considered the case of synchro-
nous arrivals, where it is assumed that the stream elements
arrive in order of increasing timestamps. In this paper we
present the first study of aggregate computation over a slid-
ing window of a data stream under asynchronous arrivals.

We consider the following model for processing asynchro-
nous data streams. In the centralized model, a single aggre-
gator node A receives a data stream R = d1, d2, . . . , dn ,
where d1 is the observation that was received the earliest,
and dn the observation that was received most recently. Each
observation di is a tuple (vi , ti ) where vi is the data and ti
is the timestamp, which is tagged at the time the data was

generated. Since we consider asynchronous arrivals, it is not
necessary that the ti s are in increasing order, i.e., it is possi-
ble that i > j (so that di is received by A later than d j ) but
ti < t j . Let c denote the current time at any instant. The user
will ask the aggregator queries of the following form: return
an aggregate (say, the sum or the average) of all elements in
the stream that have timestamps which are within the range
[c − w, c], where w is the width of the “window” of time-
stamps. Since the window [c −w, c] is constantly changing
with the current time c, we refer to this range [c − w, c] as
the “sliding timestamp window”. When the context is clear,
we sometimes use the term “sliding timestamp window” to
refer to all received items that have timestamps in the range
[c − w, c].

The challenge with maintaining aggregates over a sliding
timestamp window is that the data within the window can be
very large and it may be infeasible to store the data in the
workspace of the aggregator. To overcome this limitation, a
fundamental technique for computing aggregates is for the
aggregator to keep a small space sketch that contains a sum-
mary representation of all the data that has arrived within the
window. Typically, the size of the sketch is much smaller than
the size of the data within the window. Usually, the goal is to
construct sketches whose size is polylogarithmic in the size
of the data within the window. The sketch is constructed in a
way that it enables the efficient computation of aggregates.
Since the sketch cannot keep complete information of the
streams within the small space, there is an associated rela-
tive error with the answer provided by the sketch, in relation
to the exact value of the aggregate. The size of the sketch
depends on this relative error.

Distributed streams. In applications involving distri-
buted data sources, such as content distribution, intranet mon-
itoring, and sensor data processing, no single node observes
all data, yet aggregates should be computed over the union of
the data observed at all the nodes. Therefore, it is necessary
to answer aggregate queries for the union of all the streams
distributively. A naive approach to solve such problems is to
send all streams to a single aggregator (sink). However, this
approach is too costly, since there is a communication and
energy cost for every data item in every stream. Thus, the
data streams have to be combined in a more efficient way
in order to minimize the use of network resources. This is
critical especially in sensor networks where nodes are typ-
ically battery operated devices. Unlike previous work [8,9,
13] that considered the synchronous model on distributed
streams, we consider aggregate computation over distributed
streams under asynchronous arrivals. In our approach, we
place aggregators in a tree. Sketches are transmitted up the
tree from the leaves to the root, and are combined in a dis-
tributed way as they move up the tree. Finally the root node
has the sketch of the union of all the streams, and can answer
aggregate queries about a sliding timestamp window over the
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Fig. 1 Left a spanning tree which connects aggregators with flow of
information towards a sink. Right an aggregator merges the sketches of
two aggregators

union of all streams (see Fig. 1). The sketch of the union can
be constructed on demand, whenever new queries are issued.
Further, the sketches can be combined in a way that the rela-
tive error is small and also the size of the sketch of the union
of two streams does not increase more than a fixed bound.

1.1 Contributions

First, we give algorithms for computing the sum and median
of the sliding timestamp window of an asynchronous stream
that is being observed by a single aggregator. We then con-
sider the distributed case, where we give a procedure that
combines the sketches produced by the aggregators, each of
which is observing and sketching a local stream. In the dis-
cussion below, R = (v1, t1), (v2, t2), . . . , (vn, tn) is an asyn-
chronous stream of positive integer, timestamp pairs. Let c
denote the current time, and W a bound on the maximum
window size.

1.1.1 Sum

Our first sketching algorithm estimates the sum of all inte-
gers in stream R which are within any recent timestamp win-
dow of size w ≤ W , i.e., V = ∑

{(v,t)∈R|c−w≤t≤c} v. The
algorithm maintains a sketch using small space, that can be
updated quickly when a new element arrives, and can give
a provably good estimate for the sum when asked. We will
use the notion of an (ε, δ)-estimator to quantify the quality
of answers returned by the algorithm.

Definition 1 For parameters 0 < ε < 1 and 0 < δ < 1, an
(ε, δ)-estimator for a number Y is a random variable X such
that Pr[|X − Y | > εY ] < δ. The parameter ε is called the
relative error and δ is called the failure probability.

Our algorithm for the sum has the following performance
guarantees.

– For any w ≤ W specified by the user at the time of the
query, the sketch returns an (ε, δ)-estimator of V . The

value of w, the window size does not need to be known
when the stream is being observed and sketched. Only
W , an upper bound on w needs to be known in advance.
In other words, our sketch comprises information about
every timestamp window in the stream whose right end-
point is the current time c, and whose width is less than
or equal to W .

– Space used by the sketch is O(( 1
ε2 )(log 1

δ
)(log Vmax )σ ),

where Vmax is an upper bound on the value of the sum V ,
σ is the number of bits required to store an input element
(v, t), ε is the desired relative error, and δ is the desired
upper bound on the failure probability.

– The time complexity for processing an element is O(log
log 1

δ
+ log 1

ε
).

– Time taken to process a query for the sum is O( 1
ε2 ·

log Vmax · log 1
δ
)

An important special case of the sum of positive integers is
the problem of maintaining the number of data items within
the window, and is called basic counting [6,9]. Our algorithm
solves basic counting immediately by taking v = 1 for every
data item.

1.1.2 Median

The next aggregate is the approximate median. Given w ≤ W
specified by the user, we present an algorithm that can return
an approximate median of the set Rw = {(v, t) ∈ R|c−w ≤
t ≤ c}. An (ε, δ)-approximate median is defined as follows.

Definition 2 For 0 < ε < 1/2 and 0 < δ < 1, an (ε, δ)-
approximate median of a totally ordered set S is a random
variable Z such that the rank of Z in S is between (1/2−ε)|S|
and (1/2+ ε)|S| with probability at least 1− δ. The param-
eter ε is called the relative error and δ is called the failure
probability.

Our algorithm has the following performance guarantees.

– For any w ≤ W specified by the user at the time of query,
the sketch returns an (ε, δ)-approximate median of the
set Rw. Similar to the sum, the sketch can answer queries
about any timestamp window whose right endpoint is c
and whose width is less than or equal to W .

– Space used by the sketch is O(( 1
ε2 )(log 1

δ
)(log Nmax )σ ),

where Nmax is an upper bound on the number of elements
in Rw, σ is the number of bits required to store an input
element (v, t), ε is the desired relative error, and δ is the
desired upper bound on the failure probability.

– The expected time taken to process each item is O(log log
1
δ
+ log 1

ε
).

– Time taken to process a query for the median is O(log log
Nmax + 1

ε2 · log 1
δ
).
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Note that the above guarantees for the sum and the median
are only with respect to data that has been received by the
aggregator and is within the timestamp window. There may
be elements in the stream that have timestamps within the
current window, but have not yet arrived at the aggregator,
and these are not considered as part of the data on which the
sum or the median are computed.

1.1.3 Union of Sketches

The sketches produced by our sum and median algorithms
can be easily merged to form new sketches. This merging
step can be performed repeatedly in a hierarchical manner,
using a tree of aggregators. More precisely, given a sketch
of stream A and a sketch for stream B, it is easy to obtain
a sketch of the union of streams A ∪ B. A sketch for A (B)
consists of a series of random samples from the input stream
A (B). The combined sketch consists of a series of random
samples from the stream A ∪ B, which can be computed
using the individual random samples from A and B. For the
sum, we show that if each sketch for A and B can individu-
ally yield an (ε, δ)-estimator, then the combined sketch can
yield an (ε, δ)-estimator for the sum of elements in A∪ B. A
similar result holds for the median. The space taken for the
sketch of the union is no more than the space needed for the
sketch of a single stream. Thus, when combining sketches,
the new sketch takes bounded space and the relative error is
controlled. The cost of transmitting these sketches is small,
and this enables the distributed computation of aggregates
over the union of many data streams with low communica-
tion and space overhead.

1.2 Related work

Datar et al. [6] considered basic counting over a sliding win-
dow of elements in a data stream under synchronous arrivals.
They presented an algorithm that is based on a data structure
called the exponential histogram, which can give an approx-
imate answer for basic counting, and also presented reduc-
tions from other aggregates, such as sum, and �p norms, to
basic counting. For a sliding window size of maximum size
W , and an ε relative error, the space taken by their algorithm
for basic counting is O( 1

ε
log2 W ), and the time taken to

process each element is O(log W )worst case, but O(1) amor-
tized. Their algorithm for the sum of elements within the slid-
ing window has the space complexity O( 1

ε
log W (log W +

log m)), and worst case time complexity of O(log W+log m)

where m is an upper bound on the value of an item. We
briefly describe the exponential histogram for basic count-
ing. The exponential histogram divides the relevant window
of the stream (the last W elements) into buckets of sizes
1, 2, 4, . . .. There are multiple buckets of each size (the num-
ber of buckets of a particular size depends on the desired

accuracy). The most recent elements are grouped into buckets
of size 1, elements that arrived a little earlier in time are
grouped into buckets of size 2, and even earlier elements are
grouped into buckets of size 4, and so on. In a synchronous
stream, elements always arrive at in order of timestamps,
and hence a newly arrived element is always assigned into a
bucket of size 1. This may cause the size of the data struc-
ture to exceed the desired maximum, in which case the two
least recent buckets of size 1 are merged to form a single
bucket of size 2. The merge may cascade, and cause two
buckets of size 2 to merge into one bucket of size 4 and so
on. This way it is always possible to maintain the invari-
ant that given any large bucket b, there are always many
more elements present in buckets that are more recent than
b than there are elements in b. In addition, all bucket sizes
are powers of two. In an asynchronous stream, however, the
element that just arrived may have an early timestamp. This
element may fit into an “old” bucket, causing the size of
the bucket to increase, and break the above described invari-
ant. It seems that the exponential histogram is dependent on
elements arriving in order of timestamps. Datar et al. [6]
also show the following lower bound. If it is assumed that
all stream elements have distinct timestamps, then, the space
complexity of maintaining an estimate of the sum within an ε

relative error (either deterministic or randomized) over a syn-
chronous stream is �(log U (log W + log U )/ε) bits, where
W is the window size and U is an upper bound on the value
of an element in the stream. Since a synchronous stream is
a special case of an asynchronous stream, this lower bound
applies to asynchronous streams too. Under the assumption
of distinct timestamps, our algorithm has space complex-
ity O(log U (log W + log U )/ε2) for returning an estimate
within an ε relative error with a constant probability. This
shows that the space cost of asynchrony in this context is no
more than O(1/ε).

Later, Gibbons and Tirthapura [9] gave an algorithm for
basic counting based on a data structure called the wave that
used the same space as in [6], but whose time per element
is O(1) worst case. Just like the exponential histogram, the
wave also strongly depends on synchronous arrivals, and it
does not seem easy to adapt it to the asynchronous case.

Recently, Busch and Tirthapura [5] have devised a deter-
ministic algorithm for estimating the sum (and hence, for
basic counting) of elements within a sliding window of an
asynchronous stream. Their algorithm has a space complex-
ity of O(log U log W (log W + log U )/ε) for returning an
answer with ε relative error. When compared with our algo-
rithm for the sum, their algorithm has a worse dependence
on log W and a better dependence on 1/ε. Further, their algo-
rithm does not apply to the problem of finding the approxi-
mate median.

Arasu and Manku [1] present algorithms to approximate
frequency counts and quantiles over a sliding window. Since
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the median is a special case of a quantile, this also provides a
solution for estimating the median, though in the case of syn-
chronous arrivals. Babcock et al. [3] presented algorithms for
maintaining the variance and k-medians of elements within a
sliding window of a data stream. Feigenbaum et al. [7] con-
sidered the problem of maintaining the diameter of a set of
points in the sliding window model.

Gibbons and Tirthapura [8] introduced the distributed streams
model. In this model, each of many distributed parties ob-
serves a local stream, has limited workspace, and commu-
nicates with a central “referee”. When an estimate for the
aggregate is requested, the different parties send a “sketch”
back to the referee who computes an aggregate over the union
of the streams observed by all the parties. In [8], algorithms
were presented for estimating the number of distinct elements
in the union of distributed streams, and the size of the bit-
wise-union of distributed streams. In a later work [9], they
considered estimation of functions over a sliding window on
distributed streams. However, the algorithms in [9] were de-
signed for the case of synchronous arrivals. Patt-Shamir [16]
presented communication efficient algorithms for comput-
ing various aggregates, such as the median and number of
distinct elements in a sensor network, and considered multi-
round distributed algorithms for that purpose.

Guha et al. [11] consider the problem of computing corre-
lations between multiple vectors. The vectors arrive as mul-
tiple data streams, and within each stream, the elements of
a vector arrive as updates to existing values; the updates
are asynchronous, and do not necessarily arrive in order of
the indexes of elements. Their work focuses on the approxi-
mate computation of the largest eigenvalues of the resulting
matrix, using limited space and in one pass on both synchro-
nous and asynchronous data streams. They do not consider
the context of sliding windows.

Srivastava and Widom [18] designed a heartbeat genera-
tion algorithm to support continuous queries in a Data Stream
Management System, which receives multiple asynchronous
data streams. Each stream is a sequence of tuples of the form
〈value, t imestamp〉. The timestamp is tagged by the source
of the stream. By capturing the skew between steams, and
the asynchrony and network transmission latency of each
stream, their algorithm can generate and update a “heart-
beat” continuously. The algorithm guarantees that there will
be no new tuples arriving with a timestamp earlier than the
heartbeat. All tuples with timestamp greater than the cur-
rent heartbeat are buffered. Once the heartbeat is updated
(advanced), all buffered tuples with timestamp earlier than
the new heartbeat are submitted to the query processor to
answer continuous queries. Their algorithm requires that the
skew between streams, and the asynchrony and the network
transmission latency of each stream be bounded, while our
algorithm works on any asynchronous stream. Their work
does not consider maintenance of aggregates, as we do here.

Another sketch that is popular in networking applications
is the Bloom filter [4], which summarizes a set of items to sup-
port approximate membership queries. A Bloom filter tack-
les a different type of sketching problem than we do—our
sketches are designed to support aggregate queries on data,
while a Bloom filter supports queries about the existence
(or not) of individual elements in the data. Since keeping
information about individual elements is clearly expensive,
a Bloom filter is a rather bulky sketch when compared to the
sketches we present here. The space taken by our sketches
do not depend on the number of elements in the data set (it
only depends on the desired accuracy), while the size of a
Bloom filter is linear in the number of elements.

Much other recent work on data stream algorithms has
been surveyed in [2,15]. To our knowledge, our work is the
first to consider aggregates over a sliding window under asyn-
chronous arrivals.

2 Sum of positive integers

We first consider the computation of the sum in the cen-
tralized model. The stream received by the aggregator is
R = 〈d1 = (v1, t1), d2 = (v2, t2), . . . , dn = (vn, tn)〉 where
the vi s are positive integers and ti s are the timestamps. Let c
denote the current time at the aggregator. The goal is to main-
tain a sketch of the stream R which will provide an answer
for the following query. For a user provided w that is given
at the time of the query, what is the sum of the observations
within the current timestamp window [c−w, c]? The sketch
should be quickly updated as new elements arrive, and no
assumptions can be made on the order of arrivals.

We assume that the algorithm knows W , an upper bound
on the window size. For window size w ≤ W , let Rw denote
the set of observations within the current timestamp window,
i.e., Rw = {(v, t) ∈ R|c − w ≤ t ≤ c}. Given w, the sketch
should return an estimate of V , the sum of input observations
within Rw. V =∑

{(v,t)∈Rw} v
The value of W depends on the application. For exam-

ple, in a network monitoring application, the user (network
administrator) may never have an interest in querying about
packets that were generated more than 24 h ago, in which
case setting W to be 24 h will suffice. Note than W can also
be set to infinity, which essentially means that the sketch
summarizes the whole stream.

2.1 Intuition

Our algorithm is based on random sampling. The high level
idea is as follows. In order to estimate the sum of integers
within the sliding window, the stream elements are randomly
chosen into a sample as they are observed by the aggrega-
tor. When an estimate is asked for the sum of elements in a
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given timestamp window, the algorithm computes the sum
of all elements in the sample that are within the timestamp
window, multiplies it by the appropriate factor (inverse of
the sampling probability), and returns the product as the esti-
mate. The description thus far is the recipe for most esti-
mation algorithms that are based on random sampling. In
getting random sampling to work for this scenario, we need
the following ideas.

First, suppose the goal is to estimate the cardinality of a
set using random sampling. In order to get a desired accu-
racy for the estimate, it is enough to sample the elements
of the set such that the size of the resulting sample is “large
enough”; what is “large enough” depends only on the desired
accuracy (ε and δ), and not on the size of the set itself. The
required size of the sample can be determined using Chernoff
bounds.

Next, in estimating the sum, different elements in the
stream have to be treated with different weights during
random sampling, otherwise the error in estimation could
become too large. For example, two observations
d1 = (100, t) and d2 = (1, t) may both be included in the
current sliding timestamp window, but the sampling should
give greater weight to d1 than to d2, to maintain a good accu-
racy for the estimate. If every element is sampled with the
same probability, it can be verified that the expected value of
the estimate is correct, but the variance of the estimate is too
large for our purposes. The exact differences in the handling
of elements with different values is crucial for guaranteeing
the error bounds, and for further details on this we refer the
reader to the formal description of the algorithm. We note
that many of the technical proofs in this paper are devoted to
this aspect of handling elements with varying weights.

Finally, the “correct” probability of sampling cannot be
predicted before the query for the sum is asked. If the answer
for the sum is large (estimation of the size of a “dense” set),
then a small sampling probability may be enough to return
an accurate estimate. If the answer for the sum is small (esti-
mation of the size of a “sparse” set), then a larger sampling
probability may be necessary. Thus, our algorithm maintains
not just one random sample, but many random samples, at
probabilities p = 1, 1

2 , 1
4 , . . . ,. Clearly, the samples at larger

probabilities may be too large to fit within the workspace, but
we show that in each sample, it suffices to maintain only the
most recent elements selected into the sample. When a query
is asked, with high probability, one of these samples will pro-
vide a good estimate for the sum of all elements within the
sliding timestamp window. In our actual algorithm however,
all samples are not explicitly stored. To improve the element
processing time, each element is stored only in the lowest
probability sample that it is selected into. When required to
answer a query for the sum, the required sample is recon-
structed using all samples at lower probabilities.

Procedure SumInit()

Task: Initialize the sketch.

For every i = 0 . . . M

1. Si ← φ /* All samples initially empty */
2. ti ←−1 /* No items have been discarded yet*/

Procedure SumProcess(d = (v, t))

Input: v is the value of the element, and is a positive integer; t is the
timestamp.

Task: Insert d into the sketch.

1. If (t < c − W ), then Return. /*Discard d since it is outside the
largest timestamp window, and a future query will never involve
d.*/

2. Let � = smallest integer i , 0 ≤ i ≤ M , such that v/2� < 1.
3. Let r ← 1 with probability v/2� and r ← 0 with probability

1− v/2�

4. If (r = 1) then k ← min{Z , M − � + 1}, where Z is the number
of flips of a fair coin till the first tail.
If (r = 0) then k ← 0.

5. Insert (v, t) into S�+k−1
6. If |S�+k−1| > α

(a) Discard the element with the lowest timestamp in S�+k−1.
(b) Let t ′ be the timestamp of the discarded element.
(c) t�+k−1 ← max {t�+k−1, t ′}

2.2 Formal description of the algorithm

We assume that the algorithm knows an upper bound Vmax on
the value of V . The space complexity of the sketch depends
on log Vmax . For example, if an upper bound m was known
on each value v corresponding to the sum of elements at a
time instant, and there were no more than f stream elements
with the same timestamp, then m f W is a trivial upper bound
on V .

Let M = �log Vmax	. The algorithm maintains (M + 1)

samples, denoted S0, S1, . . . , SM . Sample Si is said to be at
“level” i . Each sample Si contains the most recent elements
selected into the sample, and when more elements enter the
sample, older elements are discarded. Let ti be the most recent
timestamp of elements discarded from Si . The purpose of ti
is to help in determining the range of timestamps that are still
present in the sample. The maximum number of elements in
each sample Si is α = 12

ε2 ln ( 8
δ
).

The algorithm is described in procedures SumInit, which
describes the initialization steps for the sketch, procedure
SumProcess which describes the algorithm for updating the
sketch upon receiving a new element, and procedure Sum-
Query, which describes the steps for answering a query for
the sum.
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Procedure SumQuery(w)

Input: w ≤ W is the width of the window.

Output: An estimate of the sum of all stream elements with timestamps
in the range [c − w, c].

1. Let �′ ∈ [0, M]be the smallest integer, such that for all �′ ≤ j ≤ M ,
t j < c − w.
If no such �′ exists, then �′ ← M + 1.

2. If �′ ≤ M then
(a) For i = �′ to M , let ηi ←∑

(v,t)∈Si ,t≥c−w max( v

2�′ , 1)

(b) Return 2�′ ∑M
i=�′ ηi

3. If �′ = M + 1 then return. /* Algorithm Fails */

2.3 Correctness proof

Let X denote the result returned by the procedure SumQue-
ry(w) when a query is asked for the sum of elements within
the sliding timestamp window [c−w, c]. We show that X is
an (ε, δ)-estimate of V .

Definition 3 For each element d = (v, t) ∈ Rw, for each
level i = 0, 1, 2, . . . , M , random variable xi (d) is defined as
follows. Let γ be the smallest level such that v

2γ < 1.

– For 0 ≤ i < γ , xi (d) = v
2i .

– xγ (d) = 1 with probability v
2γ , and xγ (d) = 0 with

probability 1− v
2γ .

– For γ < i ≤ M , xi (d) is defined inductively. If xi−1(d)

= 0 then, xi (d) = 0. If xi−1(d) = 1, then xi (d) = 1 with
probability 1

2 and xi (d) = 0 with probability 1
2 .

Definition 4 For i = 0, . . . , M , Ti is the set constructed by
the following probabilistic process. Start with Ti ← φ. For
each element d = (v, t) ∈ Rw, if xi (d) �= 0, then insert
(xi (d), t) into Ti .

Note that Ti is defined for the purpose of the proof only,
but the Ti s are not stored by the algorithm.

Definition 5 For i = 0, . . . , M , define Xi =∑
(u,t)∈Ti

u.

Lemma 1 If d = (v, t) then E[xi (d)] = v/2i

Proof Let γ be defined as in Definition 3, i.e., γ is the small-
est level such that v

2γ < 1. For 0 ≤ i < γ E[xi (d)] = v/2i ,
since xi (d) is a constant. For γ ≤ i ≤ M , xi (d) is a 0–1
random variable. We use proof by induction on i to show
that E[xi (d)] = Pr[xi (d) = 1] = v/2i . The base case i = γ

is true since Pr[xγ (d) = 1] = v/2γ by definition. Assume
that for i ≥ γ , Pr[xi (d) = 1] = v/2i . Again, using Defini-
tion 3, Pr[xi+1(d) = 1] = (1/2) · Pr[xi (d) = 1] = v/2i+1,
thus proving the inductive step.

Lemma 2 For i = 0, . . . , M, E[Xi ] = V
2i

Proof The definitions of Xi and xi (d) yield the following.

Xi =
∑

(u,t)∈Ti

u =
∑

d=(v,t)∈Rw

xi (d)

Using linearity of expectation and Lemma 1, we get:

E[Xi ] =
∑

d=(v,t)∈Rw

E[xi (d)] =
∑

d=(v,t)∈Rw

v/2i

= (1/2i )
∑

d=(v,t)∈Rw

v = V/2i

Lemma 3 When asked for an estimate for V , if the proce-
dure SumQuery(w) does not fail in Step 3, then it returns
2�′X�′ for value �′ selected in Step 1.

Proof Consider the procedure SumQuery(w) when asked for
an estimate of the sum of elements in Rw.

Note that the level chosen by the algorithm, �′, satisfies
the following condition. For all levels �′ ≤ i ≤ M , the most
recent timestamp of the discarded elements (contained in the
variable ti in the algorithm) is less than c − w. Thus, for all
i, �′ ≤ i ≤ M , no element which is selected into Si and has
a timestamp at least c − w is discarded.

Next, we argue that the contribution of each element
d = (v, t) ∈ Rw to the value returned by the algorithm
is 2�′x�′(d). Suppose x�′(d) = 0. We refer to the algorithm
for processing an element in the procedure SumProcess(d).
The arrival of element d = (v, t) causes an insertion of (v, t)
into Si for level i < �′. Note that in computing the estimate,
SumQuery(w) only uses elements from levels �′ or greater,
element d will not contribute to the estimate returned by the
algorithm.

Suppose x�′(d) > 0. Again, referring to SumProcess(d),
we note that the arrival of d causes an insertion of (v, t) into
a level i ≥ �′. In answering a query for the sum (SumQue-
ry(w)), all elements with timestamp at least c − w which
are inserted into levels �′ or greater are considered, and their
contribution to the estimate is exactly 2�′x�′(d). To see this,
suppose v ≥ 2�′ . Then, x�′(d) = v

2�′ . From step 2(a) in Sum-

Query(w), the contribution of v to the estimate is 2�′ v

2�′ =
2�′x�′(d). Suppose v < 2�′ . Then x�′(d) should be 1, since it
is a 0–1 random variable. In such a case, from Step 2(a)
in SumQuery(w), the contribution of d to the estimate is
2�′ = 2�′x�′(d). Thus, for each d = (v, t) ∈ Rw, the contri-
bution to the returned estimate is 2�′x�′(d). The total returned
estimate is exactly 2�′X�′ .

Next, we will show that X�′ is a good estimate for V . The
following definition captures the notion of whether or not
different samples yield good estimates for V .

Definition 6 For i = 0, . . . , M , random variable Xi is said
to be “good” if (1 − ε)V ≤ Xi 2i ≤ (1 + ε)V , and “bad”
otherwise. Define event Bi to be true if Xi is bad, and false
otherwise.

123



366 B. Xu et al.

Lemma 4 If |Rw| ≤ α, then the procedure SumQuery(w)
returns the exact answer for the sum.

Proof Note that each element in Rw was selected into S0

when it was processed. Since the α elements with the most
recent timestamps are stored in S0, it must be true that Rw ⊆
S0. SumQuery will retrieve all of Rw from S0 and return the
exact sum of Rw.

Because of the above lemma, in the rest of the proof, we
assume |Rw| > α. Since each element in the input stream is
at least 1, this implies that V > α.

Definition 7 Let �
 ≥ 0 be an integer such that E[X�
] ≤
α/2 and E[X�
] > α/4.

Lemma 5 Level �
 is uniquely defined and exists for every
input stream R.

Proof From Lemma 2, we have E[Xi ] = V/2i . Since
V > α, E[X0] > α. By the definition of M = �log Vmax	,
it must be true that V ≤ 2M for any input stream R, so that
E[X M ] ≤ 1. Since for every increment in i , E[Xi ] decreases
by a factor of 2, there must be a unique level 0 < �
 < M
such that E[X�
] ≤ α/2 and E[X�
] > α/4.

For the next lemmas, we use a version of Hoeffding bounds
from Schmidt et al. [17] (Sect. 2.1) which is restated here for
convenience. Let y1, y2, . . . , yn be independent 0-1 random
variables with Pr[yi = 1] = pi . Let Y = y1+ y2+· · ·+ yn ,
and let µ = E[Y ].
Lemma 6 Hoeffding’s Bound (restated from [17]):

(1) If 0 < δ < 1, then Pr[Y > µ(1+ δ)] ≤ e−µδ2/3.
(2) If δ ≥ 1, then Pr[Y > µ(1+ δ)] ≤ e−µδ/3.
(3) If 0 < δ < 1, then Pr[Y < µ(1− δ)] ≤ e−µδ2/2.

The next lemma helps in the proof of Lemma 8.

Lemma 7 If 0 < a < 1
2 and k ≥ 0, then a(2k ) ≤ a

2k

Proof It is clear by induction that 2k − 1 ≥ k. Since 0 <

a < 1
2 , we can further have a(2k−1) ≤ ak <

( 1
2

)k
. Therefore,

a(2k ) < a
2k .

The next lemma shows that it is highly unlikely that B� is
true for any � such that 0 ≤ � ≤ �
.

Lemma 8 For integer � such that 0 ≤ � ≤ �
,

Pr[X� �∈ (1− ε, 1+ ε)E[X�]] < δ

2�
−�+2

Proof

X� =
∑

d=(v,t)∈Rw

x�(d)

From Definition 3, it follows that for some d ∈ Rw, x�(d)

is a constant and for others x�(d) is a 0-1 random variable.
Thus, X� is the sum of a few constants and a few random vari-
ables. Let X� = c+Y where c denotes the sum of all x�(d)’s
that are constants, and Y is the sum of the x�(d)’s that are
0-1 random variables. Clearly, since the different elements of
the stream are sampled using independent random bits, the
random variables x�(d) for different d ∈ Rw are all indepen-
dent. Thus Y is the sum of independent 0-1 random variables.
Let µY = E[Y ].

By linearity of expectation, we have

E[X�] = c + µY (1)

By the definition of �
, E[X�
 ] > α/4. Since E[Xi ] = V
2i

(from Lemma 2). Using Eq. 1, we get the following inequality
that will be used in further proofs.

c + µY > 2�
−�(α/4) (2)

We first consider Pr[X� > (1+ ε)E[X�]]
Pr[X� > (1+ ε)E[X�]] = Pr[c + Y > (1+ ε)(c + µY )]

= Pr

[

Y > µY

(

1+ ε(c + µY )

µY

)]

= Pr[Y > µY (1+ δ′)],
Where δ′ = ε(c+µY )

µY
.

We consider two cases here: δ′ < 1 and δ′ ≥ 1.
Case I: δ′ < 1. Using Lemma 6 and the fact (c+µY )/µY ≥

1, we have

Pr[Y > µY (1+ δ′)] ≤ e−µY δ′2/3 = e
− ε2(c+µY )2

3µY

≤ e−ε2(c+µY )/3 < e−ε2(2�
−�(α/4))/3

<

(
δ

8

)(2�
−�)

≤ δ/8

2�
−�

where we have used α = 12 ln 8/δ

ε2 and δ < 1, Eq. 2 and
Lemma 7.

Case II: δ′ ≥ 1. Using Lemma 6, we have:

Pr[Y > µY (1+ δ′)] ≤ e−µY δ′/3 = e−ε(c+µY )/3

< e−2(�
−�) ln (8/δ)/ε =
[(

δ

8

)1/ε
]2�
−�

<

(
δ

8

)(2�
−�)

≤ δ/8

2�
−�

where we have used α = 12 ln 8/δ

ε2 and δ < 1, Eq. 2 and
Lemma 7.

From Case I and Case II, we have

Pr[X� < (1+ ε)E[X�]] < δ/8

2�
−�
(3)
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Next we consider Pr[X� < (1− ε)E[X�]]
Pr[X� < (1− ε)E[X�]] = Pr[c + Y < (1− ε)(c + µY )]

= Pr[Y < µY (1− δ′)].
where δ′ = ε(c+µY )

µY

Using Lemma 6 and the fact µY+c
µY
≥ 1,

Pr[Y < µY (1− δ′)] ≤ e−µY δ′2/2 = e
− ε2(µY+c)2

2µY

≤ e−ε2(µY+c)/2

Using Eq. 2 and Lemma 7,

e−ε2(µY+c)/2 <

[(
δ

8

) 3
2
](2�
−�)

<

(
δ

8

)(2�
−�)

≤ δ/8

2�
−�

Thus, we have

Pr[X� < (1− ε)E[X�]] < δ/8

2�
−�
(4)

Combining Eqs. 3 and 4, for 0 ≤ � ≤ �
, we get

Pr[X� �∈ (1− ε, 1+ ε)E[X�]]
= Pr[X� > (1+ ε)E[X�]] + Pr[X� < (1− ε)E[X�]]
<

δ/4

2�
−�

Lemma 9

�

∑

i=0

Pr[Bi ] < δ/2

Proof By definition of Bi , Pr[Bi ] = Pr[2i Xi �∈ (1− ε, 1+
ε)V ] = Pr [Xi �∈ (1− ε, 1+ ε)E[Xi ]]

Using Lemma 8,

�

∑

i=0

Pr[Bi ] <
�


∑

i=0

δ

2�
−i+2 =
δ

4

�

∑

j=0

1

2 j
< δ/2

Recall that the algorithm uses level �′ in SumQuery(w) to
answer the query for the sum.

Lemma 10

Pr[�′ > �
] < δ/8

Proof Let βi denote the number of elements of Rw that
were inserted into Si . By the procedure SumQuery(w), we
know that β�′−1 > α since otherwise the algorithm would
have chosen level �′ − 1 instead. Note that for each level
i = 0 . . . M , |Ti | ≥ βi , since an insertion of an element in Rw

into Si always causes an insertion into Ti (but not necessarily
vice versa). Thus, |T�′−1| > α. Note that from Definition 4,
it follows that for all 0 ≤ i1 < i2 ≤ M , |Ti1 | ≥ |Ti2 |. Thus,
if �′ − 1 ≥ �
, then |T�
 | ≥ |T�′−1| > α.

Pr[�′ > �
] = Pr[�′ − 1 ≥ �
] ≤ Pr[|T�
 | > α] (5)

Since each element in Ti contributes at least one to Xi , we
have Xi ≥ |Ti |. Combining this with Eq. 5, we get:

Pr[�′ > �
] ≤ Pr[X�
 > α] (6)

As in the proof of Lemma 8, we denote X�
 = c + Y ,
where c is a constant and Y is the sum of independent 0–1
random variables. Let µY = E[Y ]. Since E[X�∗ ] ≤ α/2, we
have

Pr[X�
 > α] ≤ Pr[X�
 > 2E[X�
]]
= Pr[c + Y > 2(c + µY )]
= Pr

[

Y > µY

(

1+ c + µY

µY

)]

Using Lemma 6,

Pr

[

Y > µY

(

1+ c + µY

µY

)]

< e−µY δ′/3 = e−(c+µY )/3

where δ′ = c+µY
µY

> 1.
Since, E[X�
] = c + µY > α/4, we have

e−(c+µY )/3 < e
− ln(8/δ)

ε2 =
(

δ

8

)1/ε2

<
δ

8

Theorem 1 The result of the algorithm, X�′ , is an (ε, δ)-esti-
mate for V , the sum of all elements in the timestamp window
[c − w, c].
Proof Let f denote the probability that the algorithm fails
to return an estimate that is within an ε relative error of V .
Note that one way the algorithm can fail is by running out of
levels, i.e., at level M the sample still has too many elements;
as we show, this is an unlikely event.

f = Pr[�′ > M] + Pr

[
M⋃

i=0

(�′ = i) ∧ Bi

]

≤ Pr[�′ > M] +
M∑

i=0

Pr [(�′ = i) ∧ Bi ]

≤ Pr[�′ > M] +
�


∑

i=0

Pr[Bi ] +
M∑

i=�
+1

Pr[�′ = i]

= Pr[�′ > �
] +
�


∑

i=0

Pr[Bi ]

<
δ

8
+ δ

2
< δ

where we have used Lemmas 9 and 10.

2.4 Complexity

Lemma 11 Space complexity: The total space taken by the
sketch for the sum is O(( 1

ε2 )(log 1
δ
)(log Vmax )σ ), where Vmax
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is an upper bound on the value of the sum V , σ is the space
taken to store an input element (v, t), ε is the desired rel-
ative error, and δ is the desired upper bound on the failure
probability.

Proof The algorithm maintains M = �log Vmax	 samples,
each of which has up to α = 12 ln (8/δ)

ε2 elements. Each ele-
ment in the sample is a pair (v, t), which can be stored using
σ bits. The product of the number of samples, the number
of elements per sample, and the space per element yields the
above space complexity.

Lemma 12 Time complexity: The worst case time com-
plexity for processing an element d = (v, t) by SumPro-
cess(d) is O(log α) = O(log log 1

δ
+ log 1

ε
). The worst case

time taken to answer a query for the sum by SumQuery(w)
is O(Mα) = O( 1

ε2 · log Vmax · log 1
δ
).

Proof The elements in each sample can be stored using a
heap that is ordered according to the timestamps of the ele-
ments. The heap supports two operations, (a) insertion and
(b) delete-min, both in time O(log α), since the maximum
size of each sample is α = 12 ln (8/δ)

ε2 .
Consider the procedure SumProcess(d). If input element

d = (v, t) is outside the window (Step 1), then it takes con-
stant time to discard it. Otherwise, the time taken to process
d consists of three parts. The first part is to compute the value
of � in Step 2, which takes constant time. The second part
is to find the value of k in Step 4 of SumProcess(d). We
assume that it takes constant time to generate an exponen-
tially distributed random number k, where Pr[k = i] = 1/2i ,
i = 1, 2, · · · . Thus, Step 4 also takes constant time. The third
part is the actual insertion into S�+k−1 in Step 5, and (possi-
bly) discarding the oldest element of S�+k−1 in Step 6, which
takes O(log α) time. Summing these, we find that the worst
case time to process d is O(log α).

The time taken to answer a query for the sum consists of
two parts. The first part is to find the value of � in SumQue-
ry(w), which can be done in O(M) time. The second part is to
find all elements with timestamps within the query window
in sample Si , � ≤ i ≤ M . This part takes time O(Mα). Sum-
ming these two parts, the worst case time taken for answering
a query is O(Mα).

2.5 Trade off between processing time and query time

By spending more time during processing an element, it is
possible to improve the query time for the sum as follows.
In algorithm SumProcess(d), instead of inserting the ele-
ment into only one level (� + k − 1) in Step 5, it can be
inserted into every level starting from 0 till (� + k − 1)

(Fig. 2 of [19]). This way, when processing a query for
the sum in SumQuery, we need to consider only a single
level �′ (Fig. 3 of [19]), rather than all levels from �′ till

M . The space complexity of the algorithm would remain the
same as before, but the time complexity would change as
follows. Worst case time for processing an element is now
O((log Vmax )(log log 1/δ + log 1/ε)), and time taken to an-
swer a query for the sum is O(log log Vmax + log 1/δ

ε2 ). The
time for answering the query has decreased, while the time
for processing an element has increased. In most applica-
tions, since queries are likely to be much less frequent than
element arrivals, the algorithm with faster element process-
ing time may be preferred (i.e., algorithms SumProcess and
SumQuery).

A more flexible trade off between processing time and
query time can be obtained as follows. The user can specify
a level L , 0 ≤ L < M , as a parameter to procedures SumPro-
cess and SumQuery. In SumProcess, if (�+ k−1) < L , then
insert the element into only one level (�+ k− 1); otherwise,
insert the element into levels L , L + 1, . . . , �+ k − 1. Pro-
cedure SumQuery is modified as follows. As before, level
�′ ∈ [0, M] is the smallest integer such that for all j , �′ ≤
j ≤ M , t j < c − w. If �′ < L , then the query is answered
using the union of all elements in levels �′ +1, �′ +2, . . . , L
that belong within the window. On the other hand, if �′ ≥ L ,
then the query is answered using only the elements in level
�′, since the relevant elements in later levels are also present
in level �′.

With this modification, the space complexity remains the
same as before, but the time complexity changes as fol-
lows. Worst case time for processing an element is now
O

(
(�log Vmax	−L)(log log 1

δ
+log 1

ε
)
)
, and worst case time

for answering a query for the sum is max (O (log(�log Vmax	
−L)+ log 1/δ

ε2

)
, O

(
L · log 1/δ

ε2

))
. The smaller the value of L

is, the more time spent on processing an element, but the less
time spent on answering a query, and vice versa. Clearly if
we choose L = 0, the algorithm for processing an element
is the one in Fig. 2 of [19], i.e., the element will be inserted
into every level that it is selected into, and the algorithm to
answer a query for the sum is the one in Fig. 3 of [19]; if we
choose L = M − 1, it is procedure SumProcess in Sect. 2.2
which process an element, and the algorithm for answering
a query for the sum is the procedure SumQuery in Sect. 2.2.

3 Computing the median

In this section, given a maximum window size W , we design
a sketch such that for all w ≤ W , the sketch can return an
(ε, δ)-approximate median of Rw, whose values are chosen
from a totally ordered universe.

The algorithm for the median is based on random sam-
pling, as are many earlier algorithms for medians and quan-
tiles over data streams [10,14]. Roughly speaking, the median
of a random sample of a stream, where the stream is sampled
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at a sufficiently large probability, is an approximate median
of all elements in the stream. What is a “sufficiently large”
probability depends on the size of the set on which the
median is being computed, and the desired accuracy. Since
the window size w is known only at query time, there is no
single sampling probability that suffices for all queries. Sim-
ilar to the algorithm for the sum, the idea in the algorithm for
the median is to maintain many random samples at different
probabilities, starting with a probability of 1 and succes-
sively decreasing by a factor of 1/2. The key differences
between the algorithms for the sum and median are sum-
marized below – though these algorithms are similar from
a high level, these differences make the correctness proofs
quite different.

1. In the algorithm for the median, the value of the data
item does not affect the sampling probability. A uniform
random sample suffices for the median, while a non-
uniform sample is necessary for the sum.

2. Another simplification in the sketch for the median is
that each element is explicitly stored in every level that
it is sampled into. In the case of the median, storing an
element explicitly in each level is not expensive, since on
average, each element is sampled into only two levels.
Storing the element in this way improves the cost of a
query for the approximate median, while it does not sig-
nificantly alter the cost of processing an element. In the
case of the sum, however, storing the element explicitly
in each level it is sampled may be expensive, since an
element with a high value will be sampled into many
levels.

3.1 Formal description of the algorithm

We assume that the algorithm knows an upper bound Nmax

on the number of elements in Rw. For example, if there were
no more than f elements with the same timestamp then set-
ting Nmax = f W will do. The space complexity of the sketch
depends on log Nmax . Let N = |Rw|, M = �log Nmax	.

The algorithm for the median maintains (M + 1) samples
S0, S1, . . . , SM and the corresponding ti ’s. The maximum
number of elements in each sample Si is α = 96

ε2 ln ( 8
δ
). Ini-

tially, each Si is empty and ti is set to be −1, as described in
the procedure SumInit. The algorithm for updating the sketch
upon receiving a new element is described in procedure Medi-
anProcess, and procedure MedianQuery returns an estimate
of the median of Rw when receiving a query.

3.2 Correctness proof

We now show that the result of procedure MedianQuery(w)
is an (ε, δ)-approximate median of the set Rw.

Procedure MedianProcess(d = (v, t))

Input: v is the value of the element, and is a positive integer; t is the
timestamp.

Task: Insert d into the sketch.

1. If (t < c −W ), Return.
2. Insert (v, t) into S0.
3. If |S0| > α

(a) Discard the element with the earliest timestamp in S0, say t ′.
(b) Update t0 ← max {t0, t ′}

4. Set i ← 1
5. While (v, t) was inserted into level (i − 1) and i ≤ M ,

(a) Insert (v, t) into Si with probability 1/2
(b) If |Si | > α

i. Discard the element with the earliest timestamp in Si ,
say t ′.

ii. Update ti ← max {ti , t ′}
(c) Increment i

Procedure MedianQuery(w)

Input: w ≤ W is the width of the window.

Output: An estimate of the median of all stream elements with
timestamps in the range [c − w, c].

1. Let �′ be the smallest integer 0 ≤ �′ ≤ M such that t�′ < c − w

2. If �′ exists, then return the median of the set {(v, t) ∈ S�′ |t ≥ c−w}
Else �′ ← M + 1

3. If �′ = M + 1, then return /* Algorithm fails */

Definition 8 For each element d = (v, t) ∈ Rw, for each
level i = 0, 1, 2, . . . , M , random variable xi (d) is defined
inductively as follows:

– x0(d) = 1
– For i > 0, if xi−1(d) = 1, then xi (d) = 1 with probabil-

ity 1
2 and xi (d) = 0 with probability 1

2 . If xi−1(d) = 0,
then xi (d) = 0.

Definition 9 For i = 0, 1, . . . , M , Ti is the set constructed
by the following probabilistic process. Start with Ti ← φ.
For each element d = (v, t) ∈ Rw, if xi (d) = 1, then insert
(v, t) into Ti . Let Xi = |Ti |.
Lemma 13 Given any d = (v, t), for each i , 0 ≤ i ≤ M,
E[xi (d)] = 1/2i , E[Xi ] = N

2i .

Proof We use proof by induction on i to show that E[xi (d)]=
Pr[xi (d) = 1] = 1/2i . The base case i = 0 is true by Defini-
tion 8. Assume for 0 ≤ i < M , Pr[xi (d) = 1] = 1/2i . Using
Definition 8, Pr[xi+1(d) = 1] = 1

2 · Pr[xi (d) = 1] = 1
2i+1 ,

proving the inductive step.
Now we show E[Xi ] = N

2i . Note that |Rw| = N . The
Definitions 8 and 9 yield Xi = |Ti | =∑

d∈Rw
xi (d). Using

linearity of expectation, we get E[Xi ] = |Rw|/2i = N/2i .

For i = 0 . . . M , let γi denote the median of set Ti .
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Lemma 14 When asked for an estimate for the median, if
MedianQuery(w) does not fail in Step 3, then it returns γ�′
for value �′ selected in Step 1. Further, if |Rw| ≤ α, then
MedianQuery(w) returns the exact median of Rw.

Proof Consider procedure MedianQuery(w). Note that the
level chosen by the algorithm, �′, satisfies the condition that
the timestamp of the most recently discarded element from �′
is less than c−w. Thus no element which has been selected
into S�′ and has a timestamp at least c − w has been dis-
carded. Next consider procedure MedianProcess(d). For any
arriving element d = (v, t) ∈ Rw, if x�′(d) = 1, there will
be an insertion into S�′ and by Definition 9, there will also
be an insertion into Ti . If x�′(d) = 0, the arrival of d will
not cause an insertion into either S�′ or into T�′ . Thus, the set
of all elements in S�′ that have timestamps at least c − w is
exactly the set T�′ . By returning the median of this set, the
algorithm is returning γ�′ .

Suppose |Rw| ≤ α. Note that each element in Rw was
selected into S0 when it was processed. Since the α elements
with the most recent timestamps are stored in S0, it must be
true that Rw ⊆ S0. MedianQuery will retrieve all of Rw from
S0 and return the exact median of Rw.

Because of the above lemma, in the rest of the proof, we
assume that |Rw| > α.

Definition 10 For i = 0 . . . M , let ri denote the rank of γi in
Rw. Define event Bi to be true if if ri �∈ [(1/2− ε)N , (1/2+
ε)N ], and false otherwise. Define event Gi to be true if
(1− ε) N

2i ≤ Xi ≤ (1+ ε) N
2i , and false otherwise. Let �
 ≥ 0

be an integer such that α/4 < E[X�
] ≤ α/2.

Lemma 15 Level �
 is uniquely defined and exists for every
input stream R.

Proof From Lemma 13, we have E[Xi ] = N/2i . Since
N > α, E[X0] > α. By the definition of M = �log Nmax	,
it must be true that N ≤ 2M for any input stream R, so that
E[X M ] ≤ 1. Since for every increment in i , E[Xi ] decreases
by a factor of 2, there must be a unique level 0 < �
 < M
such that E[X�
] ≤ α/2 and E[X�
] > α/4.

The following lemma shows that for levels that are less
than or equal to �
, the median of the random sample is very
likely to be close (in rank) to the actual median of Rw. The
proof uses conditional probabilities. We show that for lev-
els that are less than or equal to �∗, the number of elements
selected into the the level is close to its expectation with high
probability. Under this condition, we show the median of the
sample is close to the actual median with high probability.

Lemma 16 For 0 ≤ � ≤ �∗,

Pr[B�] < δ

2�∗−�+2

Proof

Pr[B�] = Pr[G� ∧ B�] + Pr[Ḡ� ∧ B�]
≤ Pr[B�|G�] · Pr[G�] + Pr[Ḡ�] (7)

≤ Pr[B�|G�] + Pr[Ḡ�] (8)

Using Lemmas 17 and 18 in Eq. 8, we get:

Pr[B�] < 5δ/8

2�∗−�+2 <
δ

2�∗−�+2

Lemma 17 For 0 ≤ � ≤ �∗,

Pr[Ḡ�] < δ

8 · 2�∗−�+2

Proof Let µ� = E[X�] = N
2�

Pr[Ḡ�] = Pr[X� < (1− ε)µ� ∨ X� > (1+ ε)µ�]
≤ Pr[X� < (1− ε)µ�] + Pr[X� > (1+ ε)µ�]

Since E[Xi ] = N
2i (from Lemma 13) and E[X�∗ ] > α/4,

we have µ� > α
4 2�∗−�. By Definition 2, we know 0 < ε < 1

2 .
Using Lemma 6,

Pr[Ḡ�] ≤ Pr[X� < (1− ε)µ�] + Pr[X� > (1+ ε)µ�]
≤ e−µ�ε

2/2 + e−µ�ε
2/3

≤ e(−ε2·α·2�∗−�−3) + e(−ε2·α·2�∗−�−2/3)

=
(

δ

8

)2�∗−�+2·3
+

(
δ

8

)2�∗−�+3

≤ 2

(
δ

8

)2�∗−�+3

≤ δ/4

2�∗−�+3 =
δ

2�∗−�+5

We have used Lemma 7 in the last inequality.

Lemma 18 For 0 ≤ � ≤ �∗,

Pr[B�|G�] < δ

2�∗−�+3

Proof

Pr[B�|G�]
= Pr

[

r� <

(
1

2
− ε

)

N |G�

]

+ Pr

[

r� >

(
1

2
+ ε

)

N |G�

]

The proof will consist of two parts, Eqs. 9 and 10.

Pr

[

r� <

(
1

2
− ε

)

N |G�

]

<
δ/4

2�∗−�+2 (9)

Pr

[

r� >

(
1

2
+ ε

)

N |G�

]

<
δ/4

2�∗−�+2 (10)

Proof of Eq. 9: Let L = {d ∈ Rw|rank of d in Rw ≤
( 1

2 − ε)N }, Y = ∑
d∈L x�(d). By Lemma 13, we have

E[Y ] = (1 − 2ε) N
2�+1 Since r� < ( 1

2 − ε)N , which means
that at least the smaller half elements in Ti were selected from
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the set L , combining the fact Xi ≥ (1 − ε) N
2� , we have the

following,

Pr

[

r� <

(
1

2
− ε

)

N |G�

]

= Pr

[(

r� <

(
1

2
− ε

)

N

)

∧ G�

]

/ Pr[G�]

≤ Pr

[

Y ≥ (1− ε)
N

2�+1

]

/ Pr[G�]
= Pr[Y ≥ (1+ δ′)E[Y ]]/ Pr[G�],
where δ′ = ε

1−2ε
and Pr[G�] ≥ 1− δ

8·2�∗−�+2

Case 1: if 0 < δ′ < 1, then

Pr[Y ≥ (1+ δ′)E[Y ]] ≤ e−E[Y ]δ′2/3 <

(
δ

8

) 2�∗−�+2
1−2ε

<

(
δ

8

)2�∗−�+2

≤ δ/8

2�∗−�+2

Case 2: if δ′ ≥ 1, then

Pr[Y ≥ (1+ δ′)E[Y ]] ≤ e−E[Y ]δ′/3 <

(
δ

8

) 2�∗−�+2
ε

<

(
δ

8

)2�∗−�+2

≤ δ/8

2�∗−�+2

Thus,

Pr[Y ≥ (1+ δ′)E[Y ]]/ Pr[G�] ≤ δ

2�∗−�+4

In both Cases 1 and 2, we have used the fact E[X�] = N
2� >

α
4 2�∗−� in addition to Lemma 6 and Lemma 7. From Cases 1
and 2, Eq. 9 is proved. Equation 10 can be similarly proved.
From Eqs. 9 and 10, we get:

Pr[B�|G�] < 2
δ

2�∗−�+4 =
δ

2�∗−�+3

Lemma 19

�∗∑

i=0

Pr[Bi ] < δ/2

Proof The proof directly follows from Lemma 16

�∗∑

i=0

Pr[Bi ] <
�∗∑

i=0

δ

2�∗−�+2 = δ

�∗+2∑

i=2

1

2i
< δ

∞∑

i=2

1

2i
= δ/2

Recall that level �′ in MedianQuery(w) is used to answer
the query for the median.

Lemma 20

Pr[�′ > �∗] < δ/8

Proof If �′ > �
, it follows that |T�
 | = X�
 > α, else the
algorithm would have stopped at a level less than or equal to
�
. Thus, Pr[�′ > �
] ≤ Pr[X�
 > α]. Let Y = X�
 . Since
Y = ∑

d∈Rw
x�∗(d), where x�∗(d) is 0–1 random variable,

E[Y ] ≤ α/2. Using Lemma 6, we have

Pr[�′ > �
] ≤ Pr[Y > α] ≤ Pr[Y > 2E[Y ]]

≤ e−E[Y ]/3 < e−α/12 <

(
δ

8

) 8
ε2

< δ/8

We have used the fact E[Y ] > α/4.

Theorem 2 The result of algorithm MedianQuery(w) is an
(ε, δ)-approximate median of Rw.

Proof Let f denote the probability that the algorithm fails to
return an (ε, δ)-approximate median of Rw. Using
Lemmas 19 and 20 and a similar argument to the Proof of
Theorem 1, we get:

f = Pr[�′ > M] + Pr

[
M⋃

i=0

(�′ = i) ∧ Bi

]

≤ Pr[�′ > �
] +
�


∑

i=0

Pr[Bi ] <
(

δ

8
+ δ

2

)

< δ

3.3 Complexity

Lemma 21 Space complexity: The total space taken by the
sketch for the median is O(( 1

ε2 )(log 1
δ
)(log Nmax )σ ), where

Nmax is an upper bound on the number of elements within
Rw, σ is the space taken to store an input element (v, t), ε is
the desired relative error, and δ is the desired upper bound
on the failure probability.

Proof The algorithm maintains M = �log Nmax	 samples,
each of which has up to α = 96 ln (8/δ)

ε2 elements. Each ele-
ment in the sample is a pair (v, t), which can be stored using
σ bits. The product of the number of samples, the number
of elements per sample, and the space per element yields the
above space complexity.

Lemma 22 Time complexity: The expected time taken for
handling an element (v, t) is O(log log (1/δ)+ log (1/ε)).
The time taken to answer a query for the median is O

(
log log

Nmax + log (1/δ)

ε2

)

Proof The proof is similar to that of Lemma 12. All ele-
ments in the same level can be stored in a heap. Each incom-
ing element is sampled into an expected constant number
of levels, where the cost of insertion into each level, plus
the cost of handling the overflow is O(log α). For answering
a query for the median, the appropriate level can be found
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in time O(log log Nmax ) through a binary search, and find-
ing the median of the sample at the appropriate level takes
O(α) using the linear time algorithm for finding a median.
So the total cost for answering a query for the median is
O(log log Nmax + α).

4 Union of sketches

In a distributed system, there could be multiple aggregators,
each of which is observing a different local stream. It may be
necessary to compute aggregates on not just any individual
stream, but on the union of the data in all streams. We now
consider the computation of aggregates over recent elements
of the union of distributed data streams.

A simple solution to the above problem would be to send
all streams directly to an aggregator (or the sink) which can
then compute an aggregate on the entire data received. How-
ever, such an approach would be extremely resource-inten-
sive with respect to communication complexity and energy,
since each data item of each stream has to traverse a path
from the source to the destination.

A much more efficient approach is for each node to com-
pute a small space sketch of its local stream, and commu-
nicate the sketch to the sink. The sink can use the sketches
to estimate the aggregate over the union of all data streams.
Since the sketches are much smaller than the streams them-
selves, this approach has much smaller communication com-
plexity than the simple approach. In sensor data processing,
there have been successful proposals (for example, Madden
et al. [12]) to combine such sketches in a hierarchical fash-
ion, where sketches are combined up a spanning tree which
is rooted at the sink node (see Fig. 1).

Each aggregator sends its sketch to its parent. The parent
node receives sketches from all its children, combines them
into a new sketch and then sends the new sketch to its own
parent. In this way, sketches propagate and get combined at
intermediate levels of the tree until they reach the sink. The
sink combines the received sketches from its children and
produces a final sketch for the union of all the (local) streams
received by all aggregators. We consider the simple case of
three aggregators, Alice (child), Bob (child), and Carol (par-
ent) (see Fig. 1). The scenario can be generalized for an arbi-
trary number of aggregators, or aggregators organized in a
hierarchy. Suppose Alice and Bob receive respective (asyn-
chronous) streams A and B, producing sketches Sk A and
Sk B , respectively, each for a maximum window size W . Alice
and Bob transmit their sketches to Carol, who combines Sk A

and Sk B to produce a sketch SkC for the union A∪B. Though
Carol never sees streams A or B, she can use SkC to answer
aggregate queries for any timestamp window of width w ≤
W over the data set A ∪ B.

Procedure Union(Sk A, Sk B)

Input:

1. Sk A = 〈S A
0 , t A

0 , S A
1 , t A

1 , , . . . , S A
M , t A

M 〉, a sketch of Alice’s local
stream A

2. Sk B = 〈SB
0 , t B

0 , SB
1 , t B

1 , . . . , SB
M , t A

M 〉, a sketch of Bob’s local
stream B

Output: SkC , a sketch of C = A ∪ B

For every i = 0 . . . M

1. If |S A
i ∪ SB

i | ≤ α, then
(a) SC

i ← S A
i ∪ SB

i
(b) tC

i ← max{t A
i , t B

i }
2. Else,

(a) SC
i is the set of α most recent elements in S A

i ∪ SB
i

(b) Let t be the most recent timestamp in(
(S A

i ∪ SB
i )− SC

i

)
.

Then ti ← max{t, t A
i , t B

i }.

The algorithm for the union is formally described in Pro-
cedure Union(·, ·). Given sketches Sk A and Sk B of streams
A and B, respectively, the procedure outputs SkC , a sketch
of A ∪ B, which can be used to answer queries for the
approximate sum or median of all elements within a slid-
ing timestamp window over A ∪ B. In Procedure Union(),
for 0 ≤ i ≤ M , let S A

i denote the level i sample of Alice,
and t A

i denote the most recent timestamp of a discarded ele-
ment from S A

i . The sketch computed by Alice is the vector
Sk A = 〈S A

0 , t A
0 , S A

1 , t A
1 , . . . , S A

M , t A
M 〉. Similarly, the sketch

computed by Bob is the vector Sk B = 〈SB
0 , t B

0 , SB
1 , t B

1 , . . . ,

SB
M , t B

M 〉.
The high level algorithm for the union is the same whether

the aggregate required is the sum or the median. The only dif-
ference is that in case of the sum, the parameter
M = log Vmax , where Vmax is an upper bound on the sum
of observations within the window across all streams. Note
that the sketch of each local stream must also use
M = log Vmax , where Vmax is defined above. In case of the
median, M = log Nmax , where Nmax is an upper bound on
the number of elements within the timestamp window across
all streams. Note that the sketch of each local stream must
also use M = log Nmax , where Nmax is defined above. Of
course, the algorithms for sketching the local streams are dif-
ferent for the sum and for the median, though the algorithms
for the union of sketches are the same. The initialization
of SkC and the algorithm for answering the query (sum or
median) using SkC are the same as for the single stream case.

The sketches can be combined hierarchically. For exam-
ple, suppose D and E were two other local streams, and Sk F

was the result of Union(Sk D, Sk E ). Then SkC and Sk F can
be combined using Union() to yield a sketch of A∪B∪D∪E .
A key property required for the above hierarchical union to
work is that the combination of sketches is lossless and com-
pact. A sketch is said to be compact if SkC , the sketch result-
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ing from the Union operation, has the same (small) upper
bound on the size as do Sk A and Sk B . If a sketch is compact,
then the size of the sketch resulting from the combination of
many sketches is bounded, and does not increase beyond a
threshold no matter how many sketches are combined. The
sketch is said to be lossless if the guarantee provided by SkC

(for example, (ε, δ)-accuracy for the sum or the median) on
data A∪B is the same as the guarantees provided by sketches
Sk A and Sk B on data sets A and B respectively. In this way,
the quality and size of the sketch at each level of the tree will
be insensitive to the structural properties of the tree, such as
its degree and depth. We now argue that the sketches devel-
oped for the sum and the median are compact.

Compactness of sketches. The sketch resulting from the
union SkC is 〈SC

0 , tC
0 , SC

1 , tC
1 , . . . , SC

M , tC
M 〉. Since the upper

bound on the number of elements in SC
i , SB

i and S A
i are all α,

the bounds on the sizes of SkC , Sk A and Sk B are identical.
Thus, the sketch for the sum is compact and has a space
complexity as described in Lemma 11. Similarly, the sketch
for the median is compact, and has a space complexity as
described in Lemma 21.

Losslessness of sketches. We will now show that the sketch
resulting from the Union() procedure also preserves the same
accuracy as its constituent sketches, but for the data stream
constructed by the union of the individual streams. Let Sk A

sum
and Sk B

sum respectively denote the sketches for A and B for
the sum, for a maximum window size W , relative error ε

and failure probability δ. Let Sk A
med and Sk B

med respectively
denote the sketches for A and B for the (ε, δ)-approximate
median, for a maximum window size W ≥ w. Let SkC

sum
denote the result of Union(Sk A

sum, Sk B
sum) and SkC

med denote
the result of Union(Sk A

med , Sk B
med).

Let Sk A∪B
sum be the sketch resulting from applying Algo-

rithm SumProcess (described in Sect. 2) for over all elements
of the stream A∪ B. In generating the sketch of A∪ B, we do
not assume anything about the order of arrival of elements in
A∪ B; the resulting sketch will not depend on this order. We
assume that the random choices that are made by algorithm
SumProcess in processing an element are identical whether
the element is processed as a part of stream A ∪ B or as a
part of the individual streams A or B. The sketch for the
sum assumes a maximum window size W , relative error ε

and failure probability δ. Similarly, let Sk A∪B
med be the sketch

resulting by applying algorithm MedianProcess (described
in Sect. 3) over all elements of A∪ B. Again, the elements of
stream A∪ B can arrive in any order, and this order does not
affect the final sketch generated. The sketch for the median
also assumes a maximum window size W , and returns an
(ε, δ)-approximate median. For simplicity, we assume that a
sketch never contains any element with a timestamp of less
than (c − W ), where c is the current time. This assump-

tion is justified since the algorithms SumQuery (Sect. 2) and
MedianQuery (Sect. 3) will never consider such elements
with timestamps less than (c − W ), even if they are present
in the sketch.

Lemma 23

SkC
sum = Sk A∪B

sum

SkC
med = Sk A∪B

med

Proof We show SkC
sum = Sk A∪B

sum , and a similar argument
holds for SkC

med = Sk A∪B
med . Let R A

W and RB
W denote the

set of elements with timestamps in the maximum window
[c − W, c] over streams A and B respectively. For
i = 0, 1, . . . , M , let S A

sum,i denote the i th level sample of

Sk A
sum . Similarly, we define SB

sum,i , SC
sum,i and S A∪B

sum,i .

For any element (v, t) ∈ R A
W ∪ RB

W , note that the same
procedure SumProcess is used to process the element, whether
it occurs as an element in stream A or B or A ∪ B.
SumProcess uses only v and t to decide whether the ele-
ment (v, t) is selected into the sample at level i or not. Thus,
if (v, t) ∈ R A

W is selected into S A
sum,i , then it will also be

selected into S A∪B
sum,i , and vice versa. Therefore the set of ele-

ments that are ever selected into S A
sum,i or SB

sum,i is exactly

the same set of elements that are ever selected into S A∪B
sum,i . For

any level i = 0 . . . M , S A
sum,i retains the α elements with the

most recent timestamps that were ever selected into S A
sum,i ,

and similarly with SB
sum,i . From Steps (1) and (2) of proce-

dure Union(), we see that SC
sum,i retains the α most recent

elements that ever selected into S A
sum,i or into SB

sum,i . Thus,

SC
sum,i retains the α most recent elements among A ∪ B that

were selected into level i of Sk A or Sk B .
Note that S A∪B

sum,i also keeps the α most recent elements

that are ever selected into S A∪B
sum,i . Thus, for i = 0, 1, . . . , M ,

SC
sum,i = S A∪B

sum,i , which implies SkC
sum = Sk A∪B

sum .

From the above lemma, it follows that all properties of
Sk A∪B

sum carry over to SkC
sum . From Theorem 1 we know Sk A∪B

sum
provides an (ε, δ)-estimate for the sum within any timestamp
window of width at most W on A∪ B. Thus, SkC

sum also pro-
vides the same estimate for the sum within a sliding window,
showing that the union of sketches is lossless. A similar argu-
ment can be made for sketches for the median.

We now consider sketches that are combined in a hierar-
chical fashion. Consider a tree where each leaf observes a
local stream, and passes a sketch for the sum (median) up
to its parent. Sketches arriving at any internal node are com-
bined and passed up the tree until the root receives sketches
from all its children. If the algorithm Union() was applied
at every internal node of the tree, then the root will finally
have a sketch that can be used to answer queries for the sum
(median) of elements within a sliding timestamp window of
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the union of all streams appearing at the leaves of the tree.
This can be proved by repeatedly applying Lemma 23 at every
internal node of the tree and at the root. The above algorithm
for the union applies even if the intermediate nodes of the
hierarchy had local streams.

5 Conclusions

We presented algorithms for sketching asynchronous data
streams over a sliding window of the most recent elements.
Our sketches are based on random sampling and can return
the approximate sum or the approximate median of elements
within the sliding window. We note that the same technique
that was used for the median can also be used to maintain
approximate quantiles of elements within the sliding window.
These sketches are also useful in distributed computations
since they can be composed in a compact and lossless
manner.

We note that there is an O(1/ε) factor gap between our
upper bound on the space complexity of maintaining the
approximate sum, and the known lower bound from [6]. An
open problem is to close this gap through either improved
algorithms or better lower bounds.
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