
Noname manuscript No.
(will be inserted by the editor)

EvoMiner: Frequent Subtree Mining in
Phylogenetic Databases

Akshay Deepak · David Fernández-Baca ·
Srikanta Tirthapura · Michael J.

Sanderson · Michelle M. McMahon

the date of receipt and acceptance should be inserted later

Received: Aug 13, 2012

Revised: Apr 01, 2013

Accepted: May 25, 2013

Abstract The problem of mining collections of trees to identify common pat-
terns, called frequent subtrees (FSTs), arises often when trying to interpret the
results of phylogenetic analysis. FST mining generalizes the well-known max-
imum agreement subtree problem. Here we present EvoMiner, a new algo-
rithm for mining frequent subtrees in collections of phylogenetic trees. EvoM-

iner is an Apriori-like level-wise method, which uses a novel phylogeny-speci�c
constant-time candidate generation scheme, an e�cient �ngerprinting-based
technique for downward closure, and a lowest common ancestor based support
counting step that requires neither costly subtree operations nor database
traversal. Our algorithm achieves speed-ups of up to 100 times or more over
Phylominer, the current state-of-the-art algorithm for mining phylogenetic
trees. EvoMiner can also work in depth �rst enumeration mode, to use less
memory at the expense of speed. We demonstrate the utility of FST min-
ing as a way to extract meaningful phylogenetic information from collections
of trees when compared to maximum agreement subtrees and majority rule

A. Deepak (�) · D. Fernández-Baca
Department of Computer Science, Iowa State University, Ames, IA 50011, USA
e-mail:akshayd@iastate.edu

S. Tirthapura
Department of Electrical and Computer Engineering, Iowa State University,
Ames, IA 50011, USA

M. J. Sanderson
Department of Ecology and Evolutionary Biology, University of Arizona,
Tucson, AZ 85721, USA

M. M. McMahon
Department of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA

2 Akshay Deepak et al.

trees � two commonly used approaches in phylogenetic analysis for extracting
consensus information from a collection of trees over a common leaf set.

1 Introduction

A phylogeny (or phylogenetic tree or evolutionary tree) depicts the evolution-
ary relationships among a set of species [9]. Aside from their intrinsic scienti�c
interest, phylogenies have diverse applications, which include characterizing
cryptic biological diversity [8], crop improvement [30], identifying snakebite
antivenins [73], tracking the spread of epidemic diseases [74], political sci-
ence [20], and historical linguistics [34].

Here we consider the problem of identifying common patterns �speci�cally,
frequent subtrees� in collections of phylogenetic trees. A frequent subtree
(FST) is a tree t that is �supported� by at least some given fraction of the
input trees. That is, t is embedded as a subtree in at least the given fraction
of the input trees1. The need to mine collections of phylogenies for frequent
patterns arises in di�erent contexts. For example, when building evolution-
ary trees from single-gene data sets, Bayesian inference [43] produces a pos-
terior distribution of trees, while the bootstrap method [27] yields a set of
trees, from which con�dence intervals are obtained for various groupings of
the species. In both cases, frequent subtrees can reveal common patterns over-
looked by conventional techniques, such as majority-rule trees or maximum
agreement subtrees. Collections of phylogenetic trees also arise in multi-gene
(or even whole-genome) studies. Large sets of such trees have been assembled
into databases such as TreeBASE [65] and PhyLoTA [68]. In general, these
phylogenies overlap only partially in the sets of species they cover. Further,
these trees often disagree with respect to the placement of the species they
share in common, due to either error or to complex biological processes (e.g.,
horizontal gene transfer, gene duplication, convergent evolution, and varying
evolutionary rates) [67]. Here again, FSTs can be valuable, pointing to di�erent
histories for parts of the genome [90].

In this paper, we present EvoMiner, a fast algorithm for enumerating
FSTs. Further, we demonstrate experimentally the e�ectiveness of the FST
approach, as compared to other widely-used methods for identifying common
phylogenetic information. To put our contributions in context, we �rst review
the existing work.

1 Strictly speaking, we required that t be displayed by at least some given fraction of
the input trees. Formal de�nitions of all the concepts used in this Introduction are given in
Sect. 2.

EvoMiner 3

Algorithm Type of input trees Type of subtrees

Chopper [79] Ordered Embedded

CMTreeMiner [18] Ordered /Unrooted
Embedded,

Maximal/Closed

DRYADE [78] Unrooted Maximal/Closed

FreeTreeMiner [15] Unordered/Unrooted Induced

FREQT [5] Ordered Induced

HybridTreeMiner [17] Unordered/Unrooted Induced

PathJoin [83] Unrooted
Embedded,

Maximal/Closed

Phylominer [88] Unordered /Unrooted Phylogenetic

POTMiner [46]
Ordered/Unordered/Partially-

ordered
Induced/Embedded

SLEUTH [86] Unordered Embedded

TreeMiner [87] Ordered Embedded

uFreqt [60] Unordered Induced

Unot [6] Unordered Induced

Xspanner [79] Ordered Embedded

EvoMiner Unordered /Unrooted Phylogenetic

Table 1 Some frequent subtree-mining approaches

1.1 Related Work

1.1.1 Tree Mining

Tree mining has been an active area of research in the past decade; for a
survey, see references [16, 45]. Table 1 summarizes some of the proposed ap-
proaches. Based on the type of tree, tree mining tasks can be classi�ed as
ordered (TreeMiner [87], FREQT [5], Chopper and XSpanner [79]) or un-
ordered (Unot [6], uFreqt [60], [10]), rooted [10] or unrooted (CMTreeMiner
[18], DRYADE [78]). Based on the type of subtree, they can be classi�ed as in-
duced [5], embedded [87, 54], or bottom-up. Based on the relationship among
the frequent subtrees, they can be classi�ed as maximal (PathJoin [83], [36])
and closed [18, 28, 81, 59].

A number of approaches have been proposed for mining ordered trees. Asai
et al's Freqt method [5] uses rightmost expansion scheme for candidate gener-
ation and occurrence lists for frequency counting. Zaki's TreeMiner algorithm
[87] introduced a scope list based representation of the occurrence list of a fre-
quent subtree. Coupled with a clever string encoding, this results in e�cient
candidate generation and frequency counting. The enumeration proceeds in
a depth-�rst manner. Wang et al [79] proposed the Chopper and Xspanner

4 Akshay Deepak et al.

algorithms to mine subtrees without candidate generation. These scale well
for large sets of trees because they use the pattern-growth method [62, 40, 38]
for enumeration, which represents the database in a compact form and avoids
generating an exponential number of candidates [79]. Yang et al [84] gave
algorithms for ordered tree mining in the context of mining frequent XML
query patterns. They adopted a rightmost expansion approach for candidate
generation.

In the �eld of unordered tree mining, Xiao et al [83] proposed e�cient al-
gorithms for discovering frequent subtrees under the assumption that no two
siblings have the same label. Unot, by Asai et al [6], and uFreqt, by Nijssen
and Kok [60] � proposed independently � use very similar techniques for
unordered frequent subtree mining. Both extend the ordered tree mining ap-
proach of [5] by enumerating subtrees in a canonical form. Zaki [86] extended
the e�ciency of TreeMiner [87] for mining unordered embedded subtrees. Chi
et al [15, 17] studied the unordered tree mining problem for rooted and un-
rooted trees.

Loosely speaking, phylogenetic tree mining is a kind of unordered embed-
ded subtree mining. However, phylogenetic trees possess a special structure
� only leaves are labeled and non-leaf nodes must be of degree two or more
(Sect. 2.1) � which a�ects the de�nition of the subtree operation itself. This
demands a specialized data mining approach. To our knowledge Zhang et
al's Phylominer [88] is the only published algorithm for mining phylogenetic
trees; thus, it is the reference point for evaluating our work. Phylominer is an
Apriori-like approach that uses rightmost path extension for candidate gen-
eration and an occurrence list for frequency counting. It introduces a novel
phylogeny-speci�c canonical form for evolutionary trees, which we also use in
our approach. The candidate generation strategy highlights structural proper-
ties of phylogenetic trees that are useful for e�cient candidate generation.

1.1.2 Graph Mining and Itemset Mining

Graph mining [1, 91, 44] is closely related to subtree mining, in fact, tree
mining can be viewed as a special case of graph mining. Reference [1] gives a
comprehensive survey on the topic. Itemset mining (or mining of association
rules) [2, 12, 53] is closely related to both graph mining and tree mining.
Graphs and trees can be seen as itemsets with additional constraints resulting
from their respective topologies. The classical Apriori [2] algorithm has been
the most in�uential in this �eld � as duly noted in [82] � and has in�uenced
a lot of subtree mining approaches [16, 45]. It is not surprising that it is also
the basis of our work.

1.1.3 Maximum Agreement Subtrees and Majority Rule Trees

Maximum agreement subtrees (MASTs) [29, 47, 4] and consensus trees [14, 71]
are perhaps the approaches most often-used by evolutionary biologists to iden-
tify common phylogenetic information in collections of trees. An MAST of a

EvoMiner 5

1 2 3 4 5 2 3 4 5 1 1 2 4 5 3

2 4 5

(a)

2 4 5

(b)

Fig. 1 (a) A collection of input trees. The lightly shaded part indicates the embedding of
the common MAST � shown separately in (b).

a b c d

0 1 2 3

4

5

6

a b d c

0 1 3 2

7

8

6

a b d c

0 1 3 2

9

8

6

(a)

Cluster Frequency

0 - (a) 3
1 - (b) 3
2 - (c) 3
3 - (d) 3
4 - (bc) 1
5 - (bcd) 1
6 - (abcd) 3
7 - (bd) 1
8 - (abd) 2
9 - (ab) 1

(b)

a b d c

0 1 3 2

8

6

(c)

Fig. 2 (a) A collection of input trees. (b) The clusters in the input trees along with their
frequencies. Clusters 0− 3, 6 and 8 occur in the majority of the input trees. (c) The MRT.

collection of input trees is a common embedded subtree with the largest num-
ber of leaves (see Fig. 1). Consensus methods aim to �nd one tree that includes
all the species, and captures the common information in the collection of trees.
Among the most popular such methods is the majority-rule tree (MRT) [55],
de�ned as follows. A cluster in a tree is the set of all leaf descendants of some
node in the tree. The MRT of a collection of trees is the tree that exhibits all
clusters present in the majority of the input trees (see Fig. 2).

The MRT and MAST problems have notably di�erent complexities (see
Table 2). The MRT can be constructed in time that is linear in the total size
of the input trees [3]. In contrast, while an MAST of two trees can be computed
in polynomial time [4, 47], �nding an MAST of three or more trees is NP-hard
if the trees have unbounded degree [4]. The problem is polynomially-solvable
when the maximum node-degree is bounded by a constant [26].

Aside from speed, an important consideration when choosing a method to
extract common substructures from collections of trees is the number of leaves
in the subtree extracted; the larger the better. Here, MRTs have an advantage
over MASTs, since the latter often have fewer leaves. MASTs, on the other
hand, are in a sense stronger representatives of the common substructures,
because each MAST is embedded as a subtree in each tree in the input col-
lection. This cannot be said about the MRT. In fact, the MRT may not be
embedded as a subtree in any of the input trees.

6 Akshay Deepak et al.

Reference
Consensus
Approach

Max. input
trees

Max. node-
degree

Complexity

Amenta et al [3] MRT Any Any O(tn)

Cole et al [19] MAST 2 2 O(n logn)

Steel and Warnow [75] MAST 2 Any O(n4.5 logn)

Bryant [13, pp.
174�182]

MAST Any 2 O(tn3)

Farach et al [26] MAST Any d O(tn3 + nd)

Amir and Keselman
[4]

MAST Any Any NP-hard

Table 2 An overview of MAST and MRT approaches. t denotes the number of input trees
and n the size of the common leafset.

Another factor in selecting a method is the degree of resolution of the trees
it produces. We say a phylogeny is well-resolved if its number of internal edges
is high, relative to its number of leaves. More formally, we de�ne the resolution
of a tree T as

resol(T) =
|internal edges in T |
|leaves in T | − 2

× 100%. (1)

(A similar measure was used before by Pattengale et al [61].) The denominator
in (1) is simply the maximum number of internal edges a tree can have, and
is used to normalize the degree of resolution across trees of di�erent sizes.
The more resolved a phylogeny is, the more informative it is considered to
be. The least informative tree we can have is a fan, i.e., a star-like tree with
zero internal edges. A fan states the trivial fact that the species at its leaves
descend from a common ancestor. It has been observed that MRTs tend to
be poorly resolved [31]; MASTs typically perform better than MRTs in this
regard.

FSTs o�er several advantages over MASTs and MRTs:

� An FST is usually more resolved than the MRT and always has at least
as many leaves as an MAST. This is because an MAST is, by de�nition,
also an FST, because it is supported by every input tree. (Note that the
MRT is not guaranteed to be an FST.) Indeed, the requirement that an
MAST be supported by all input trees rules out subtrees that might be
more informative than any MAST but still quite frequent and thus equally
important for phylogenetic inference [88]. An example of this is shown in
Fig. 3. Here, the FSTs are better resolved than both the MAST and the
MRT, which are fans. For instance, the �rst FST in Fig. 3 indicates that
s1 and s2 are closer to each other than each is to any of the species among
s3− s5.

� FSTs can reveal a more complete phylogenetic picture than an MAST or an
MRT. MASTs and MRTs tend to depict phylogenetic relationships among
only a limited subset of the species [31]. For example, in Fig. 4 neither the

EvoMiner 7

(a) (b) (c) (d)

Fig. 3 (a) A collection of input trees, along with (b) their MAST, (c) their MRT, and (d)
two FSTs with 67% support (i.e., two out of the three input trees support them).

(a) (b) (c) (d)

Fig. 4 (a) A collection of input trees, together with (b) their MASTs, (c) their MRT, and
(d) an FST with support 67%.

MRT nor any of the MASTs gives information about relationships among
species s1 − s4, but the FST does. In fact, by itself, an MAST can be
misleading [77].

� FSTs are useful for solving MAST-related problems. These include �nding a
maximum compatible subtree [31], �nding a maximum agreement supertree
[35], and computing the kernel of maximum agreement subtrees [77].

� FSTs can be used to mine subtree patterns on collections of trees having
leaf sets that are partially overlapping but not identical. This ability is
particularly useful in mining phylogenetic databases such as TreeBASE
[65] and PhyLoTA [68], which contain trees with di�erent leaf sets, and
where the number of common leaves is relatively small. Neither MASTs
or MRTs are suitable for this purpose. For instance, while we could apply
MASTs by simply restricting all the trees to the common leaf set, this
would fail to give any results when the common overlap among the leaf
sets is low; see Fig. 5. Indeed, just a couple of trees with no or very little
overlap can result in such a scenario in a collection with any number of
trees.

1.2 Our Contributions

We introduce EvoMiner, an e�cient algorithm to mine FSTs in phylogenetic
databases. Over a broad range of inputs, EvoMiner is 100 times faster (and
often more) than Phylominer [88] � the current state-of-the-art algorithm for

8 Akshay Deepak et al.

(a) (b)

Fig. 5 (a) A collection of input trees on partially overlapping leafsets. Restricting the input
trees to the common leafset (i.e. species s1 and s4) and then applying MAST or MRT will
not yield any useful information. However, (b) the FST contains species s1 − s4, which is
clearly informative.

the same task. The features that enable EvoMiner to achieve this speedup
are:

1. An e�cient phylogeny-speci�c constant-time candidate generation scheme,
which exploits structural properties to produce fewer potential candidates.

2. A novel �ngerprinting based scheme for the downward-closure operation,
which in linear time checks support for all k of the (k − 1)-leaf subtrees.

3. An e�cient lowest common ancestor (LCA) based scheme to count support,
which neither requires the subtree operation nor a traversal through the
database.

EvoMiner works in both a breadth-�rst candidate enumeration mode (like
Apriori [2]) as well as in depth-�rst enumeration [87] mode. The �rst is quicker,
while the second uses less memory, enabling it to handle larger trees. An
implementation of EvoMiner, which also works on collections of trees with
partially overlapping leaf sets, is available by request from the authors.

Finally, we demonstrate experimentally that, for a wide collection of bio-
logical datasets, FST mining (whether or not it is done with EvoMiner) has
signi�cant advantages over the use of MASTs and MRTs. That is, FST mining
can produce agreement subtrees that are signi�cantly larger than MASTs and
more resolved than the MRT (see Sect. 4.2).

2 Preliminaries

2.1 Phylogenies

As usual, a rooted tree is a connected acyclic graph, which contains a special
node called the root . The depth of a node u in a rooted tree T , denoted
depthT (u), is the number of edges from the root to that node; thus the root
node is at depth 0. We denote the lowest common ancestor (LCA) of two
nodes u and v in T by LCAT (u, v). When the tree T is clear from the context,
we drop the superscripts. A k-leaf tree is a tree with k leaves. An edge is
called internal if neither of its end points is a leaf node. Two nodes are called
siblings if they have a common parent node.

EvoMiner 9

A phylogenetic tree (or, for brevity, simply a tree or a phylogeny)
is a rooted2 tree where every internal (i.e., non-leaf) node has at least two
children, whose leaves are in a bijection with a set of labels. The labels in
a phylogenetic tree represent a set of taxonomic units � species � under
consideration, and the branching structure of the tree represents the history of
the evolution of the species from a common ancestor [9]. Indeed, each internal
node in a phylogenetic tree represents a hypothetical ancestor or an event
(e.g., emergence of a new species) in the evolutionary history that separates
the ancestor and descendants at that node.

Let LT denote the leaf label set of tree T , and ψT denote the bijection that
maps the leaf nodes to their unique labels. For convenience, we refer to the set
of leaf nodes by their labels in LT . From this point forward, unless the context
requires making a distinction, we will drop the subscripts in LT and ψT , and
write L and ψ respectively. For the rest of the paper, we assume without loss
of generality that the leaf label set L consists of distinct integers in the range
[1, |L|]; thus, the labels are ordered.

Let u be an internal non-root node in some tree (not necessarily a phy-
logenetic tree), such that u has only one child v. Then, suppressing u means
contracting the edge (u, v); i.e., deleting u and adding an edge from the parent
of u to v. For example, in Fig. 6a, to suppress u, it is deleted and an edge is
added from t to v. Node u is a neighbor of node v if edge (u, v) exists. To
prune a leaf `, we �rst delete it. Let u be `'s neighbor. If u is not the root,
and the deletion of ` makes u a degree-two node, we suppress u (see Fig. 6b).
If u is the root and deleting ` makes it a degree one node, u is deleted and
its neighbor becomes the new root (see Fig. 6c). Otherwise, u remains as it is
(see Fig. 6d).

Consider a tree T and a set L′ ⊆ LT . The restriction of T to L′, denoted
by T |L′ , is the tree obtained by pruning leaves LT −L′ from T . We denote the
fact that two trees T1 and T2 are isomorphic by writing T1 ≡ T2. Given two
phylogenies T and T ′, we say that T displays T ′ �or, equivalently, that T ′ is
displayed by T� if LT ′ ⊆ LT and T ′ ≡ T |LT ′ [72]. For example, each of Fig.
7a and Fig. 7b shows two trees such that the tree on the left displays the tree
on the right. For phylogenetic trees, the notion of �displayed by� replaces the
usual notion of �embedded subtree� that is commonly used in the data mining
literature (e.g., as in [87]).

2.2 Frequent Subtree Mining in Phylogenetics

Let D = {T1, T2 . . . Tn} be a database of n trees on a common label set L.
Let minSup ∈ [1, n] be an input parameter. A tree T with LT ⊆ L is said
to be a (phylogenetic) frequent subtree (FST) in D, if there exists D′ ⊆ D
with |D′| > minSup such that for all T ′ ∈ D′, T ′ displays T . |D′| is called

2 Phylogenies can also be unrooted [58], but here we deal exclusively with rooted phylo-
genies.

10 Akshay Deepak et al.

a b c

 t

 u

 v
a b c

 t

 v

Suppress u

Delete l

l b c d

 v
 root

b c d

 v (root)

b c d

 v
 root

Delete
root

(a) Suppressing a node

a b l c

 t

 u

 v
a b c

 t

 u

 v
a b c

 t

 v

Delete l Suppress u

a b l c

 u

a b c

 u Delete l

(b) Pruning with node suppression

a b c

 t

 u

 v
a b c

 t

 v

Suppress u

Delete l

l b c d

 v
 root

b c d

 v (new root)

b c d

 v
 root

Delete
root

(c) Pruning a leaf attached to a degree-two root

a b l c

 w

 u

 v
a b c

 w

 u

 v
a b c

 w

 v

Delete l Suppress u

a b l c

 u

a b c

 u Delete l

(d) Pruning without node suppres-
sion

Fig. 6 Pruning in phylogenetic trees

the support of T in D, and is denoted by sup(T). The (phylogenetic) FST
mining problem is to identify all the FSTs in D.

There are signi�cant di�erences between phylogenetic FST mining and
unordered tree mining. These dissimilarities stem from the peculiarities of
phylogenetic trees � only the leaf nodes are labeled and all internal nodes
must have at least two children � and from the fact that we are looking for
displayed trees rather than embedded subtrees. When applied to collections
of phylogenetic trees, ordinary methods for unordered tree mining can yield
trees with redundant internal nodes; i.e., nodes with just one child. Figures
7a and 7b show the same tree with two di�erent displayed trees. Of these
two displayed trees, the one in Fig. 7b is not an embedded subtree according
to the standard de�nition, since, to obtain it, we not only need to delete a
leaf, but we also have to suppress a node. Mining for displayed trees, rather
than embedded subtrees makes sense in phylogenetics, where we are primarily
interested in the groupings among species. Thus, for the tree in Fig. 7b species
`2' and `4' are evolutionarily closer to each other than either is to species
`1'. The same relative evolutionary information is preserved even if we prune
species `3'. This characteristic of phylogenies o�ers some advantages for FST
mining, since it enables us to use e�cient LCA-based techniques. At same
time it limits the application of existing methods in data mining literature for
enumerating frequent subtrees.

We should note that the edges of phylogenetic trees sometimes have nu-
merical values associated to them, called branch lengths, representing the time
elapsed or other measure of divergence separating ancestor and descendant
during evolution. Dealing with branch lengths is beyond the scope of this
paper.

Next, we describe several concepts that are essential to EvoMiner, includ-
ing canonical form, equivalence classes, and pre�x trees. Most of these notions
are illustrated in Fig. 8.

EvoMiner 11

1 2 3 4 2 3 4

root

root

(a) Without node-suppression

1 2 3 4 1 2 4

root

root

(b) With node-suppression

Fig. 7 Phylogenetic subtree. Arrow mappings indicate the nodes that were retained from
the original tree. The topmost node represents the root.

2.2.1 Canonical Form

The virtual label of an internal node v is the minimum label among all leaf
descendants of v. The children of an internal node are ordered from left to right
based on the sequence in which they are encountered in an inorder depth-�rst
traversal (IDFT), the leftmost child being encountered �rst. A tree T is in
canonical form [88] if, for every internal node, its children are ordered from
left to right by their virtual labels. It can be seen that two trees are isomorphic
if and only if they have the same canonical forms. By generating all trees in
canonical form, it is straightforward to test if two trees are isomorphic and
prevent duplicate enumeration. EvoMiner relies on this property to ensure
that each FST is enumerated exactly once.

2.2.2 Rightmost Leaf, Pre�x Tree, and Heaviest Subtree

The rightmost leaf of tree T is the last leaf encountered in the IDFT of T .
A useful property of the canonical form is that pruning either the last leaf
or the second-to-last leaf encountered in the IDFT yields a subtree that is
also canonical [88]. The subtree resulting from pruning the rightmost leaf is
called the pre�x tree or simply the pre�x . The heaviest subtree [88] is the
subtree rooted at the parent of the rightmost leaf.

2.2.3 Equivalence Class

Let R denote the relation: `sharing a common pre�x' between two canonical
trees. Note that R is an equivalence relation. Two canonical trees T and T ′ are
said to be equivalent with respect to R (or simply equivalent), denoted T ∼ T ′
if they share a common pre�x. An equivalence class E is a set of canonical
trees that are pair-wise equivalent; i.e., all trees in E share a common pre�x
tree; that is, for every pair (T, T ′) ∈ E, T ∼ T ′. Thus, all trees in E share a
common pre�x tree. The shared (k − 1)-leaf pre�x tree, called the core tree ,
uniquely identi�es the members of an equivalence class. Any two trees in an
equivalence class di�er with respect to their rightmost leaf and (topologically)
with respect to their heaviest subtrees. The partition of the set of frequent
k-leaf trees into equivalence classes is the basis for our enumeration approach,
which generates larger frequent subtrees by extending the core tree (Sect. 3.1).

12 Akshay Deepak et al.

2 3 4 51 62 3 41

(a) Equivalence class

1 2 3 4

(b) Pre�x tree

Fig. 8 (a) Two trees belonging to the same equivalence class. The common pre�x tree
(shown separately in (b)) is encircled by a dotted line; the respective rightmost leaves are
the ones outside the dotted line. The shaded part represents the respective heaviest subtrees.

3 The EvoMiner Algorithm

Fig. 9 gives a high-level description of EvoMiner. The algorithm uses an
Apriori-like [2] candidate generation scheme, and uses breadth-�rst search to
enumerate frequent subtrees. EvoMiner begins by computing the LCA map-
pings for every tree in the input database D. That is, for each tree T in D, and
every pair {u, v} of leaves of T , it computes LCA(u, v) and stores it in a three-
dimensional array indexed by triplet (T, u, v). In our implementation, these
LCA values are computed in quadratic time and space per tree by traversing
the tree in a depth-�rst manner and computing the LCA values of the leaf-
descendants at a node. For a given database D on the leaf set L, this one-time
task takes O(|D||L|2) time. We should point out that it is well-known that one
can pre-process a tree in linear time and space to produce a data structure
that can answer any LCA query on that tree in constant time [41, 70, 11]. Such
algorithms are quite useful when the number of LCA queries is limited and
the pre-processing dominates the total time. That is not the case in our appli-
cation. Indeed, EvoMiner queries all possible LCA values while enumerating
all FSTs on three leaves, and then does a constant number of LCA queries for
every FST generated thereafter. Although both our three-dimensional array
and the specialized LCA data structures [41, 70, 11] o�er constant-time access
to LCA-values, the former's constant factor is smaller than the latter's, which
makes a signi�cant di�erence in practice.

After the LCA mappings are computed, EvoMiner repeatedly alternates
between two steps until all FSTs are enumerated. The �rst step is candidate
generation , which provides a set of potential frequent candidate trees. This
is done so that each frequent subtree is enumerated only once. The second
step is frequency counting , which examines the candidate trees, identifying
the frequent subtrees among them. This is a potentially time-consuming oper-
ation, since it can involve frequent traversals through the input database and
subsequent subtree operations. Next, we describe how each of these steps is
implemented in EvoMiner.

EvoMiner 13

EvoMiner(D,minSup)

1: computeLCA_Mappings(D)
2: Ft←enumerateFrequentTriplets(D,minSup)
3: EC3 ← computeEquivalenceClasses(Ft)
4: Enext ← EC3,Result← ∅
5: while Enext 6= ∅ do
6: Enext ←enumerateNextLevel(Enext,minSup)
7: Result← Result ∪ Enext

8: return Result

enumerateNextLevel(ECk,minSup)

1: ECk+1 ← ∅
2: for all e ∈ ECk do

3: for all Tx ∈ e do

4: enext ← ∅
5: for all Ty ∈ e such that Tx 6= Ty do

6: candidates← join(Tx, Ty)
7: for all T join ∈ candidates do
8: if downwardClosure(T join) then
9: if sup(T join) > minSup then

10: enext ← enext ∪ T join

11: ECk+1 ← ECk+1 ∪ enext
12: return ECk+1

Fig. 9 The EvoMiner Algorithm

3.1 Candidate Generation

We denote the set of all equivalence classes on frequent k-leaf trees by ECk.
The input for the candidate generation step is an equivalence class in ECk.
The output is a set of potential candidate subtrees on k + 1 leaves extending
the k-leaf trees in the equivalence class. The candidate generation strategy
has two parts. The �rst is pairwise joining of frequent subtrees within an
equivalence class to produce larger candidate trees (sometimes referred to as
equivalence class based extension [87]). This is achieved in constant time per
pair. The second part is a linear-time pruning of generated candidate trees
through a downward closure operation, which tests whether all k-leaf subtrees
of a given (k+1)-leaf tree are frequent [2, 15]. The enumeration of FSTs starts
with triplets (trees on three leaves), as triplets are the smallest trees that o�er
meaningful evolutionary information.

3.1.1 Pairwise Extension

Let 〈Tx, Ty〉 be an ordered pair of distinct frequent k-leaf trees from the same
equivalence class e of ECk. The pairwise extension operation �joins� 〈Tx, Ty〉 in
all possible ways so as to generate a set join(Tx, Ty) of (k + 1)-leaf candidate
trees, called joined trees, such that every T join ∈ join(Tx, Ty) satis�es the
following:

T join is in canonical form, Tx is the pre�x of T join, and Ty ≡ T join|LTy
. (2)

14 Akshay Deepak et al.

That is, every such tree T join is a (k + 1)-leaf tree having Tx as its pre�x and
Ty as its subtree. Thus, T join belongs to the equivalence class with Tx as its
core tree. Since Tx and Ty are in the same equivalence class, they di�er only
with respect to their heaviest subtrees. This fact restricts the possible ways in
which they can be joined.

Condition (2) implies that T join is obtained by attaching the rightmost leaf
of Ty to the rightmost path of Tx (the path from the root to the rightmost
leaf); this is known as a rightmost path extension [6]. Let x and y denote the
rightmost leaf of Tx and Ty respectively, px and py denote the parents of x
and y respectively, and T core represent the core of the equivalence class e. For
an internal node u, let numChild(u) denote its number of children. To satisfy
(2), T join can have one of four possible topologies, which we refer to as type
1�4 joins. These are described next.

Type 1: In this case, as shown in Fig. 10a, the leaves x and y of the partici-
pating trees are attached at the same depth on the rightmost path of T core;
i.e., depth(py) = depth(px). In T

join, x and y are siblings, and their depths
are the same as in Tx and Ty; see Fig. 10b. For T

join to be canonical, we
must have ψ(x) < ψ(y) (recall that we assume that the labels are distinct
numbers). Figures 11a and 11b exemplify type 1 joins.

Type 2: As in type 1 joins, depth(py) = depth(px) and x and y are siblings in
T join (Fig. 10a). In T join, however, each of x and y is one level deeper than
it was in Tx and Ty; see Figure 10c. Thus, pruning either x or y in T join

leaves the parent with only one child, so the parent is suppressed. (This
suppression does not occur in Type 1 joins, because the common parent
of x and y in T join must have degree greater than two; see Figure 10b.)
Figures 11a and 11c exemplify type 2 joins.

Type 3: Fig. 10d shows the participating trees. As in type 1 and 2 joins,
depth(py) = depth(px). In this case, however, py is the parent of px in
T join; see Figure 10e. Since pruning x in T join causes its parent node
to be suppressed (see Fig. 10e), the only way we can get this T join is if
numChild(py) = numChild(px) = 2. Figures 11d and 11e exemplify type 3
joins.

Type 4: In this case, as shown in Fig. 10f, depth(py) < depth(px). Thus, the
depth of y on the rightmost path of T core is lower than that of x. As a
result there is only one way to join Tx and Ty so as to satisfy condition (2).
See Fig. 10g. Note that py becomes an ancestor of px in T join. Figures 11f
and 11g exemplify type 4 joins.

Observe that if depth(py) > depth(px), we cannot join Tx and Ty while satis-
fying condition (2), since Tx cannot be the pre�x tree in this case. FSTs from
such joins are enumerated when considering the ordered pair 〈Ty, Tx〉.

Clearly, we can identify in constant time the type(s) of join resulting from
an ordered pair of trees in an equivalence class and the tree resulting from
each case is canonical. Hence, a join can be done in constant time for a pair of
input trees. This is an important di�erence with respect to Phylominer, where
the candidate generation scheme requires comparing the respective topologies

EvoMiner 15

y

py

c

Ty

Δcx

px

c

Δc

Tx

(a) Tx, Ty for type 1 and 2 join

Δc x

px(py)

c

Tjoin

y

(b) Type 1 join

Δc x

px(py)

c

Tjoin

y

(c) Type 2 join

x

px

c

Tx

Δc y

py

c

Ty

Δc

(d) Tx, Ty for type 3 join
y

y

py

x

Tjoin
px

c

Δc

(e) Type 3 join

y

py

c

Ty

Δx

Δy

y

py

x

Tjoin

c

px

y

py

c

Tjoin

Δx

Δy

x

px

c

Tx

Δx

Δy

x

px

(f) Tx, Ty for type 4 join

y

py

c

Tjoin

Δx

Δy

x

px

(g) Type 4 join

Fig. 10 Di�erent types of pairwise join. A dotted triangle represents a part of the tree that
may be empty, while a solid triangle represents a non-empty part of the tree. ∆ re�ects the
topologies of the heaviest subtrees. `c' denotes the rightmost leaf of the common core tree.

x

px

c

Tx

a
x

py

c

Ty

a
x

px(py)

c

Tjoin

y
a

x

px(py)

c

Tjoin

y
a

(a) Tx, Ty for type 1 and 2 join

x

px

c

Tx

a
x

py

c

Ty

a
x

px(py)

c

Tjoin

y
a

x

px(py)

c

Tjoin

y
a

(b) Type 1 join

x

px

c

Tx

a
x

py

c

Ty

a
x

px(py)

c

Tjoin

y
a

x

px(py)

c

Tjoin

y
a

(c) Type 2 join

y

py

x

Tjoin
px

c

x

px

c

Tx

a
y

py

c

Ty

a a

(d) Tx, Ty for type 3 join

y

py

x

Tjoin
px

c

x

px

c

Tx

a
y

py

c

Ty

a a

(e) Type 3 join

y

py

c

Ty

a

b
y

py

c

Tjoin

x

px

a

b

c

Tx

x

px

a

b

(f) Tx, Ty for type 4 join

y

py

c

Tjoin

x

px
px

x
c

Tx

a

y

py

c

Ty

a

b

a

b

(g) Type 4 join

Fig. 11 An example for each of the join type shown in Fig. 10.

of the heaviest subtrees of the input trees, which takes O(k) time. Another
di�erence is that by comparing depth(py) with depth(px), we generate fewer
candidate trees, because fewer cases are considered for each possibility. This
means that fewer trees go to the frequency counting step, which saves further
time.

Theorem 1 Pairwise extension enumerates all FSTs and each FST is enu-

merated only once. Moreover the enumerated FSTs are in canonical form.

16 Akshay Deepak et al.

Proof We use induction on k, the number of leaves in an FST. If k = 3, then
all such FSTs are uniquely generated during triplet enumeration, the starting
step of Algorithm 9. Consider k > 3. Assume all FSTs on k − 1 leaves have
been uniquely enumerated. Let T be a k-leaf FST in canonical form. Let Tx
and Ty respectively be the subtrees obtained by pruning the last leaf and the
second last leaf in the IDFT of T . Since T is in canonical form, so are Tx and
Ty. Clearly Tx and Ty are FSTs on k−1 leaves and share the same pre�x tree.
Thus, they must have been uniquely enumerated and must belong to the same
equivalence class e. Since T satis�es condition (2) with respect to Tx and Ty,
we have T ∈ join(Tx, Ty). Thus pairwise extension must enumerate T . Further,
if the members of e are considered in an ordered fashion for pairwise extension
so that 〈Tx, Ty〉 is considered only once, then T will also be enumerated only
once. ut

3.1.2 Downward-Closure Operation

The downward closure operation takes a k-leaf candidate tree T (generated
by pairwise extension) and checks whether all k of its (k − 1)-leaf subtrees
are frequent. Thus, it requires all (k − 1)-leaf frequent subtrees to have been
enumerated beforehand. EvoMiner uses an Apriori-like level-wise approach.
That is, ECk+1 is enumerated only after ECk has been enumerated. A common
approach for the downward-closure operation is to �rst generate all k of the
(k − 1)-leaf subtrees and then check if each subtree is frequent by indexing it
into an e�cient data structure [2, 88]. This requires at least O(k2) time, as
indexing into any data structure will take at least O(k) time and there are O(k)
subtrees to check. Things can get more complex if the subtrees themselves need
to be checked for isomorphism [88]. We next present an e�cient �ngerprinting-
based scheme that checks in O(k) time whether all k of the (k−1)-leaf subtrees
are frequent.

Fingerprint generation. Fingerprinting is a mechanism that maps a large data
item to a much shorter bit string. A good �ngerprint function has a very small
probability of mapping two di�erent data items to the same bit string. This
probability is inversely a�ected by the size of the bit string, which is generally a
constant for a given application. Our approach involves generating �ngerprints
for all frequent subtrees in ECk−1 and storing them in a hash table. Given a k-
leaf candidate tree, to check if one of its (k−1)-leaf subtree is frequent, we check
if its �ngerprint is present in the hash table. In our computational experiments,
the �ngerprinting based pruning technique enables us to achieve speed-ups
up to 100% as compared to an alternative depth-�rst mining approach (see
Sect. 3.5).

We employ the �ngerprint function used in the Rabin�Karp pattern-matching
algorithm [48]. For this, we represent each tree in the database by the se-
quence of nodes encountered in the IDFT of the tree (this traversal sequence is
called an Euler tour). For example, the string representation of the tree shown
in Fig. 8b is `D1UDD2UDD3UD4UUU', where `D'/`U' respectively represent

EvoMiner 17

downward/upward traversal in the tree, and are selected such that D,U /∈ L.
Clearly, the size of the string representation is of the same order as the size
of the tree and it uniquely identi�es an ordered tree. Since frequent subtrees
are enumerated in canonical form, they are always ordered. Thus any frequent
subtree is uniquely identi�ed by its string representation. The �ngerprint func-
tion interprets a b-bit string as a b-bit integer. The �ngerprint of a b-bit string
s = (s1s2 . . . sb), denoted Fp(s), is computed as:

Fp(s) =

(
b∑

i=1

2i−1si

)
mod p,

where p is a random prime. While the cost of computing the original �ngerprint
for a b-bit integer is Θ(b), a �ngerprint can be updated in constant time after
deletion of a substring [57]. For example given the �ngerprint of the string
`123456', we can compute the �ngerprint of the result of deleting substring

`34' by observing that Fp(`1256') = (Fp(`123456')−Fp(`1234')×2length(`56')+

Fp(`12') × 2length(`56')) mod p, which is easy if the �ngerprints for the pre�x
strings `1234' and `12' have been pre-computed.

We note that in many applications of �ngerprinting, the prime is chosen
randomly so as to avoid an attempt by an adversary to select strings s1 and s2
such that s1 6= s2 but Fp(s1) = Fp(s2). In our case, however, it is reasonable
to assume that the input distribution is oblivious to p. Hence, we use a �xed
prime p. This allows us to select a large p. This is helpful because for two
random input strings and a �xed prime p, the probability that the two strings
have the same �ngerprint is 1

p . By selecting a large p, we keep this probability
low. The size of the �ngerprint is clearly constant for a chosen prime p.

Given a k-leaf tree, calculating the �ngerprint of one of its (k − 1)-leaf
subtrees involves deleting the corresponding leaf and extracting the �nger-
print from the �ngerprint of the original tree in constant time. As shown in
Fig. 12, there are two possible cases for pruning a leaf `. In the �rst case
(Fig. 12a), no node is suppressed and the string representation changes from
`...DDaUD`UDbUU...' to `...DDaUDbUU...', where a and b are the siblings of
`. This involves deletion of substring D`U (emphasized in italics in the original
string). The �ngerprint is updated as:

Fp(`...DDaUDbUU...') = (Fp(`...DDaUD`UDbUU...')

− Fp(`...DDaUD`U ')× 2length(`DbUU')

+ Fp(`...DDaU')× 2length(`DbUU')) mod p.

In the second case (Fig. 12b), a node is suppressed and the string represen-
tation changes from `...DDaUDD`UDbUUU...' to `...DDaUDbUU...'. This in-
volves deletion of two substrings: `D`UD ' and `U ' (emphasized in italics in the
original string). Each substring is deleted one at a time. On deleting `D`UD '

18 Akshay Deepak et al.

b l a b a

Prune l

b l a

D↓
U↑

b a

Prune l

(a) Without node-suppression

b l a b a

Prune l

b l a

D↓
U↑

b a

Prune l

(b) With node-suppression

Fig. 12 Fingerprint update in pruning a leaf

from `...DDaUDD`UDbUUU...', the �ngerprint is updated as:

Fp(`...DDaUDbUUU...') = (Fp(`...DDaUDD`UDbUUU...')

− Fp(`...DDaUDD`UD ')× 2length(`bUUU')

+ Fp(`...DDaUD')× 2length(`bUUU')) mod p.

Next, on deleting the second substring `U ' from `...DDaUDbUUU...', the �n-
gerprint is updated as:

Fp(`...DDaUDbUU...') = (Fp(`...DDaUDbUUU...')

− Fp(`...DDaUDbU ')× 2length(`UU')

+ Fp(`...DDaUDb')× 2length(`UU')) mod p.

Each of the above updates can be achieved in constant time if the �nger-
prints of all the pre�xes of the string representation of the original tree is
pre-computed. Computing all pre�xes takes O(k) time for a k-leaf tree. With
this information, computing the �ngerprint corresponding to the deletion of
a leaf takes constant time. Thus, the �ngerprints for all (k − 1)-leaf subtrees
can be computed in O(k) time. What remains is a lookup in the hash table
to check if the subtree is frequent. If any of the (k − 1)-leaf subtrees is not
frequent, then the candidate tree is pruned away from enumeration.

When using �ngerprints as just described, there is a small probability of
a false match3; i.e., two di�erent subtrees having the same �ngerprint. Since
the number of frequent subtree patterns is often large, we want to further
strengthen the �ngerprinting scheme. To do so, we hash the leaf sets of the
subtrees and store the hash codes along with the �ngerprints in the hash table.
Thus we only compare two subtrees when they share the same leaf set. In our
experiments, we never encountered duplicate values in the hash table when
using this strengthened scheme. While theoretically there is still a chance of a
false match, these errors are eventually detected in the frequency counting step.
Further, when amortized, false matches do not a�ect the overall complexity.

3 Recall that this probability is 1
p
for a chosen prime p (Sect. 3.1.2, page 17).

EvoMiner 19

Note that false matches do not a�ect the correctness of the algorithm since a
false match never prunes away a frequent subtree from enumeration.

Note that any subtree obtained by deleting a leaf that is the leftmost child
of its parent may not be canonical. This is because in canonical form the
virtual label of a node is the same as its leftmost child. Deleting such a leaf
results in a new leftmost child for its parent, and hence, a new virtual label,
which is greater than the previous one. This new virtual label of the node may
be greater than the virtual label of its next sibling in the IDFT of the tree �
requiring repositioning of the node among its siblings to restore the canonical
form. This repositioning e�ect can cascade all the way to the root if each node
on the path from the leaf being deleted to the root is the leftmost child of its
parent. Thus our �ngerprinting scheme does not consider any such subtree.
In the worst case, only half of the subtrees are considered. This leads to the
possibility of a false positive with respect to the downward closure operation;
i.e., referring a k-leaf candidate to the frequency counting step even though it
has an infrequent (k − 1)-leaf subtree. However, in our experiments we found
a low false positive rate (.01 to 4%) when compared to a complete downward-
closure check, which considers all (k − 1)-leaf subtrees (see Sect. 4.1). The
explanation for the low rate of false positives is that our problem empirically
exhibits an abundance of witnesses property [42, chapter 6]. The goal here is
to identify a `guilty' infrequent candidate k-leaf tree posing as a frequent one.
A witness here is an infrequent (k − 1)-leaf subtree of the candidate tree that
witnesses against the latter being frequent. However, every (k−1)-leaf subtree
is not infrequent, i.e., a witness. Thus, the more (k−1)-leaf subtrees are checked
for being infrequent, the higher are the chances of coming across a witness.
Our experiments show that the witness count, even when only considering half
of the subtrees, remains abundant. Thus, a complete downward-closure check,
while thorough, increases the running time without signi�cantly improving
the amount of pruning achieved. Note that this is only a pruning step. A false
positive here only means that some candidates that could have been pruned
by the exhaustive check were not pruned in this step. This in no way a�ects
the correctness of the algorithm because these false positives will be eventually
detected in the frequency counting step.

3.2 Frequency Counting

For each frequent subtree t, we maintain an occurrence list containing all
the trees in the database that have t as a subtree. While considering a tree
T join ∈ join(Tx, Ty), we �rst compute the intersection of the occurrence lists of
Tx and Ty. We then count how many trees in the intersection display T join. Let
L∪ = {LT core ∪ x ∪ y} denote the leaf set of T join, where T core is the common
pre�x tree of Tx and Ty. For each tree T in the intersection list, EvoMiner

uses an LCA-based scheme to determine in constant time whether T join is
displayed by T �i.e., if T join ≡ T |L∪� without actually computing T |L∪ .
In contrast, Phylominer takes linear time for the corresponding step, because

20 Akshay Deepak et al.

for every tree T in the intersection list, it explicitly constructs T |L∪ and then
checks if this tree is isomorphic to T join (using the linear-time algorithm of
[80]).

For a given pair 〈Tx, Ty〉 of trees in an equivalence class, and a tree T in the
intersection of the occurrence lists of Tx and Ty, the subtree T |L∪ must be the
result of one of the four types of joins on 〈Tx, Ty〉 as described in Sect. 3.1.1. We
next give precise conditions based on the LCA values for each of the four cases.
The meaning of the symbols c, x, y, px and py is the same as in Sect. 3.1.1.

Lemma 1 T |L∪ is the result of a type 1 join if and only if

1. depth(LCAT (c, x)) = depth(LCAT (c, y)),
2. depth(LCAT (c, x)) = depth(LCAT (x, y)), and
3. ψ(x) < ψ(y).

Proof Clearly if T |L∪ is the result of a type 1 join, it satis�es conditions 1�3.
To prove the only if part, let conditions 1�3 be satis�ed. Since Tx and Ty are
obtained by attaching x and y respectively to the rightmost path of T core,
condition 1 implies that depth(py) = depth(px). Thus, T |L∪ must be a join of
type 1, 2 or 3. Now, a type 3 join requires the parent of y to be an ancestor of
the parent of x in T |L∪ � a case ruled out by condition 1. Further, conditions
2 and 3 imply that the join must be of type 1. ut
Lemma 2 T |L∪ is the result of a type 2 join if and only if

1. depth(LCAT (c, x)) = depth(LCAT (c, y)),
2. depth(LCAT (c, x)) < depth(LCAT (x, y)), and
3. ψ(x) < ψ(y).

Proof The proof is similar to that of Lemma 1. Again T |L∪ can be the result
of either a type 1 or a type 2 join. Conditions 2 and 3 imply that the join must
be of type 2. ut
Lemma 3 T |L∪ is the result of a type 3 join if and only if

1. depth(LCAT (c, x)) > depth(LCAT (c, y)), and
2. depthTx(px) = depthTy (py).

Proof Condition 2 implies that T |L∪ must be the result of a join of type 1, 2
or 3. Condition 1 rules out type 1 and 2 joins. Thus, the join must be of type
3. ut
Lemma 4 T |L∪ is the result of a type 4 join if and only if depthTx(px) >
depthTy (py).

Proof As per the given condition, T |L∪ can only be the result of a type 4
join. ut
Theorem 2 The frequency counting scheme correctly identi�es T |L∪ as a re-

sult of a join of type 1, 2, 3 or 4 in constant time.

Proof Clearly, Lemmas 1�4 are mutually exclusive and correctly identify T |L∪

as a result of a join of type 1, 2, 3 or 4. Further, each condition in the lemmas
can be evaluated in constant time. The claim follows.

ut

EvoMiner 21

3.3 Correctness and Complexity Analysis

Theorem 1 proves that pairwise extension uniquely enumerates all potential
FSTs. Theorem 2 proves that the frequency counting step correctly identi�es
all true FSTs out of the potential candidates. Thus, EvoMiner identi�es all
FSTs correctly and non-redundantly. We next discuss the time complexities of
the di�erent steps of EvoMiner (EM) and compare the total time with that
of Phylominer (PM). In the process, we explain why EM is faster than PM.
As before, let the input database be D, consisting of n trees on a common
leafset L. Let F denote the set of all FSTs.

Initialization. This one-time task involves (1) computing LCAmappings for all
pairs of leaves for all the input trees and (2) enumerating all frequent triplets.
Step 1 takes O(n|L|2) time. Though this step is not done by PM, it takes only
a small fraction of the total time, as |L|2 is negligible compared with |F|, the
total number of frequent patterns. Step 2 takes O(n|L|3) time. PM starts by
evaluating all frequent pairs of leaves instead of triplets. However, because it
enumerates all FSTs, PM also enumerates all frequent triplets. Thus the net
complexity for evaluating all frequent triplets is the same in PM as in EM.

Candidate Generation. Both EM and PM use pairwise extension. In EM can-
didates are generated in constant time. In PM it takes O(k) time to join two
k-leaf candidate trees as PM compares the topologies of the heaviest subtrees
of the two candidates. Further, by exploiting the structural properties of the
candidates, EM generates fewer potential candidates than PM.

Downward Closure. Both EM and PM use downward closure to prune infre-
quent candidates. For a k-leaf candidate tree, PM checks whether all k of its
(k − 1)-leaf subtrees are frequent by referring to a hash table that stores the
previously enumerated frequent (k − 1)-leaf subtrees. This takes O(k2) time,
as there are O(k) subtrees and indexing each takes O(k) time. EM does the
same operation in O(k) time through its �ngerprinting scheme.

Frequency Counting. Both EM and PM use occurrence lists. For a potential
k-leaf frequent candidate, PM examines every tree T in the intersection of the
occurrence lists, computing the restriction of T to the leaf set of the candidate
and then comparing this restricted tree to the candidate using a linear-time
isomorphism check. PM takes O(k) time for each of these steps. EM avoids
computing the restriction, as well as the isomorphism test. Instead, it performs
frequency counting in constant time via its LCA-based scheme. Overall, for
each potential candidate, frequency counting in PM takes O(nk) time while it
takes O(n) time in EM.

Theorem 3 The time complexity of EvoMiner is O(n|L|3 + n|F|+ |L||F|)
where n is the number of trees in the database, F is the set of FSTs, and L is

the common leaf set. When, as typically happens in practice, |F| � |L|3, the
time is O(n|F|+ |L||F|).

22 Akshay Deepak et al.

Proof As discussed, the time complexity for initialization step is O(n|L|2) +
O(n|L|3) = O(n|L|3). Each k-leaf candidate generation takes O(k) time, which
is O(|L|). The downward closure operation for each k-leaf candidate takes O(k)
time, which is O(|L|). The frequency counting step takes O(n) time for each
candidate. Totaling these estimates, we obtain the claimed bound. ut

3.4 Extension to Partially Overlapping Leaf Sets.

So far, we have assumed that all trees in the database have the same leaf set.
The sets of trees considered by evolutionary biologists often have only partially
overlapping leaf sets. We can easily extend EvoMiner to mine such collections
of trees, without any loss in e�ciency. We do so as follows. While computing
the LCA for all pairs of leaves for all the input trees during the initialization
phase, we �ag an LCA value if one of the leaves involved in the pair is not
present in the input tree. These �agged LCA values are not considered during
frequency counting. Note that such an extension is not as direct in Phylominer,
as its frequency counting step is not based on LCA values.

3.5 Depth-�rst Mining

We can use many of the ideas behind EvoMiner in a depth-�rst mining
scheme, along the lines of [87], which uses depth �rst search in the enumera-
tion graph [16]. This alternative scheme does not require candidate generation
(similar to [79, 38, 40]), since the frequency counting step gives su�cient con-
ditions to distinguish among all possible candidates from pairwise-extension.
Fig. 13 gives a high-level description of the depth-�rst enumeration scheme.
The existence of a joined-subtree in line 5 can be checked in constant time
per tree using the conditions given in Lemmas 1-4. We note that while depth-
�rst mining does not bene�t from e�cient pruning through downward closure
(which can be very e�ective as the number of trees in the database becomes
large), it uses less memory than the breadth-�rst approach, allowing very large
trees to be mined. This is because to extend a k-leaf tree, we only need to store
its ancestor equivalence classes, unlike the breadth-�rst enumeration approach
where all the equivalence classes of the previous level must be stored. In the
next section, we give a bound on the memory required by the depth-�rst min-
ing scheme. In Sect. 4, we give the results of an experimental evaluation of the
trade-o�s between depth-�rst and breadth-�rst mining.

3.6 Discussion

Apriori-based methods for mining frequent patterns �such as association
rules, frequent closed itemsets, max-patterns, sequential patterns, or constraint-
based mining of frequent patterns� can generate an exponential number of
candidates for a frequent pattern (see [37, 32]). It turns out, however, that

EvoMiner 23

EvoMinerDF(D,minSup)

1: computeLCA_Mappings(D)
2: Ft←enumerateFrequentTriplets(D,minSup)
3: EC3 ← computeEquivalenceClasses(Ft)
4: for all e ∈ EC3 do

5: depthFirstRecursive(e,minSup)

depthFirstRecursive(e,minSup)

1: for all Tx ∈ e do

2: print Tx
3: eTx ← ∅
4: for all Ty ∈ e such that Tx 6= Ty do

5: if greater than minSup trees in D exhibit a common subtree Txy over LTx ∪ LTy

with Tx as its pre�x then

6: eTx ← eTx ∪ Txy
7: if eTx 6= ∅ then
8: depthFirstRecursive(eTx ,minSup)

Fig. 13 EvoMinerDF � depth-�rst enumeration

EvoMiner does not su�er from a similar combinatorial explosion. In fact, as
we show next, the number of candidates generated in the enumeration of an
FST is polynomially-bounded.

Theorem 4 The number of candidates generated in the enumeration of an

FST is O(|L|3), where L is the common leaf set of the input trees. The number

of candidates generated per FST is O(|L|).

Proof An FST can have at most |L| leaves. Each such leaf is added during
a pair-wise join within an equivalence class. Within an equivalence class, the
maximum number of pairs that can participate in a join operation is

(|L|
2

)
,

which is less than |L|2. Each such pair can result in a maximum of three
types of joined candidates (Sect. 3.1.1)4. Thus, the maximum number of can-
didates generated in the enumeration of an FST is 3|L|2|L|, which is O(|L|3)
as claimed. Note that this is a worst-case estimate, as it includes both frequent
and infrequent candidates. If we are to consider the number of candidates gen-
erated per FST, we only need to consider the maximum number of pair-wise
joins in which an FST can participate within an equivalence class, i.e., O(|L|),
which gives the second part of the result. ut

The breadth-�rst enumeration scheme in EvoMiner requires all the FSTs
to be kept in memory. This limits the size of the input trees, because the num-
ber of FSTs grow exponentially with the size of the trees (Sect. 4). However,
the depth-�rst enumeration scheme in EvoMinerDFonly stores the FSTs of
the ancestor equivalence classes while enumerating a k-leaf FST. The next
result shows that the memory required by the depth-�rst enumeration scheme
scales polynomially with the number of input trees and the size of the common
leaf set.

4 This will happen when the pair being considered for join operation has the same topology
as the input trees for type 3 join. Such a pair will produce candidates of join types 1, 2, and
3.

24 Akshay Deepak et al.

Theorem 5 EvoMinerDF requires O(n|L|3) space, where n is the number

of input trees and L is the common leaf set.

Proof The enumeration tree has depth at most L. Enumerating an FST at
this depth will require storing O(|L|) ancestor equivalences classes, each of
which can have at most |L| FSTs. Thus, the maximum number of FSTs to be
stored is O(|L|2). Storing each such FST requires O(|L|) space for the subtree
and O(n) space for the occurrence-list. Thus, the maximum space required to
store all FSTs is O(n|L|3). Adding to this the space required to store LCA
mappings, which is O(n|L|3), we get the claimed �gure. ut

To close this section, we note that pattern-growth methods [64, 63, 39] are
a potential alternative to EvoMiner's Apriori approach. While the pattern-
growth approach has been shown to scale well for large databases [38] and has
been used to mine FSTs in collections of ordered trees [79], it is not obvious
how to extend the technique to unordered trees. Indeed, although our string
encoding of phylogenetic trees is basically an ordered tree representation, our
encoding does not satisfy an essential property on which the known pattern-
growth methods for unordered tree mining rely. That is, in our approach, the
string encoding of a subtree is not a pre�x of the string encoding of the original
tree. In fact, deleting just one leaf from a tree can drastically change its string
encoding.

4 Experiments and Results

To evaluate the performance of EvoMiner, as well as to test the e�ectiveness
of the FST approach compared to MASTs and MRTs, we conducted experi-
ments on real and simulated data. All experiments were performed on an Intel
Core2 Duo E8500 @ 3.16 GHz machine running Windows 7 Professional 64
bit edition with 8GB of RAM. Algorithms were implemented in C++ and
compiled using Microsoft Visual C++ 2008 (part of Microsoft Visual Studio
2008, Version 9.0.21022.8 RTM).

We note that in many of our experiments, we used support values of 99%
and 50%. While these values may appear high compared to those commonly
used in the data-mining literature (e.g., [79, 18]), they re�ect standard prac-
tice in phylogenetics, which typically demands a strong consensus among the
trees in the input collection. The stronger the consensus, the higher is the
con�dence that can be placed in the common representative tree. For exam-
ple, MASTs (Sect. 1.1.3) require 100% support. Strict-consensus trees [14] are
another example of 100% support, as they are built from the clusters present
in all the input trees. Majority-rule consensus trees (Sect. 1.1.3) are a more
relaxed version strict-consensus trees, where one only requires that a cluster
be present in a majority of the trees �at least 50% support� for it to be
included.

EvoMiner 25

4.1 Performance of EvoMiner

We compare the performance of our algorithm with that of Phylominer [88]
using the original C++ implementation of its authors. Our experiments involve
four datasets, indexed asD1−D4.D1 andD2 consist of synthetic phylogenetic
trees. Data set D1 closely resembles the one used to evaluate the performance
of Phylominer. Each tree in D1 was produced by �rst generating a random
binary tree based on the Yule model [85]; for each such tree, we randomly
chose a set of 30% of the internal edges, and contracted all edges in the set.
To produce dataset D2, we �rst generated one random tree, which was then
replicated to get the required number of trees. Each replicated tree was then
perturbed by randomly contracting 10% of its internal edges and randomly
swapping 10% of its leaf labels with another random leaf. This resulted in a
set of trees having high commonality, which aligns with one of the utilities of
EvoMiner as a consensus tree algorithm. Datasets D3 and D4 were taken
from published phylogenetic analyses. D3 is from the Bayesian analysis of [52],
whileD4 consists of bootstrap trees from [61]. Bayesian analyses and bootstrap
trees are typical candidates for consensus tree algorithms [76, 61]; the trees
in these datasets have a very high commonality. We extracted datasets of
di�erent sizes (in terms of the number of leaves and the number of trees) from
D3 and D4 by randomly selecting the required number of trees and restricting
them on a random set of leaves of the required size.

Fig. 14 compares the performance of EvoMiner with Phylominer on
datasets D1−D4. For each comparison, three di�erent leaf sets of sizes 15, 25
and 35 were considered. For D1 and D2, the minSup value was 50%. Since,
D3 and D4 have highly similar trees, the minSup value was 99% to single out
the highly frequent subtrees among the frequent subtrees. The range of leaf set
sizes and the number of trees re�ects the typical inputs on which phylogenetic
analyses involving MAST and related problems are done; see, e.g., [77, 88]. In
each of the datasets, EvoMiner is faster than Phylominer by a factor of up
to 100 (sometimes more).

For comparison purposes, the physical memory was capped at 4GB. This
explains the missing entries in the graphs. EvoMiner is able to handle larger
datasets � both in terms of the number of trees and the number of leaves �
because it uses a vertical bitmap representation of the database [7]. In this
representation, in the occurrence list of a FST, a bit is reserved for every tree
in the database. If the minimum support value is very small, there is a risk of
under-utilizing memory, because the number of unset bits would far exceed the
number of set bits for the occurrence list of an FST. In our studies, however, the
minimum support value is always greater than 50%. Thus, memory utilization
was high.

While breadth-�rst enumeration has the advantage of downward-closure
operation and vertical bitmap representation of the database results in a smart
utilization of memory, the fact remains that the number of FSTs that can be
enumerated is limited by the available memory. However, in depth-�rst mining
mode memory is not a limitation because the enumeration tree is explored in

26 Akshay Deepak et al.

0.01

0.1

1

10

100

1000

10000

1000 4000 7000 10000

R
un

tim
e

[i
n

se
c]

Number of trees

(a) D1

0.1

1

10

100

1000

1000 4000 7000 10000

R
un

tim
e

[i
n

se
c]

Number of trees

(b) D2

0.1

1

10

100

1000

1000 4000 7000 10000

R
un

tim
e

[i
n

se
c]

Number of trees

(c) D3

0.1

1

10

100

1000

1000 4000 7000 10000

R
un

tim
e

[i
n

se
c]

Number of trees

(d) D4

Phylominer EvoMiner 15 leaves 25 leaves 35 leaves

Fig. 14 Performance comparison

a depth-�rst manner. Thus, if the run time is not a consideration, users can
mine up to 10000 trees on 254 leaves with the current implementation.

As shown in Fig. 14, the di�erence in runtimes of EvoMiner and Phy-
lominer frequently reaches 1000 seconds in our experiments. This improved
speed has a practical impact. As mentioned in the Introduction, phylogenetic
analysis typically yields a collection of trees rather than a single tree. How-
ever, many of the generated trees are not part of the �nal output. For example,
Markov chain Monte Carlo (MCMC) simulations used for Bayesian phyloge-
netic inference [56] involve multiple runs until convergence is reached. In such
cases, it is essential to identify the common information in each run quickly.
Speed is also important in summarizing the commonalities among phylogenetic
trees during interactive visualizations [3].

Fig. 15a con�rms the exponential growth of the number of frequent subtrees
with an increase in the size of the leaf set. These experiments were done on
the Bayesian analysis dataset D3 with 100 trees and minSup as 99%. Fig. 15b

EvoMiner 27

0.1

1

10

100

1000

10000

10 15 20 25 30

N
um

be
r

of
 p

at
te

rn
s

[x
10

00
]

Number of leaves

(a)

0.01

0.1

1

10

100

10 15 20 25 30

R
un

tim
e

[i
n

se
c]

Number of leaves

(b)

Fig. 15 Exponential growth of the number of frequent patterns and its e�ect on the run
time.

shows the corresponding growth of the run time. The slope of this graph is
steeper than that of Fig. 15a because, as indicated by Theorem 3, the run time
depends not just on the the size of the leafset, |L|, but also on |F|, the number
of frequent subtrees and on n, the number of trees. Theorem 3 also helps to
explain the anomaly in the run time graph for |L| between 10 and 15: When
|F| is small, we cannot assume that |F| � |L|3, which makes the n|L|3 term
in the running time non-negligible.

Fig. 16a shows how the number of frequent subtree patterns varies with
respect to minSup on dataset D2 (500 trees). The exponential decrease in
the number of frequent subtrees as minSup increases is to be expected: The
pruning of a frequent tree has a cascading e�ect on all of its frequent supertrees.
The run time behaves in a similar fashion (see Fig. 16b). The correlation
between the number of frequent subtrees and the run time with respect to
minSup con�rms that the run time depends directly on the number of frequent
subtrees generated.

Fig. 17a compares the performance of depth-�rst mining with the candidate
generation based (breadth �rst enumeration) approach with respect to the size
of the database. When the number of trees is small, the frequency counting
step takes about the same time as the downward-closure operation and hence
the latter becomes an overhead. As the number of trees grows, the frequency
counting step becomes costlier and it saves time to use downward closure. The
cross-over point comes around 200-300 trees for Bayesian analysis dataset D3,
with minSup set to 99% and leaf set size of 30. Fig. 17b compares our �nger-
printing based pruning technique with a complete downward closure operation.
The latter additionally considers any remaining (k−1)-leaf subtrees for a k-leaf
candidate tree, which are not considered by the former. For reasons discussed
in Sect. 3.1.2, the �ngerprinting technique is clearly more e�cient than the
complete operation. This experiment was done on bootstrapped dataset D4

28 Akshay Deepak et al.

0

50

100

150

200

250

50 60 70 80 90 100

N
um

be
r

of
 p

at
te

rn
s

[x
10

00
]

Support [%]

10 leaves
20 leaves
30 leaves

(a)

0.5

1

1.5

2

2.5

3

50 60 70 80 90 100

R
un

tim
e

[i
n

se
c]

Support [%]

10 leaves
20 leaves
30 leaves

(b)

Fig. 16 E�ect of minSup on the number of frequent subtrees and the run time.

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 100 400 700 1000

R
un

ti
m

e
[i

n
se

c]

Number of trees

Depth-first
Breadth-first

(a)

6

8

10

12

14

16

18

20

22

50 60 70 80 90 100

R
un

tim
e

[i
n

se
c]

Support [%]

Complete
Fingerprinting

(b)

Fig. 17 Depth-�rst mining and �ngerprinting based pruning technique.

with 1000 trees on 20 leaves. The false positive ratio hovered around 3.2% for
this experiment.

4.2 Experiments on Biological Data

To study the e�ectiveness of FST mining, we compared the results of apply-
ing the FST, MAST, and MRT approaches to biological data. As mentioned
in Sect. 1.1.3, both MASTs and MRT are frequently used in phylogenetics.
Indeed, a search on �maximum agreement subtree� and �majority-rule tree�
on Google Scholar5 (http://scholar.google.com/) returned about 365 and
1140 results respectively. Among other things, MASTs are used as a met-
ric to compare phylogenies [33, 24, 25], to compute the congruence index of

5 Both terms were searched in double quotes, i.e., all words in the query appear together
in all returned documents.

http://scholar.google.com/

EvoMiner 29

 20

 40

 60

 80

 100

A B C D E F G H I J K L M N O P Q

P
er

ce
nt

ag
e

[%
]

Leaf gain vs. MAST
Input fraction with positive resolution gain vs. MRT

Avg. gain in resolution vs. MRT

Fig. 18 FST vs. MAST and MRT

phylogenetic trees [22, 51], to identify horizontal gene transfer events [21], to
resolve ambiguity in terraces in phylogenetic tree space [69], and as a consensus
approach [14]. MRTs are used, among other things, to analyze phylogenetic
trees from Bayesian analysis [43] and bootstrapping [27], two widely-used
phylogenetic analysis techniques. As we shall see, FST mining can identify
representative trees for a collection that are superior to the MAST(s) or the
MRT with respect to both size and resolution.

Datasets. Our datasets were derived from bootstrapped trees used in a previ-
ous study [61] on majority rule trees. Trees were constructed using 17 DNA
alignments containing 125 up to 2,554 sequences. The data spans a diverse
range of sequences including rbcL genes, mammalian sequences, bacterial and
archaeal sequences, ITS sequences, fungal sequences, and grasses. We ordered
the trees based on the number of sequences and refer to the datasets as A�Q.
For each dataset we randomly selected a set of 15 leaves and a set of 100
trees. We then restricted each of the trees on these 15 leaves to obtain a col-
lection of 100 trees on a common leaf set of size 15. We generated 100 such
random collections for each of the dataset in A�Q. The experimental results
were averaged over these 100 collections.

Frequent Subtree versus Maximum Agreement Subtree. Note that the set of
all MASTs is a subset of the set of FSTs. Thus, for every MAST T there is
always an FST that has the same or higher resolution as T . Thus, in comparing
MASTs with FSTs. we focus on the gain in the number of leaves.

For each collection of 100 trees, we generated all MASTs. We then mined
all FSTs in the collection with minSup = 50%. For each MAST T we selected
the FST T ′ with the maximum number of leaves such that T is a subtree of
T ′. Note that T ′ is a maximal subtree. We then compared the size of T ′ (i.e.,
the number of leaves) with that of T . The �rst histogram bar in Fig. 18 shows
this leaf gain, which is de�ned as

gain(T, T ′) =
|leaves in T ′| − | leaves in T |

|leaves in T |
× 100%.

30 Akshay Deepak et al.

In all datasets, we found FSTs larger than any MAST. In some of the cases
the leaf gain was as high as 100%.

Frequent Subtree versus Majority Rule Tree. As mentioned in the Introduction,
the MRT can be poorly resolved. To explore this issue further, we compared
the degrees of resolution of the MRT with that of the FSTs by considering
what we call FST pro�les. An FST T is maximal if there is no other FST T ′

such that T is a subtree of T ′. An FST-pro�le is a collection of maximal FSTs
such that the combined leaf set contains all the species present in the input
trees. For example, the FSTs in Fig. 3d form an FST-pro�le for the input
collection of trees shown in Fig. 3a. We measure the resolution of a tree T
using equation (1) from Sec. 1.1.

For each collection of 100 trees, we computed the MRT using HashCS [76]
and generated the corresponding FST-pro�le from the collection of all FSTs
mined using EvoMiner. For each tree TF in the FST-pro�le, we restricted the
MRT to the same leaf set as that of TF to obtain TM , computed the di�erence
in tree-resolution values of TF and TM , and then averaged the di�erence over
all the trees in the FST-pro�le. The second histogram bar in Fig. 18, denotes
the fraction of the input collections that observed a positive resolution gain in
the FST-pro�le over the MRT. In all cases, a high fraction of the 100 collections
resulted in FSTs that were better resolved than the MRTs. The third histogram
bar shows the average resolution gain, which in some cases exceeds 30%. These
measures of gain do not have natural statistical distributions associated with
them, but do point the investigator in the direction of the most unexpected
solutions, relative to existing methods.

4.3 Discussion

Our experiments indicate that FSTs can be more informative than the classical
methods MRT and MAST. It makes further sense to single out those FSTs that
accentuate this gain with respect to the classical methods. Here we suggest
some tests to only keep such �interesting� FSTs. We discuss this for MRT and
MAST separately.

Maximum Agreement Subtree. One of the ways in which we can get better
results than MASTs is by looking for FSTs having leafsets not covered by any
of the MASTs. We classify such FSTs in two categories. The �rst category
consists of an FST T if it is a proper supertree to an MAST T ′, i.e., LT ⊃ LT ′

and T ′ ≡ T |LT ′ . For example, each of the FSTs in Fig. 3 is a supertree to
the corresponding MAST. Such FSTs are very interesting because each such
FST extends an existing MAST, i.e., it phylogenetically relates the set of
leaves LT ′ displayed by the MAST to a new set of leaves LT − LT ′ . The
second category includes FSTs that display phylogenetic relationships over
a set of leaves L such that there exists no MAST T with |LT ∩ L| ≥ 3.
Three is the minimum number of leaves on which a phylogenetic tree can be

EvoMiner 31

meaningful. Thus, any such FST on the leafset L will give completely new
set of phylogenetic relationships, i.e., those not covered by any of the MASTs
either in part or total. For example, the FST in Fig. 4 displays relationship
among species s1 − s4. The corresponding set of MASTs (see Fig. 4) don't
include a tree T such that |LT ∩ (s1− s4) | ≥ 3. Thus, none of the MASTs
display any of the any of the phylogenetic relationships displayed by the FST.

Clearly, FSTs in both categories can be identi�ed by comparing the set of
all MASTs with the set of all FSTs.

Majority Rule Tree. FSTs tend to be more resolved than the MRT. One way
to identify such interesting FSTs can be to compare the set of all FSTs with
the MRT using (1) and then keep aside the subset of FSTs that have show
maximum resolution with respect to the MRT. This can be further re�ned by
analyzing the parts of the MRT that are poorly resolved. For example, in Fig. 4,
consider the internal node corresponding to the cluster C = {s1, s2, s3, s4, s8}
in the MRT. This internal node exhibits a star-like structure with respect to
it's children, i.e., no phylogenetic relationships can be drawn among the leafset
C. The remaining part of the MRT is well resolved. Thus, instead of comparing
the MRT with all the FSTs, considering only FSTs having leafset subset of C
makes more sense. The FST shown in Fig. 4 is one such FSTs. One can get
more precise if the set of triplets in line 2 of the EvoMiner algorithm (see
Fig. 9) includes only triplets from the leafset C. This will mine only those FSTs
whose leafset is a subset of C.

5 Conclusion

We introduced EvoMiner, a new algorithm for mining frequent subtrees in
phylogenetic databases. We compared our work with Phylominer, another al-
gorithm for the same problem, and showed speed-ups of up to 100 times, and
sometimes more. We also demonstrated the utility of FST mining as a way to
extract meaningful phylogenetic information from collections of trees, making
it a valuable alternative to MASTs and MRTs in various settings. We now
mention some directions for future work.

The sheer number of FSTs can overwhelm a user. One could instead mine
for maximal and closed subtrees [16]. While there has been signi�cant work
on this subject [83, 36, 78, 18, 28, 81], for reasons mentioned in Sections 1.1.1
and 2.2, mining maximal phylogenetic subtrees demands a separate approach.
We intend to investigate whether we can extend EvoMiner for this purpose.
Note that the number of MASTs can grow exponentially with the number of
leaves [50]; the number of maximal and closed subtrees will grow at least as
fast. Thus, we intend to develop an approach that will mine a `representative'
set of FSTs that will be pair-wise distinct and well sampled from the entire
set (along the lines of [89]). Another way to handle large datasets can be to
use a parallel implementation [23] or to explore approximate solutions [49].

32 Akshay Deepak et al.

An important open problem is to derive bounds on the number of FSTs.
Such bounds would be useful for EvoMiner and EvoMinerDF, as they
would allow us to estimate the progress of those algorithms, giving the end-
user the option to mine only some desired fraction of the total. Bounds of
this sort have been derived for frequent sequential patterns [66], but it is not
obvious to extend these results to frequent subtrees.

In addition to pure topology, phylogenetic trees typically have other at-
tributes, such as support values for nodes and branch lengths. To our knowl-
edge, the problem of mining phylogenies with such attributes has not been
studied. Finally, it would be interesting to see if one can apply the �ngerprint-
ing technique for the downward closure operation for mining arbitrary trees,
not just phylogenies.

Acknowledgments

This work was supported in part by National Science Foundation grant DEB-
0829674. The authors thank Drs. Sen Zhang and Jason T. L. Wang for shar-
ing the source code of Phylominer and discussions on their work. They also
thank Drs. Seung-Jin Sul and Ti�ani L. Williams for sharing the datasets from
Bayesian analyses, and Dr. Nicholas D. Pattengale for sharing the datasets con-
sisting of bootstrapped trees. A special thanks to the anonymous reviewers at
KAIS whose detailed comments helped greatly in improving the paper.

References

1. Aggarwal CC, Wang H (2010) Managing and Mining Graph Data, Ad-
vances in Database Systems, vol 40. Springer

2. Agrawal R, Mannila H, Srikant R, Toivonen H, Verkamo A (1996) Fast
Discovery of Association Rules. Advances in Knowledge Discovery and
Data Mining 12:307�328

3. Amenta N, Clarke F, John KS (2003) A linear-time majority tree algo-
rithm. In: Proceedings of the 3rd Workshop on Algorithms in Bioinfor-
matics (WABI'03), pp 216�227

4. Amir A, Keselman D (1994) Maximum agreement subtree in a set of evo-
lutionary trees. SIAM Journal on Computing 26:758�769

5. Asai T, Abe K, Kawasoe S, Arimura H, Sakamoto H, Arikawa S (2002)
E�cient substructure discovery from large semi-structured data. In: Pro-
ceedings of the SIAM International Conference on Data Mining, pp 158�
174

6. Asai T, Arimura H, Uno T, Nakano Si (2003) Discovering frequent sub-
structures in large unordered trees. In: Proceedings of the 6th International
Conference on Discovery Science, pp 47�61

7. Ayres J, Flannick J, Gehrke J, Yiu T (2002) Sequential pattern mining us-
ing a bitmap representation. In: Proceedings of the Eighth ACM SIGKDD

EvoMiner 33

International Conference on Knowledge Discovery and Data Mining, pp
429�435

8. Barns S, Delwiche C, Palmer J, Pace N (1996) Perspectives on archaeal di-
versity, thermophily and monophyly from environmental rRNA sequences.
Proceedings of the National Academy of Sciences 93:9188�9193

9. Baum D (2008) Reading a phylogenetic tree: The meaning of monophyletic
groups. Nature Education 1(1)

10. Bei Y, Chen G, Shou L, Li X, Dong J (2009) Bottom-up discovery of
frequent rooted unordered subtrees. Information Sciences 179:70�88

11. Bender M, Farach-Colton M (2000) The LCA problem revisited. In: Pro-
ceedings of the 4th Latin American Symposium on Theoretical Informat-
ics, pp 88�94

12. Bhaskar R, Laxman S, Smith A, Thakurta A (2010) Discovering frequent
patterns in sensitive data. In: Proceedings of the 16th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp
503�512

13. Bryant D (1997) Building trees, hunting for trees and comparing trees.
PhD thesis, University of Canterbury, New Zealand

14. Bryant D (2003) A classi�cation of consensus methods for phylogenet-
ics. DIMACS Series in Discrete Mathematics and Theoretical Computer
Science 61:163�184

15. Chi Y, Yang Y, Muntz RR (2003) Indexing and mining free trees. In:
Proceedings of the IEEE International Conference on Data Mining, pp
509�512

16. Chi Y, Muntz R, Nijssen S, Kok J (2004) Frequent Subtree Mining � An
Overview. Fundamenta Informaticae 66:161�198

17. Chi Y, Yang Y, Muntz R (2004) Hybridtreeminer: An e�cient algorithm
for mining frequent rooted trees and free trees using canonical forms. In:
Proceedings of the 16th International Conference on Scienti�c and Statis-
tical Database Management, pp 11�20

18. Chi Y, Xia Y, Yang Y, Muntz R (2005) Mining closed and maximal fre-
quent subtrees from databases of labeled rooted trees. IEEE Transactions
on Knowledge and Data Engineering 17:190�202

19. Cole R, Farach-Colton M, Hariharan R, Przytycka T, Thorup M (2000)
An O(n log n) algorithm for the maximum agreement subtree problem for
binary trees. SIAM Journal on Computing 30:1385�1404

20. Currie TE, Greenhill SJ, Gray RD, Hasegawa T, Mace R (2010) Rise
and fall of political complexity in island South-East Asia and the Paci�c.
Nature 467:801�804

21. Daubin V, Gouy M, Perrière G (2002) A phylogenomic approach to bac-
terial phylogeny: evidence of a core of genes sharing a common history.
Genome Research 12:1080�1090

22. De Vienne D, Giraud T, Martin O (2007) A congruence index for testing
topological similarity between trees. Bioinformatics 23:3119�3124

23. Do T, Laurent A, Termier A (2010) Pglcm: E�cient parallel mining of
closed frequent gradual itemsets. In: Proceedings of the 10th IEEE Inter-

34 Akshay Deepak et al.

national Conference on Data Mining, pp 138�147
24. Dong S, Kraemer E (2004) Calculation, visualization, and manipulation

of masts (maximum agreement subtrees). In: Proceedings of the IEEE
Computational Systems Bioinformatics Conference CSB, pp 405�414

25. Farach M, Thorup M (1994) Fast comparison of evolutionary trees. In:
Proceedings of the 5th Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pp 481�488

26. Farach M, Przytycka T, Thorup M (1995) On the agreement of many trees.
Information Processing Letters 55:297�301

27. Felsenstein J (1985) Con�dence limits on phylogenies: An approach using
the bootstrap. Evolution 39:783�791

28. Feng B, Xu Y, Zhao N, Xu H (2010) A new method of mining frequent
closed trees in data streams. In: Proceedings of the Seventh International
Conference on Fuzzy Systems and Knowledge Discovery (FSKD), pp 2245�
2249

29. Finden C, Gordon A (1985) Obtaining common pruned trees. Journal of
Classi�cation 2:255�276

30. Flint-Garcia S, Thuillet A, Yu J, Pressoir G, Romero S, Mitchell S, Doe-
bley J, Kresovich S, Goodman M, Buckler E (2005) Maize association
population: a high-resolution platform for quantitative trait locus dissec-
tion. The Plant Journal 44:1054�1064

31. Ganapathysaravanabavan G, Warnow T (2001) Finding a maximum com-
patible tree for a bounded number of trees with bounded degree is solvable
in polynomial time. In: Proceedings of the International Workshop on Al-
gorithms in Bioinformatics, pp 156�163

32. Geerts F, Goethals B, Bussche J (2005) Tight upper bounds on the number
of candidate patterns. ACM Transactions on Database Systems (TODS)
30:333�363

33. Goddard W, Kubicka E, Kubicki G, McMorris F (1994) The agreement
metric for labeled binary trees. Mathematical Biosciences 123:215�226

34. Gray R, Drummond A, Greenhill S (2009) Language phylogenies reveal
expansion pulses and pauses in Paci�c settlement. Science 323:479�483

35. Guillemot S, Berry V (2010) Fixed-parameter tractability of the maxi-
mum agreement supertree problem. IEEE/ACM Transactions on Compu-
tational Biology and Bioinformatics 7:342�353

36. Hadzic F, Tan H, Dillon T, Hadzic F, Tan H, Dillon T (2010) Mining
maximal and closed frequent subtrees. In: Mining of Data with Complex
Structures, Studies in Computational Intelligence, vol 333, Springer Berlin
/ Heidelberg, pp 191�199

37. Han J, Pei J (2000) Mining frequent patterns by pattern-growth: method-
ology and implications. ACM SIGKDD Explorations Newsletter 2:14�20

38. Han J, Pei J, Yin Y (2000) Mining frequent patterns without candidate
generation. In: Proceedings of the 2000 ACM SIGMOD International Con-
ference on Management of Data, pp 1�12

39. Han J, Pei J, Mortazavi-Asl B, Pinto H, Chen Q, Dayal U, Hsu M (2001)
Pre�xspan: Mining sequential patterns e�ciently by pre�x-projected pat-

EvoMiner 35

tern growth. In: Proceedings of the 17th International Conference on Data
Engineering, pp 215�224

40. Han J, Pei J, Yin Y, Mao R (2004) Mining frequent patterns without
candidate generation: A frequent-pattern tree approach. Data Mining and
Knowledge Discovery 8:53�87

41. Harel D, Tarjan R (1984) Fast algorithms for �nding nearest common
ancestors. SIAM Journal on Computing 13:338�355

42. Hromkovi£ J (2005) Abundance of witnesses. In: Design and Analysis
of Randomized Algorithms, Texts in Theoretical Computer Science. An
EATCS Series, Springer Berlin Heidelberg, pp 183�207

43. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phy-
logenetic trees. Bioinformatics 17:754�755

44. Jia Y, Zhang J, Huan J (2011) An e�cient graph-mining method for com-
plicated and noisy data with real-world applications. Knowledge and In-
formation Systems 28:423�447

45. Jimenez A, Berzal F, Cubero J (2010) Frequent tree pattern mining: A
survey. Intelligent Data Analysis 14:603�622

46. Jimenez A, Berzal F, Cubero J (2010) Potminer: mining ordered, un-
ordered, and partially-ordered trees. Knowledge and Information Systems
23:199�224

47. Kao M, Lam T, Sung W, Ting H (2001) An even faster and more unifying
algorithm for comparing trees via unbalanced bipartite matchings. Journal
of Algorithms 40:212�233

48. Karp R, Rabin M (1987) E�cient randomized pattern-matching algo-
rithms. IBM Journal of Research and Development 31:249�260

49. Ke Y, Cheng J, Yu J (2009) E�cient discovery of frequent correlated sub-
graph pairs. In: Proceedings of the Ninth IEEE International Conference
on Data Mining, pp 239�248

50. Kubicka E, Kubicki G, McMorris F (1992) On agreement subtrees of two
binary trees. Congressus Numerantium 88:217�217

51. Lapointe F, Rissler L (2005) Congruence, consensus, and the compara-
tive phylogeography of codistributed species in California. The American
Naturalist 166:290�299

52. Lewis L, Lewis P (2005) Unearthing the molecular phylodiversity of desert
soil green algae (Chlorophyta). Systematic Biology 54:936�947

53. Liu H, Lin Y, Han J (2011) Methods for mining frequent items in data
streams: an overview. Knowledge and Information Systems 26:1�30

54. Liu L, Liu J (2011) Mining frequent embedded subtree from tree-like
databases. In: Proceedings of the International Conference on Internet
Computing & Information Services (ICICIS), pp 3�7

55. Margush T, McMorris F (1981) Consensus n-trees. Bulletin of Mathemat-
ical Biology 43:239�244

56. Mau B, Newton M, Larget B (1999) Bayesian phylogenetic inference via
Markov chain Monte Carlo methods. Biometrics 55:1�12

57. Motwani R, Raghavan P (1995) Randomized algorithms, Cambridge:
Cambridge Univ, chap 7

36 Akshay Deepak et al.

58. NCBI (2002) Tree facts: Rooted versus unrooted trees. Online,
URL http://www.ncbi.nlm.nih.gov/Class/NAWBIS/Modules/

Phylogenetics/phylo9.html

59. Nguyen V, Yamamoto A (2010) Incremental mining of closed frequent
subtrees. In: Pfahringer B, Holmes G, Ho�mann A (eds) Discovery Sci-
ence, Lecture Notes in Computer Science, vol 6332, Springer, Berlin /
Heidelberg, pp 356�370

60. Nijssen S, Kok J (2003) E�cient discovery of frequent unordered trees. In:
Proceedings of the International Workshop on Mining Graphs, Trees and
Sequences, pp 55�64

61. Pattengale N, Aberer A, Swenson K, Stamatakis A, Moret B (2011) Uncov-
ering hidden phylogenetic consensus in large datasets. IEEE/ACM Trans-
actions on Computational Biology and Bioinformatics 8:902�911

62. Pei J, Han J (2002) Constrained frequent pattern mining: A pattern-
growth view. ACM SIGKDD Explorations Newsletter 4:31�39

63. Pei J, Han J, Mortazavi-Asl B, Wang J, Pinto H, Chen Q, Dayal U, Hsu M
(2004) Mining sequential patterns by pattern-growth: The pre�xspan ap-
proach. IEEE Transactions on Knowledge and Data Engineering 16:1424�
1440

64. Pei J, Han J, Wang W (2007) Constraint-based sequential pattern mining:
the pattern-growth methods. Journal of Intelligent Information Systems
28:133�160

65. Piel W, Donoghue M, Sanderson M (2002) Treebase: a database of phy-
logenetic knowledge. In: J. Shimura, K. L. Wilson and D. Gordon, eds.

To the Interoperable �Catalog of Life� with Partners, Species 2000 Asia
Oceania, Research Report from the National Institute for Environmental
Studies , Tsukuba, Japan, 171, pp 41�47

66. Raissi C, Pei J (2011) Towards bounding sequential patterns. In: Proceed-
ings of the 17th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp 1379�1387

67. Rannala B, Yang Z (2008) Phylogenetic inference using whole genomes.
Annual Review of Genomics and Human Genetics 9:217�231

68. Sanderson M, Boss D, Chen D, Cranston K, Wehe A (2008) The Phy-
LoTA browser: processing GenBank for molecular phylogenetics research.
Systematic Biology 57:335�346

69. Sanderson M, McMahon M, Steel M (2011) Terraces in phylogenetic tree
space. Science 333:448�450

70. Schieber B, Vishkin U (1988) On �nding lowest common ancestors: sim-
pli�cation and parallelization. SIAM Journal on Computing 17:1253�1262

71. Scornavacca C (2009) Supertree methods for phylogenomics. PhD thesis,
University of Montpellier II, Montpellier, France

72. Semple C, Steel M (2003) Phylogenetics. Oxford Lecture Series in Math-
ematics, Oxford University Press, Oxford

73. Slowinski J, Keogh J (2000) Phylogenetic relationships of elapid snakes
based on cytochrome b mtDNA sequences. Molecular Phylogenetics and
Evolution 15:157�164

http://www.ncbi.nlm.nih.gov/Class/NAWBIS/Modules/Phylogenetics/phylo9.html
http://www.ncbi.nlm.nih.gov/Class/NAWBIS/Modules/Phylogenetics/phylo9.html

EvoMiner 37

74. Smith M, Patton J (1999) Phylogenetic relationships and the radiation
of sigmodontine rodents in South America: Evidence from cytochrome b.
Journal of Mammalian Evolution 6:89�128

75. Steel M, Warnow T (1993) Kaikoura tree theorems: computing the maxi-
mum agreement subtree. Information Processing Letters 48:77�82

76. Sul S, Williams T (2009) An experimental analysis of consensus tree algo-
rithms for large-scale tree collections. In: Proceedings of the International
Symposium on Bioinformatics Research and Applications, pp 100�111

77. Swenson K, Chen E, Pattengale N, Sanko� D (2011) The Kernel of Max-
imum Agreement Subtrees. In: Proceedings of the International Sympo-
sium on Bioinformatics Research and Applications, pp 123�135

78. Termier A, Rousset M, Sebag M (2004) Dryade: a new approach for discov-
ering closed frequent trees in heterogeneous tree databases. In: Proceedings
of the IEEE International Conference on Data Mining, pp 543�546

79. Wang C, Hong M, Pei J, Zhou H, Wang W, Shi B (2004) E�cient pattern-
growth methods for frequent tree pattern mining. In: Dai H, Srikant R,
Zhang C (eds) Advances in Knowledge Discovery and Data Mining, Lec-
ture Notes in Computer Science, vol 3056, Springer, Berlin / Heidelberg,
pp 441�451

80. Wang J, Shan H, Shasha D, Piel W (2005) Fast structural search in phy-
logenetic databases. Evolutionary Bioinformatics Online 1:37�46

81. Wang S, Hong Y, Yang J (2012) XML document classi�cation using closed
frequent subtree. In: Bao Z, Gao Y, Gu Y, Guo L, Li Y, Lu J, Ren Z, Wang
C, Zhang X (eds) Web-Age Information Management, Lecture Notes in
Computer Science, vol 7419, Springer Berlin, Heidelberg, pp 350�359

82. Wu X, Kumar V, Ross Quinlan J, Ghosh J, Yang Q, Motoda H, McLachlan
G, Ng A, Liu B, Yu P, et al (2008) Top 10 algorithms in data mining.
Knowledge and Information Systems 14:1�37

83. Xiao Y, Yao J (2003) E�cient data mining for maximal frequent subtrees.
In: Proceedings of the IEEE International Conference on Data Mining, pp
379�386

84. Yang LH, Lee ML, Hsu W, Acharya S (2003) Mining frequent query pat-
terns from XML queries. In: Proceedings of the Eighth International Con-
ference on Database Systems for Advanced Applications, pp 355�362

85. Yule G (1925) A mathematical theory of evolution, based on the con-
clusions of Dr. JC Willis, F.R.S. Philosophical Transactions of the Royal
Society of London Series B, Containing Papers of a Biological Character
213:21�87

86. Zaki M (2004) E�ciently mining frequent embedded unordered trees. Fun-
damenta Informaticae 66:33�52

87. Zaki M (2005) E�ciently mining frequent trees in a forest: Algorithms
and applications. IEEE Transactions on Knowledge and Data Engineering
17:1021�1035

88. Zhang S, Wang J (2008) Discovering frequent agreement subtrees from
phylogenetic data. IEEE Transactions on Knowledge and Data Engineer-
ing 20:68�82

38 Akshay Deepak et al.

89. Zhang S, Yang J, Li S (2009) Ring: An integrated method for frequent
representative subgraph mining. In: Proceedings of the Ninth IEEE Inter-
national Conference on Data Mining, pp 1082�1087

90. Zou X, Zhang F, Zhang J, Zang L, Tang L, Wang J, Sang T, Ge S (2008)
Analysis of 142 genes resolves the rapid diversi�cation of the rice genus.
Genome Biology 9:R49

91. Zou Z, Gao H, Li J (2010) Discovering frequent subgraphs over uncer-
tain graph databases under probabilistic semantics. In: Proceedings of the
16th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp 633�642

EvoMiner 39

Author Biographies

Akshay Deepak is a postdoctoral research associate
in the Department of Electrical and Computer
Engineering, Iowa State University, USA. His research
interests include algorithms in computational biology,
frequent subtree mining, software reliability.

David Fernández-Baca is a professor in the
Department of Computer Science, Iowa State
University, USA. His research interest include
combinatorial algorithms, phylogenetic tree
construction, sensitivity analysis of optimization
problems. Web: http://www.cs.iastate.edu/
people/facultyview.jsp?fname=David

Srikanta Tirthapura is an associate professor in
the Department of Electrical and Computer
Engineering, Iowa State University, USA. His research
interests include algorithms and software tools for
large scale data analysis, and in particular, real-time
analysis of data streams. Web:
http://home.eng.iastate.edu/~snt/

Michael J. Sanderson is a professor in the
Department of Ecology and Evolutionary Biology,
University of Arizona, USA. His research is aimed at
developing algorithms and software for assembling
data from the large sequences databases for the
purpose of building comprehensive phylogenetic trees.
Web:
http://loco.biosci.arizona.edu/sanderson.html

Michelle McMahon is an associate professor in The
School of Plant Sciences, Ecology and Evolutionary
Biology, University of Arizona, USA. She researches
phylogenetic and phylogenomic methods, systematics
of the legume family (Fabaceae), and phylogenetic
diversity of regional �oras. She also directs the UA
Herbarium. Web:
http://cals.arizona.edu/spls/node/134

http://www.cs.iastate.edu/people/facultyview.jsp?fname=David
http://www.cs.iastate.edu/people/facultyview.jsp?fname=David
http://home.eng.iastate.edu/~snt/
http://loco.biosci.arizona.edu/sanderson.html
http://cals.arizona.edu/spls/node/134

	1 Introduction
	2 Preliminaries
	3 The EvoMiner Algorithm
	4 Experiments and Results
	5 Conclusion

