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Abstract—We consider the enumeration of maximal bipartite cliques (bicliques) from a large graph, a task central to many data mining
problems arising in social network analysis and bioinformatics. We present novel parallel algorithms for the MapReduce framework,
and an experimental evaluation using Hadoop MapReduce. Our algorithm is based on clustering the input graph into smaller
subgraphs, followed by processing different subgraphs in parallel. Our algorithm uses two ideas that enable it to scale to large graphs:
(1) the redundancy in work between different subgraph explorations is minimized through a careful pruning of the search space, and
(2) the load on different reducers is balanced through a task assignment that is based on an appropriate total order among the vertices.
We show theoretically that our algorithm is work optimal i.e. it performs the same total work as its sequential counterpart. We present a
detailed evaluation which shows that the algorithm scales to large graphs with millions of edges and tens of millions of maximal
bicliques. To our knowledge, this is the first work on maximal biclique enumeration for graphs of this scale.
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1 INTRODUCTION

A graph is a natural abstraction to model relationships
in data, and massive graphs are ubiquitous in today’s ap-
plications. Graphs have been widely used in online social
networks (e.g. Mislove et al. (2007); Newman et al. (2002)),
information retrieval from the web (e.g. Broder et al. (2000)),
citation networks (e.g. An et al. (2004)) and in physical
simulation and modeling (e.g. Wodo et al. (2012)). Finding
patterns and insights from such data can often be reduced
to mining substructures from massive graphs. We consider
scalable methods for discovering densely connected sub-
graphs within a large graph. Mining dense substructures
such as cliques, quasi-cliques, bicliques, quasi-bicliques etc.
is an important and widely studied research area (see Alexe
et al. (2004); Gibson et al. (2005); Abello et al. (2002); Sim
et al. (2006)).

We focus on a fundamental dense substructure called a
biclique. A biclique in an undirected graph G = (V,E) is a
pair of subsets of vertices L ⊆ V and R ⊆ V such that (1) L
and R are disjoint and (2) there is an edge (u, v) ∈ E for
every u ∈ L and v ∈ R. For instance, consider the following
graph relevant to an online social network, where there are
two types of vertices, users and webpages. There is an edge
between a user and a webpage if the user “likes” the web-
page on the social network. A biclique in this graph consists
of a set of users U and a set of webpages W such that every
user in U has liked every page in W . Uncovering such a
biclique yields a set of users sharing a common interest, and
is valuable for understanding and predicting the actions of
users on this social network. Usually, it is useful to identify
maximal bicliques in a graph, which are those bicliques that
are not contained within any other larger bicliques. (see
Figure 1 for example). We consider the problem of enumerating
all maximal bicliques (MBE) from a graph.
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Fig. 1: Maximal Bicliques

Many applications in mining data from the web and
online social networks have relied on biclique enumeration
on an appropriately defined graph. Yi and Maghoul (2009)
considered the “click-through” graph for the analysis of
web search queries. This graph has two types of vertices,
web search queries and web pages. There is an edge from
a search query to every page that a user has clicked in
response to the search query. MBE was used in clustering
queries using the click through graph. MBE has been used
by Lehmann et al. (2008) in social network analysis, in
detection of communities in social networks and the web
by Kumar et al. (1999); Rome and Haralick (2005), and in
finding antagonistic communities in trust-distrust networks
by Lo et al. (2011). MBE is also useful in detecting “hidden”
communities in networks. Consider a group of users in an
online social network such as Facebook. Suppose the users
don’t know each other and are not directly connected to
each other in the network. However suppose that they all
“like” a set of musicians. Although they are not connected
directly, they are closely related by virtue of their common
interests. Such communities can be detected using MBE.

In bioinformatics, MBE has been used in constructing the
phylogenetic tree of life (see Driskell et al. (2004); Sanderson
et al. (2003); Yan et al. (2005); Nagarajan and Kingsford
(2008)), in discovery and analysis of structure in protein-



protein interaction networks (see Bu et al. (2003); Schweiger
et al. (2011)), analysis of gene-phenotype relationships by Xi-
ang et al. (2012), prediction of miRNA regulatory modules
as described by Yoon and Micheli (2005), modeling of hot
spots at protein interfaces by Li and Liu (2009), and in the
analysis of relationships between genotypes, lifestyles, and
diseases by Mushlin et al. (2007). In other contexts, MBE has
been used in Learning Context Free Grammars (Yoshinaka
(2011)), finding correlations in databases (Jermaine (2005)),
data compression (Agarwal et al. (1994)), role mining in role
based access control (Colantonio et al. (2010)), and process
operation scheduling (Mouret et al. (2011)).

However, prior methods for MBE have not been shown
to scale to large graphs and have the following drawbacks.
First, most methods are sequential algorithms that are un-
able to use the power of multiple processors; there is very
little work on parallel methods for MBE. For handling large
graphs, it is imperative to have methods that can process
a graph in parallel. Next, they have been evaluated only
on relatively small graphs with a few thousand vertices
and a few thousand bicliques. For instance, the popular
“consensus” method for biclique enumeration by Alexe
et al. (2004) presents experimental data only on random
graphs of a low density with up to 2,000 vertices and a few
thousand maximal cliques. Other works such as Li et al.
(2007); Liu et al. (2006) are similar.

Our goal is to design a parallel method that can enumerate
maximal bicliques from a large graph with millions of edges and
tens of millions of maximal bicliques, and which can scale with
the number of processors.

1.1 Contributions

We present a parallel algorithm for MBE. At a high level,
our algorithm clusters the input graph into overlapping sub-
graphs that are typically much smaller than the input graph,
and processes these subgraphs using different parallel tasks.

For the above cluster generation approach to be effec-
tive on large graphs, we needed to solve two problems.
The first problem is the overlap in work within different
tasks. For biclique enumeration, it is usually not possible
to assign disjoint subgraphs to different tasks, and sub-
graphs assigned to different tasks will overlap, sometimes
significantly. The challenge is to ensure that work done
in different tasks overlap as little as possible with each
other. We accomplish this through a careful partitioning
of the search space so that even if different tasks are pro-
cessing overlapping subgraphs, they still explore disjoint
portions of the search space. The second problem is load
balancing among different tasks. With a graph analysis task
such as biclique enumeration, the complexities of different
subgraphs vary significantly, roughly depending on the
density of edges in the subgraph. With a naive assignment
of subgraphs to tasks, this will lead to a case where most
tasks finish quickly, while a few take a long time, leading
to a poor parallel performance. We present a solution to
keep the load more balanced, using an ordering of vertices
that reduces enumeration load on subgraphs that are dense,
and increases the load on subgraphs that are sparse, leading
to a better load balance overall. We present two different
ordering techniques to achieve this load balance, one based
on the size of the neighborhood of the vertex (Algorithm

CD1) and the other based on the size of the 2-neighborhood
of the vertex (Algorithm CD2).

We provide a theoretical analysis of our algorithms,
including proofs of correctness and analysis of computation
and communication. Significantly, we show that our parallel
algorithms are work-efficient, in that the total computation
cost of the algorithm across all processors is of the same
order as a sequential algorithm for MBE.

We also consider the related problem of generating only
large maximal bicliques, which have at least a certain
number of vertices. Our parallel algorithms can be adapted
to this case, using appropriate changes to underlying se-
quential algorithms.

We also considered another approach to parallel MBE,
using a direct parallelization of the “consensus” algorithm
due to Alexe et al. (2004), which is probably the most
commonly used sequential algorithm for MBE. We found
that this method (i.e. parallelization of the consensus algo-
rithm) takes substantially greater runtime than our cluster-
ing based method.

We design our algorithms for the MapReduce frame-
work (Dean and Ghemawat (2004, 2008)) and implement it
using Hadoop MapReduce. We present detailed experimen-
tal results on real-world and synthetic graphs. Overall, the
cluster generation approach using a sequential algorithm based
on depth-first-search, when combined with our pruning and load
balancing optimizations, performs the best on large graphs, and
provides speedups of an order of magnitude over simpler ap-
proaches to parallelization. This algorithm can process graphs
with millions of edges and tens of millions of maximal
bicliques, and can scale out with the cluster size. To our
knowledge, these are the largest reported graph instances
where bicliques have been successfully enumerated.

Finally although our methods are presented in the con-
text of MBE, the general framework can be readily adapted
to related optimization problems such as the Maximum
Edge Biclique problem and the Maximal Quasi-Biclique
Enumeration problem.

1.2 Prior and Related Work

There are two general approaches to sequential algorithms
for MBE, the “consensus” approach due to Alexe et al.
(2004), and an approach based on recursive depth-first-
search (DFS) combined with branch-and-bound (Uno et al.
(2004); Li et al. (2007); Liu et al. (2006)).

The consensus method (Alexe et al. (2004)) is a popular
iterative algorithm for MBE. Here, the algorithm starts off
with a set of simple maximal bicliques and then expands
to the set of all maximal bicliques through a sequence of
repeated cross-products between current structures. We de-
veloped a direct parallelization of the consensus algorithm,
but we found that this method performs poorly compared
with our cluster generation approach; details are presented
in subsequent sections.

Among the DFS based approaches, Li et al. (2007)
present an approach based on a connection with mining
closed patterns in a transactional database and Liu et al.
(2006) present a more direct algorithm based on depth first
search. Our parallel algorithm uses a sequential algorithm
for processing bicliques within each task, and we considered
both the consensus and the DFS based algorithms; the DFS-



based algorithms ran faster overall, and it was easier to
optimize the DFS based methods.

Another approach to MBE is through a reduction to
the problem of enumerating maximal cliques, as described
by Gély et al. (2009). Given a graph G on which we need
to enumerate maximal bicliques, a new graph G′ is derived
such that through enumerating maximal cliques in G′ using
an algorithm such as by Tomita et al. (2006); Tsukiyama
et al. (1977), it is possible to derive the maximal bicliques in
G. However, this approach is not practical for large graphs
since in going from G to G′, the number of edges in the
graph increases significantly.

Parallel algorithms for maximal clique enumeration have
been proposed by Svendsen et al. (2014); Xu et al. (2014).
Like our method, these also perform optimizations in the
depth first search paths to reduce redundancy. However,
these optimizations are specific to the algorithm used and
are different from the ones that we use. Note that the
maximal clique is a structure that is more “local” than
a maximal biclique in the sense that a maximal clique is
present within the 1-neighborhood of a vertex in a graph
while a maximal biclique goes beyond the 1-neighborhood
but is contained in a 2-neighborhood of a vertex. Hence, the
difficulty of obtaining an effective parallelization of MBE is
higher than that of Maximal Clique Enumeration.

Makino and Uno (2004) describe methods to enumerate
all maximal bicliques in a bipartite graph, with the delay
between outputting two bicliques bounded by a polynomial
in the maximum degree of the graph. Zhang et al. (2008) de-
scribe a branch-and-bound algorithm for the same problem.
However, these approaches do not work for general graphs,
as we consider here.

There is a variant of MBE where we only seek induced
maximal bicliques in a graph. A maximal biclique 〈L,R〉
in graph G is an induced maximal biclique if L and R
are themselves independent sets in G. We consider the
non-induced version, where edges are allowed in the graph
between two vertices that are both in L, or both in R (such
edges are of course, not a part of the biclique). The set of
maximal bicliques that we output will also contain the set
of induced maximal bicliques, which can be obtained by
post-processing the output of our algorithm. Note that for a
bipartite graph, every maximal biclique is also an induced
maximal biclique. Algorithms for Induced MBE include
work by Eppstein (1994), Dias et al. (2005), and Gaspers
et al. (2008).

To our knowledge, the only prior work on parallel algo-
rithms for MBE is by Nataraj and Selvan (2009). However,
this work does not explore aspects of load balancing and
total work like we do here. Moreover, their evaluations are
not for large graphs; the largest graph they consider has 500
vertices and about 9000 edges.

MBE is related to, but different from the problem of
finding the largest sized biclique within a graph (maximum
biclique). There are a few variants of the maximum biclique
problem, including maximum edge biclique, which seeks
the biclique in the graph with the largest number of edges,
and maximum vertex biclique, which seeks a biclique with
the largest number of vertices; for further details and vari-
ants, see Dawande et al. (2001). MBE is computationally
harder than finding a maximum biclique, since it requires

TABLE 1: Summary of Notation
Notation Description

G = (V,E) A simple undirected graph with vertex set V
and edge set E

n,m Number of vertices and number of edges, re-
spectively.

∆ Maximum degree of a vertex in G
B = 〈L,R〉 Biclique with edges connecting vertex set Lwith

vertex set R
s Size threshold for |L|+ |R|
η(u) Set of vertices in G adjacent to vertex u
ηk(u) All vertices that can be reached from u in k hops

or fewer
η(U)

⋃
u∈U

η(u)

ηk(U)
⋃

u∈U
ηk(u)

Γ(U)
⋂

u∈U
η(u)

the enumeration of all maximal bicliques, including all
maximum bicliques.

2 PRELIMINARIES

We present the problem definition and briefly review the
MapReduce parallel programming model.

2.1 Problem Definition
We consider a simple undirected graph G = (V,E) without
self-loops or multiple edges, where V is the set of all vertices
and E is the set of all edges of the graph. Let n = |V |
and m = |E|. Graph H = (V1, E1) is said to be a sub-
graph of graph G if V1 ⊂ V and E1 ⊂ E. H is known as
an induced subgraph if E1 consists of all edges of G that
connect two vertices in V1. For vertex u ∈ V , let η(u) denote
the vertices adjacent to u. For a set of vertices U ⊆ V , let
η(U) =

⋃
u∈U

η(u). For vertex u ∈ V and k > 0, let ηk(u)

denote the set of all vertices that can be reached from u in
k hops or fewer. For U ⊆ V , let ηk(U) =

⋃
u∈U

ηk(u). We

call ηk(U) as the k-neighborhood of U . For a set of vertices
U ⊆ V , let Γ(U) =

⋂
u∈U

η(u).

A biclique B = 〈L,R〉 is a subgraph of G containing
two non-empty and disjoint vertex sets, L and R such
that for any two vertices u ∈ L and v ∈ R, there is
an edge (u, v) ∈ E. A biclique M = 〈L,R〉 in G is
said to be a maximal biclique if there is no other biclique
M ′ = 〈L′, R′〉 6= 〈L,R〉 such that L ⊂ L′ and R ⊂ R′.
The Maximal Biclique Enumeration Problem (MBE) is to
enumerate all maximal bicliques in G. Table 1 summarizes
the notation defined above.

2.2 Sequential Algorithms
We describe the two general approaches to sequential algo-
rithms for MBE that we consider, one based on depth first
search (Liu et al. (2006)) and another based on a “consensus
algorithm” (Alexe et al. (2004)).
2.2.1 Sequential DFS Algorithm
The basic sequential depth first approach (DFS) that we
use is described in Algorithm 1, based on work by Liu
et al. (2006). It attempts to expand an existing maximal
biclique into a larger one by including additional vertices
that qualify, and declares a biclique as maximal if it cannot
be expanded any further. The algorithm takes the following



inputs: (1) the graph G = (V,E), (2) the current vertex
set being processed, X , (3) T , the tail vertices of X , i.e.
all vertices that come after X in lexicographical ordering
and (4) s, the minimum size threshold below which a
maximal biclique is not enumerated. s can be set to 1 so
as to enumerate all maximal bicliques in the input graph.
However, we can set s to a larger value to enumerate only
large maximal bicliques such that for B = 〈L,R〉, we have
|L| ≥ s and |R| ≥ s. The size threshold s is provided as user
input. The other inputs are initialized as follows: X = ∅,
T = V .

The algorithm recursively searches for maximal bi-
cliques. It increases the size of X by recursively adding
vertices from the tail set T , and pruning away those vertices
from T which cannot be added to X to expand the biclique.
From the expanded X , the algorithm outputs the maximal
biclique 〈Γ(Γ(X)),Γ(X)〉. The algorithm is shown (Liu
et al. (2006)) to have computational complexity of O(n∆N),
where n is the number of vertices in the graph, ∆ is the
maximum vertex degree and N is the number of maximal
bicliques emitted.

Algorithm 1: MineLMBC(G,X ,T ,s)

1 forall the vertex v ∈ T do
2 if |Γ(X ∪ {v})| < s then
3 T ← T \ {v}

4 if |X|+ |T | < s then
5 return

6 Sort vertices in T as per ascending order of
|η(X ∪ {v})|

7 forall the vertex v ∈ T do
8 T ← T \ {v}
9 if |X ∪ {v}|+ |T | ≥ s then

10 N ← Γ(X ∪ {v})
11 Y ← Γ(N)
12 Biclique B ← 〈Y,N〉
13 if (Y \ (X ∪ {v})) ⊆ T then
14 if |Y | ≥ s then
15 Emit B as a maximal biclique

16 MineLMBC(G, Y , T \ Y , s)

2.2.2 Consensus Algorithm
Alexe et al. (2004) present an iterative approach to MBE. This
algorithm starts off with a set of simple “seed” bicliques. In
each iteration, it performs a “consensus” operation, which
involves performing a cross-product on the set of current
candidates bicliques with the seed bicliques, to generate a
new set of candidates, and the process continues until the
set of candidates does not change anymore. After each stage,
newly found bicliques can be expanded to (potentially) find
new maximal bicliques. After each step, duplicate maximal
bicliques can be dropped. It is proved that these algorithms
enumerate the set of maximal bicliques in the input graph.
Algorithm 2 shows the sequential consensus Algorithm. For
further details, we refer the reader to Alexe et al. (2004).

The consensus approach has a good theoretical guaran-
tee, since its runtime depends on the number of maximal

cliques that are output. In particular, the runtime of the
MICA version of the algorithm is proved to be bounded
by O

(
n3 ·N

)
where n is the number of vertices and N total

number of maximal bicliques inG. The consensus algorithm
has been found to be adequate for many applications and is
quite popular.

Algorithm 2: Sequential Consensus Algorithm

1 Load Graph G = (V,E)
2 R← Collection of all Stars in G // Biclique

formed by a vertex and its neighbors
3 S ← ∅
4 forall the b ∈ R do
5 m← Extend b
6 S ← S ∪m
7 O ← S; // Add seed set to the output
8 P ← S; // Initialize set PREV with SEED
9 repeat

10 T ← Consensus between all maximal bicliques in
S and P

11 C ← ∅
12 forall the b ∈ T do
13 m← Extend biclique b
14 if m is not a duplicate then
15 C ← C ∪m

16 O ← O ∪ C
17 P ← C
18 until N is Empty

2.3 Parallel Processing Framework

We focus on MapReduce, a popular parallel programming
framework (Dean and Ghemawat (2004, 2008); Ghemawat
et al. (2003)) for processing large data sets on a cluster
of commodity hardware. An algorithm for this framework
must be split up into one or more rounds where each
round must have a map and a reduce method. The map
method takes as input a key-value pair and emits zero
or more new key-value pairs. The framework groups all
tuples with the same value of the key and sorts them before
applying the reduce method on each key. All values for a
single key is sent to one reducer. The reducer processes
the list of all values for the key and emits key value
pairs which can again be the input to the next round.
The MapReduce system automatically breaks up the input
data into slices and performs the “map” computations in
parallell. It also takes care of interprocess communication,
load balancing, fault tolerance and data locality, so that the
programmer is freed from having to worry about other
complexities of parallel and distributed computation. We
use the open source ource implementation of MapReduce,
Hadoop (White (2009); Shvachko et al. (2010)). While we
evaluated an implementation on top of Hadoop MapRe-
duce, the idea in our parallel algorithm is more generally
applicable and can be adapted to other frameworks such
as Pregel (Malewicz et al. (2010)) and Spark (Zaharia et al.
(2012)).



3 PARALLEL ALGORITHMS FOR MBE
We describe our parallel algorithms for MBE, and present
an outline of how these are implemented using MapReduce.
We first present a basic cluster generation approach, which
can be used with any sequential algorithm for MBE, followed by
enhancements to the basic cluster generation approach.

3.1 Basic Cluster Generation Approach

For each v ∈ V , let subgraph (cluster) C(v) be defined as
the induced subgraph on all vertices in η2(v). We first note
the following.

Lemma 1. For any biclique B in G and vertex v in B, B is
maximal in G if and only if B is maximal in C(v).

Proof. Suppose B is maximal in G. Then we first note that B
is a subgraph of C(v). To see this, suppose that B = 〈L,R〉,
and without loss of generality, suppose v ∈ L. Then each
vertex in R is in η(v), and must be in C(v). Similarly, each
vertex in L is in η2(v), and must be in C(v). Since C(v)
is a vertex-induced subgraph, it must contain all edges as
well as the vertices of the biclique B. Next we show B must
be a maximal biclique in C(v). Suppose not, and B was
contained in another biclique B′ in C(v). Since B′ is also
present in G, this implies that B is not maximal in G, which
is a contradiction.

Consider a biclique M = 〈L,R〉 that is maximal in C(v),
and suppose v ∈ L. We show that M is a maximal biclique
in G. Clearly, M is present in G, so it only remains to be
proved that M is maximal in G. Suppose not, and there
was a biclique M ′ = 〈L′, R′〉 in G such that L ⊂ L′ and
R ⊂ R′, and M 6= M ′. We note that v ∈ L′, and hence
every vertex inR′ and L′ is contained in η2(v). Hence, every
vertex in M ′ is contained in C(v). Since C(v) is a vertex-
induced subgraph, every edge of M ′ is also contained in
C(v). This implies that M is not a maximal biclique in C(v),
which is a contradiction.

3.2 Algorithm CDFS – Suppressing Duplicates

With the above observation, a basic parallel algorithm for
MBE first constructs the different clusters {C(v)|v ∈ V },
and then enumerates the maximal bicliques in the different
clusters in parallel, using any sequential algorithm for MBE
for enumerating the bicliques within each cluster.

While each maximal biclique in G is indeed enumerated
by the above approach, the same biclique may be enumer-
ated multiple times. To suppress duplicates, the following
strategy is used: a maximal biclique B arising from cluster
C(v) is emitted only if v is the smallest vertex inB according
to a lexicographic total order on the vertices. The basic
cluster generation framework is generic and can be used
with any sequential algorithm for MBE. We have used a
variant of the DFS-based sequential algorithm due to Liu
et al. (2006), as well as the sequential consensus algorithm
due to Alexe et al. (2004). We call the above basic clustering
algorithm using DFS-based sequential algorithm as “CDFS”.

Observation 1. Algorithm CDFS enumerates every maximal
biclique in graph G = (V,E) exactly once.

There are two significant problems with the CDFS algo-
rithm as described above. First is redundant work. Although

each maximal biclique in G is emitted only once, through
suppressing duplicate output, it will still be generated
multiple times, in different clusters. This redundant work
significantly adds to the runtime of the algorithm. Second is
an uneven distribution of load among different subproblems.
The load on subproblem C(v) depends on two factors, the
complexity of cluster C(v) (i.e. the number and size of
maximal bicliques within C(v)) and the position of v in the
total order of the vertices. The earlier v appears in the total
order, the greater is the likelihood that a maximum biclique
in C(v) has v as its smallest vertex, and hence greater is
the responsibility for emitting bicliques that are maximal
within C(v). A lexicographic ordering of the vertices will
lead to a significantly increased workload for a cluster C(v)
if v appears early in the total order and a correspondingly
low workload for a cluster C(v) if v occurs later in the total
order.

3.3 Algorithm CD0 – Reducing Redundant Work

In order to reduce redundant work done at different clus-
ters, we begin with the basic cluster generation approach
and modify the sequential DFS algorithm for MBE that is
executed at each reducer. We first observe that in cluster
C(v), the only maximal bicliques that matter are those with
v as the smallest vertex; the remaining maximal bicliques
in C(v) will not be emitted by this reducer, and need not
be searched for here. We use this to prune the search space
of the sequential DFS algorithm used at the reducer. The
algorithm at the reducer is presented in Algorithms 7 and 8.

The above algorithm, the “optimized DFS clustering
algorithm”, or “CD0” for short, is described in Algorithm 3.
This takes two rounds of MapReduce. The first round, de-
scribed in Algorithms 4 (map) and 5 (reduce), is responsible
for generating the 1-neighborhood for each vertex. The sec-
ond round, described in Algorithms 6 (map) and 7 (reduce)
first constructs the clusters C(v) and runs the optimized
sequential DFS algorithm at the reducer to enumerate local
maximal bicliques. We assume that the graph is presented
as a file in HDFS organized as a list of edges with each line
in the file containing one edge. The flow of execution of this
Algorithm is described in Figure 2.

All search paths in the algorithm which lead to a maxi-
mal biclique having a vertex less than v can be safely pruned
away. Hence, before starting the DFS, we prune away all
vertices in the Tail set that are less than v, as described in
Algorithm 7. Also, in DFS Algorithm 8, we prune the search
path in Line 12 if the generated neighborhood contains a
vertex less than v – maximal bicliques along this search path
will not have v as the smallest vertex. Finally in Line 19 of
Algorithm 8, we emit a maximal biclique only if the smallest
vertex is the same as the key of the reducer in Algorithm 7.

Algorithm 3: Algorithm CD0

Input: Edge List of G = (V,E)
1 Execution Flow as per Figure 2

Since Algorithm 8 is a pruned version of the sequential
DFS Algorithm 1, the computation complexity of Algo-
rithm 8 is O (nc ·∆v ·N(v)), where nc is the number of



TABLE 2: Different versions of Parallel Algorithms based on Depth First Search (DFS)

Label Algorithm

CDFS Clustering based on Depth First Search (DFS)
CD0 CDFS + Reducing redundant work, without load balancing
CD1 CDFS + Reducing redundant work + load balancing using degree
CD2 CDFS + Reducing redundant work + load balancing using Size of 2-neighborhood

MapReduce Round 1
(Algorithms 4 & 5)

Create Adjacency List for vertex v

MapReduce Round 2
(Algorithms 6 & 7)

Create 2–neighborhood C(v)
Run Algorithm 8 on C(v)

Fig. 2: Execution flow for Algorithm 3 (CD0)

Algorithm 4: Algorithm CD0 Round One – Map

Input: Edge (x, y)
1 // Generate Adjacency List for vertices

x and y
2 Emit (key ← x,value← y)
3 Emit (key ← y,value← x)

Algorithm 5: Algorithm CD0 Round One – Reduce

Input: key = v, value = {v1, v2, · · · , vd}
1 // Generate Adjacency List for vertex v
2 N ← ∅
3 forall the val ∈ value do
4 N ← N ∪ val
5 // Add the neighbors of key to N

6 Emit (key ← v,value← N )

Algorithm 6: Algorithm CD0 Round Two – Map
Input: key = v,value = N

1 // Create Two Neighborhood for vertex v
2 Emit (key ← v,value← N )
3 forall the y ∈ N do
4 Emit (key ← y,value← 〈v,N〉)

Algorithm 7: Algorithm CD0 Round Two – Reduce
Input: key = v,

value = {η(v), η(v1), η(v2), · · · , η(vd)}
1 // Create Two Neighborhood for vertex v

from the values received
2 G′ = (V ′, E′)← Induced subgraph on η2(v)
3 X ← key
4 T ← V ′ \ {key}
5 forall the vertex t ∈ T do
6 if t < key then
7 T ← T \ {t}

8 O ←Mapping between vertex identifiers and their
lexicographical ordering

9 Algorithm 8(G′, X , T , key, s,O)

vertices in C(v), ∆v is the maximum degree of all vertices
in C(v) and N(v) is the number of maximal bicliques in G,
containing v. Since ∆v cannot be greater than nc, we can
also write the computation complexity as O

(
nc

2 ·N(v)
)
.

Lemma 2. Algorithm 3 generates all maximal bicliques in a
graph.

Proof. The proof of this Lemma follows from Lemma 1. Al-
gorithm 3 generates the 2-neighborhood induced subgraph
of each vertex in G. It then runs the optimized sequential
DFS algorithm that enumerates for each C(v), all maximal
bicliques where v is the smallest vertex.

Lemma 3. The total work done by Algorithm 3 is equal to the
work done by the sequential DFS Algorithm 1.

Proof. Algorithm 3 calls Algorithm 8 once for each vertex
v ∈ V . Thus there is one parallel instance of Algorithm 8 for
each vertex v with input C(v). Note that the the sequential
DFS Algorithm 1 can be represented as a tree as follows. Let
each recursive call to the method be a node in the tree. Let
the value of the node be the set of vertices in the working set
X in Algorithm 1. Each recursive call establishes a parent-
child relationship where the calling instance of the method
becomes the parent. We show that the work done by the
instance of Algorithm 8 for vertex v is same as the work
done by the subtree of the sequential Algorithm 1 that starts
with X = v.

Consider the root of the search tree for the sequential
Algorithm 1. At the root the working set X is ∅. Let
us consider the root to be depth 0. Let us assume some
predefined ordering strategy of the tail set “T”. Also, let us
label the vertices v1 · · · vn following the ordering. Then for
each vertex, v ∈ V , we have a branch that comes out of the
root. Thus for depth 1, we have (X1 ← 1, T1 ← V \ {1}),
(X2 ← 2, T2 ← V \ {1, 2}) and so on. Thus for each v ∈ V ,
we have (Xv ← v, T1 ← V \ {1, 2, · · · , v − 1}). Hence for
depth 1, we have the above mentioned |V | calls.

Now we show that each such branch corresponds to the
instance of the parallel Algorithm 8 such that the reducer
key = v.

To prove this, we note the call made to Algorithm 8 with
key v. Algorithm 8 is called withX = key and ∀t ∈ T , t > v.
Thus we prune T such that T ← V \ {1, 2, · · · , v − 1}. This
call is same as the branch of the search tree of Algorithm 1
that starts with key. The input graph to the parallel algo-
rithm is different from the sequential one. However, from



Algorithm 8: CD0 Sequential(G′, X , T , key, s, O)

Input: G′,X ,T ,key,s,O
1 // The sequential Algorithm to be run

independently on each reducer for the
parallel Algorithm

2 if X = { key } then
3 N ← Γ(X) // Same as Γ(key)
4 Y ← Γ(N)
5 if Y = X then
6 Biclique B ← 〈Y,N〉
7 if |Y | ≥ s ∧ |N | ≥ s then
8 vs ← Smallest vertex in B as per the

ordering in O
9 if vs = key then

10 // Maximal biclique found
11 Emit (key ← ∅,value← B)

12 else
13 return

14 forall the vertex v ∈ T do
15 if |Γ(X ∪ {v})| < s then
16 T ← T \ {v}

17 if |X|+ |T | < s then
18 return

19 Sort vertices in T as per ascending order of
|Γ(X ∪ {v})|

20 forall the vertex v ∈ T do
21 T ← T \ {v}
22 if |X ∪ {v}|+ |T | ≥ s then
23 N ← Γ(X ∪ {v})
24 Y ← Γ(N)
25 if Y contains vertices smaller than key as per the

ordering in O then
26 continue

27 Biclique B ← 〈Y,N〉
28 if (Y \ (X ∪ {v})) ⊆ T then
29 if |Y | ≥ s then
30 vs ← Smallest vertex in B as per the

ordering in O
31 if vs = key then
32 // Maximal biclique found
33 Emit (key ← ∅,value← B)

34 CD0 Sequential(G′, Y , T \ Y , key, s, O)

Lemma 1, this doesn’t make a difference to the output of the
parallel Algorithm.

Note that Algorithm 8 is different from Algorithm 1 in
Lines 1–12 of Algorithm 8, but these lines simulate the call
made in Algorithm 8 with X = v. All further recursive calls
that follow are identical in Algorithms 8 and 1.

3.4 Algorithms CD1 and CD2 – Improving Load Balance

In Algorithm CD0, vertices were ordered using a lexico-
graphic ordering, which is agnostic of the properties of the
cluster C(v). The way the optimized DFS algorithm works,

Algorithm 9: Algorithms CD1 and CD2

Input: Edge List of G = (V,E)
1 Execution Flow as per Figure 3

Algorithm 10: Algorithms CD1 and CD2 Round Two –
Reduce

Input: key = v,
value = {η(v), η(v1), η(v2), · · · , η(vd)}

1 // Send vertex property of vertex v to
required nodes

2 S ← 2–neighbors of v
3 N ← Compute neighborhood of v from S
4 // Need to pass neighborhood for Round 3
5 Emit (key ← v,value← N )
6 // Need to send vertex property to all

2--neighbors
7 p← Value of vertex property of v from S
8 forall the vertices s ∈ S do
9 Emit(key ← s,value← [v, p])

Algorithm 11: Algorithms CD1 and CD2 Round Three
– Map

Input: key = v, value = N OR key = s, value = v, p
1 // Create Two Neighborhood along with

vertex property
2 if key = v then
3 Emit (key ← v,value← N )
4 forall the y ∈ N do
5 Emit (key ← y,value← 〈v,N〉)

6 else
7 Emit (key ← s,value← [v, p])

Algorithm 12: Algorithms CD1 and CD2 Round Three
– Reduce

Input: key = v, value = {η2(v) along with vertex
properties}

1 // Create Two Neighborhood along with
vertex property

2 G′ = (V ′, E′)← Induced subgraph on η2(v)
3 Map← HashMap of vertex and vertex property

created from value required to compute the new
ordering

4 X ← key
5 T ← V ′ \ {key}
6 forall the vertex t ∈ T do
7 if t < key in the new ordering then
8 T ← T \ {t}

9 Algorithm 8(G′, X , T , key,s,Map)



MapReduce Round 1
(Algorithms 4 & 5)

Create Adjacency List for vertex v

MapReduce Round 2
(Algorithms 6 & 10)

Send vertex property

MapReduce Round 3
(Algorithms 11 & 12)

Create C(v) with vertex property
Run Algorithm 8 on C(v) with new ordering

Fig. 3: Execution flow for Algorithm 9 (CD1 / CD2)

the enumeration load on a cluster C(v) depends on the
number of maximal bicliques within this cluster as well as
the position of v within the total order. The earlier that v
is in the total order, the greater is the load on the reducer
handling C(v).

For improving load balance, our idea is to adjust the
position of vertex v in the total order according to the
properties of its cluster C(v). Intuitively, the more complex
cluster C(v) is (i.e. more and larger the maximal bicliques),
the higher should be position of v in the total order, so
that the burden on the reducer handling C(v) is reduced.
While it is hard to compute (or even accurately estimate)
the number of maximal bicliques in C(v), we consider
two properties of vertex v that are simpler to estimate,
to determine the relative ordering of v in the total order:
(1) Size of 1-neighborhood of v (Degree), and (2) Size of 2-
neighborhood of v.

Intuitively, we can expect that vertices with higher de-
grees are potentially part of a denser part of the graph and
are contained within a greater number of maximal bicliques.
The size of the 2-neighborhood is also the number of vertices
in C(v) and may provide a better estimate of the complexity
of handling C(v), but this is more expensive to compute
than the size of the 1-neighborhood of the vertex.

The discussion below is generic and holds for both ap-
proaches to load balancing. To run the load balanced version
of DFS, the reducer running the sequential algorithm must
now have the following information for the vertex (key of
the reducer) : (1) 2-neighborhood induced subgraph, and
(2) vertex property for every vertex in the 2-neighborhood
induced subgraph, where “vertex property” is the property
used to determine the total order, be it the degree of the
vertex or the size of the 2-neighborhood. The second piece of
information is required to compute the new vertex ordering.
However, the reducer of the second round does not have
this information for every vertex in C(v), and a third round
of MapReduce is needed to disseminate this information
among all reducers. We call the Algorithm using the size
of 1–neighborhood of a vertex v as the heuristic as CD1 and
the one using the size of 2–neighborhood as CD2. The high
level overviews of Algorithms CD1 and CD2 are described
in Figure 3. Following similar arguments as presented for
Algorithm 8, Algorithms CD1 / CD2 also has computation
complexity of O (nc ·∆v ·N(v)) = O

(
nc

2 ·N(v)
)
.

Lemma 4. The total work of parallel Algorithm 9 is equal to the
work done by the sequential DFS Algorithm 1.

Proof. The only difference between Algorithm 9 and Algo-
rithm 3 is how they order the vertices. Algorithm 3 uses
lexicographical ordering of vertices where as Algorithm 9
uses either degree or size of 2–neighborhood. Hence, the
proof follows from the proof of Lemma 3. This is because

the proof of Lemma 3 makes no assumption on the strategy
used to order the vertices in the graph.

3.5 Communication Complexity

We consider the communication complexity of Algorithms
CD0, CD1 and CD2. For input graph G = (V,E), recall
n = |V | and m = |E|. Let ∆ denote the largest degree
among all vertices in the graph. Also, let β denote the output
size, defined as the sum of the numbers of edges of all
enumerated maximal bicliques.

Definition 1. The communication complexity of a MapReduce
algorithm is defined as the sum of the total number of bytes emitted
by all mappers and the total number of bytes emitted by all the
reducers across all rounds.

Lemma 5. The communication complexity of Algorithm CD0 is
O (m ·∆ + β).

Proof. Algorithm CD0 has two rounds of MapReduce. In the
first round the Map method (Algorithm 4) emits each edge
twice, resulting in a communication complexity of O (m).
Similarly, the reducer (Algorithm 5), emits each adjacency
list once. This also results in a communication complexity
of O (m). Hence total communication complexity of the first
round is O (m).

Now let us consider the second round of MapReduce.
The total communication between the Map and Reduce
methods (Algorithms 6 and 7 respectively) can be computed
by analyzing how much data is received by all Reducers.
Each reducer receives the adjacency list of all the neighbors
of the key. Let di be the degree of vertex vi, for vi ∈ V ,
i = 1, .., n. The adjacency list of vertex v is sent to all
vertices in that list. The size of adjacency list is di. This
list is sent to di vertices. Thus communication complexity
for vertex vi becomes di

2. Total communication is thus
n∑

i=1
di

2 = O

(
∆ ·

n∑
i=1

di

)
. Since

n∑
i=1

di = 2 · m, the total

communication becomes O (m ·∆). The output from the
final Reducer (Algorithm 7) is the collection of all maximal
bicliques and hence the resulting communication cost is
O (β). Combining two rounds, total communication com-
plexity becomes O (m+m ·∆ + β). = O (m ·∆ + β).

Lemma 6. The communication complexity of Algorithm CD1 as
well as CD2 is O (m ·∆ + β).

Proof. First, note that both Algorithms CD1 and CD2 have
the same communication complexity and observe that the
first round uses the same Map and Reduce methods as CD0.
Thus communication for Round 1 is O (m). Again, note that
Map method for Round 2 is same as CD0 and hence by
Lemma 5, communication for Round 2 is O (m ·∆).



The Reducer (Algorithm 10) of Round 2 sends the vertex
property information to all its 2–neighbors. Thus every re-
ducer receives information about all of its 2–neighbors. This
makes the total output size of Reducer to be O (m ·∆). The
Map method of Round 3 (Algorithm 11) sends out the 2–
neighborhood information as well as the vertex information
to all vertices in 2–neighborhood. Thus communication cost
becomes O (m ·∆). The Reducer (Algorithm 12) emits all
maximal bicliques and hence the resulting communication
cost is O (β). Thus total communication cost for Algorithms
CD1 and CD2 is is O (m ·∆ + β).

4 PARALLEL CONSENSUS

We describe another approach, a direct parallelization of
the consensus sequential algorithm of Alexe et al. (2004).
The motivation for trying this approach was that the cluster
generation approach requires each cluster C(v) to have the
entire 2-neighborhood of v, whereas the parallel consensus
approach does not require the generation of 2-neighborhood
of vertices. Note that although this algorithm takes less
memory per reducer than the cluster generation algorithm,
we found the parallel consensus algorithm to be much
slower, overall, than Algorithms CD1 / CD2. We present
the parallel consensus algorithm in this section.

Unlike the parallel DFS algorithm which works on sub-
graphs of G, the consensus algorithm is always directly
dealing with bicliques within G. At a high level, it performs
two operations repeatedly (1) a “consensus” operation,
which creates new bicliques by considering the combina-
tion of existing bicliques, and (2) an “extension” operation,
which extends existing bicliques to form new maximal
bicliques. There is also a need for eliminating duplicates
after each iteration, and a step for detecting convergence,
which happens when the set of maximal bicliques is stable
and does not change further.

We developed a parallel version of each of these opera-
tions, by performing the consensus, extension and duplicate
removal using MapReduce.

Algorithm 13: Parallel Consensus Algorithm – Driver
Program

1 Load Graph G = (V,E)
2 R← Star bicliques from G // Biclique formed

by a vertex and its neighbors
3 S ← Extend all bicliques in R using MapReduce
4 Eliminate duplicates from S using MapReduce
5 O ← O ∪ S
6 P ← S
7 repeat
8 T ← Consensus among all maximal bicliques in S

and P using MapReduce
9 C ← Extend all bicliques in T using MapReduce

10 Eliminate duplicates from C using MapReduce
11 O ← O ∪ C
12 P ← C
13 until N is ∅

Our Algorithm is described in Algorithm 13. Algo-
rithms 14 and 15 (map and reduce) describe the consensus

Algorithm 14: Parallel Consensus Algorithm – Consen-
sus Map

1 forall the i such that i is an node in the left set of the
biclique H do

2 Emit (i,H)

3 forall the j such that j is an node in the right set of the
biclique H do

4 Emit (j,H)

Algorithm 15: Parallel Consensus Algorithm – Consen-
sus Reduce
1 forall the x such that x is a seed biclique containing the

key k do
2 forall the y such that y is a biclique from previous

round having the key k do
3 if key = minimum common element of the bicliques

x and y then
4 C ← Potentially new maximal bicliques

from consensus of x and y
5 forall the c in C do
6 Extend the biclique c to generate

maximal biclique H
7 Emit (∅, H)

Algorithm 16: Parallel Consensus Algorithm – Exten-
sion Map

1 B ← Input biclique
2 if B is a star then
3 x←Main vertex
4 Emit (x,B)

5 if data is from consensus output then
6 forall the vertices i such that i is in B do
7 Emit (i,B)

Algorithm 17: Parallel Consensus Algorithm – Exten-
sion Reduce
1 S ← ∅
2 forall the value for key do
3 if value is a neighborhood information then
4 N ← Neighborhood of vertex key

5 else
6 S ← S ∪ value

7 forall the bicliques b in S do
8 h← Hash value of biclique b
9 Emit (h,b)

10 Emit (h,N )



operation using MapReduce. Note that in Algorithm 13, line
8 performs consensus between each pair of biclique in sets
S (seed set) and P (set of bicliques from previous round of
iteration). To perform consensus between the all bicliques
from the sets S and P naively, it would require |S| · |P |
consensus operations. However, we reduce the total number
of consensus operations using the following observation:
If there are no common vertices between two bicliques, in
that case the consensus output between the concerned two
bicliques is the NULL set. This is because the intersection
operation in the consensus will result in NULL. This helps
us to “group” the bicliques in n = |V | sets, one for each
vertex of the graph. A biclique is a part of the group for
vertex v, if v is contained in the biclique. The map method
helps to achieve this by “grouping” all bicliques having a
particular vertex in common, thus eliminating the need of
doing unnecessary consensus operations. Next we explain
the extension operation. To reduce memory requirement,
we required four rounds of MapReduce to perform the
extension. The intention of the process is to bring together
only those neighborhood information, which is required to
extend a biclique. Algorithms 16 and 17 describe the map
and reduce algorithms for the first round. Recall that the ex-
tension operation requires computation of 2-neighborhood
of both the left and right set of the vertices in the biclique.
The first two rounds of MapReduce are used to compute
the 1-neighborhood of both the sets and then the same two
rounds are run one more time to obtain the 2-neighborhood
information. Finally, the algorithm stops when no new max-
imal bicliques are found after completing an iteration. The
Driver Algorithm 13 checks for the same and halts if no new
maximal bicliques are found.

Finally, we note that for all the above algorithms, we
can perform additional pruning on the input graph for the
special case of bipartite graphs using the method described
in Bogue et al. (2014).

5 EXPERIMENTAL RESULTS

We implemented our parallel algorithms on a Hadoop
cluster, using both real-world and synthetic datasets. The
cluster has 28 nodes, each with a quad-core AMD Opteron
processor with 8GB of RAM. All programs were written
using Java version 1.5.0 with 2GB of heap space, and the
Hadoop version used was 1.2.1.

We implemented the DFS based algorithms CDFS (clus-
tering DFS with no optimizations), CD0 (clustering DFS
with the pruning optimization), CD1 (clustering DFS with
pruning and load balancing using degree), and CD2 (clus-
tering DFS with pruning and load balancing using size of
2-neighborhood).

We also implemented the sequential DFS algorithm due
to Liu et al. (2006), and the sequential consensus algorithm
(MICA) due to Alexe et al. (2004). The sequential algorithms
were not implemented on top of Hadoop and hence had
no associated Hadoop overhead in their runtime. But on
the real-world graphs that we considered, the sequential
algorithms did not complete within 12 hours, except for
the p2p-Gnutella09 graph. In addition, we implemented
the parallel clustering algorithm using the consensus-based
sequential algorithm, and we also implemented an alternate

parallel implementation of the consensus algorithm that was
not based on the clustering method.

We used both synthetic and real-world graphs. A sum-
mary of all the graphs used is shown in Table 3. The real-
world graphs were obtained from the SNAP collection of
large networks (see Leskovec) and were drawn from so-
cial networks, collaboration networks, communication net-
works, product co-purchasing networks, and internet peer-
to-peer networks. Some of the real world networks were
so large and dense that no algorithm was able to process
them. For such graphs, we thinned them down by deleting
edges with a certain probability. This makes the graphs less
dense, yet preserves some of the structure of the real-world
graph. We show the edge deletion probability in the name of
the network. For example, graph “ca-GrQc-0.4” is obtained
from “ca-GrQc” by deleting each edge with probability 0.4.
Synthetic graphs are either random graphs obtained by the
Erdos-Renyi model (see Erdős and Rényi (1959)), or random
bipartite graphs obtained using a similar model. To generate
a bipartite graph with n1 and n2 vertices respectively in
the two partitions, we randomly assign an edge between
each vertex in the left partition to each vertex in the right
partition. A random Erdos-Renyi graph on n vertices is
named “ER-〈n〉”, and a random bipartite graph with n1 and
n2 vertices in the bipartitions is called “Bipartite-〈n1〉-〈n2〉”.

We seek to answer the following questions from the
experiments: (1) What is the relative performance of the
different methods for MBE? (2) How do these methods scale
with increasing number of reducers? and (3) How does the
runtime depend on the input size and the output size?

Figure 4 presents a summary of the runtime data for
the algorithms in Table 3. All data used for these plots
was generated with 100 reducers. The runtime(s) given in
Table 3 for various Algorithms were recorded by taking the
mean over 5 individual runs. The runtime data given for
the parallel algorithms include the time required to run all
MapReduce rounds including time required to construct 2–
neighborhood etc.

5.1 Impact of the Pruning Optimization
From Figure 4, we can see that the optimizations to basic
DFS clustering through eliminating redundant work make
a significant impact to the runtime for all input graphs. For
instance, in Figure 4d, on input graph email–EuAll–0.6 CD0,
which incorporates these optimizations, runs 10 times faster
than CDFS, the basic cluster generation approach. Also, we
can see from Table 3 that the input graphs email–EuAll–0.4,
web–NotreDame–0.8 and Bipartite–75K–150K could not be
processed by Algorithm CDFS within 11 hours but could be
processed by Algorithm CD0.

We measure the redundant processing that we avoid by
using the optimized Algorithm CD0 rather than CDFS. To
measure this we count the total number of recursive calls
made to the depth first search method by the algorithms.
We observe that the number of such recursive calls made
by CDFS is an order greater than CD0. For example, for
input graph ER-500K, CDFS makes about 16.5 million calls
whereas CD0 makes only about 1 million calls. Similar re-
sults are obtained for real work input graphs. For example,
for input graph ego-Facebook-0.6, CDFS makes about 133.5
million recursive calls while CD0 makes about only about



TABLE 3: Properties of the input graphs used, and runtime (in seconds) to enumerate all maximal bicliques using 100
reducers. DNF means that the algorithm did not finish in 12 hours. The size threshold was set as 1 to enumerate all
maximal bicliques. Runtime includes overhead of all MapReduce rounds including graph clustering, i.e. formation of 2–
neighborhood. Graphs 1-10 are real world graphs while the rest are synthetic graphs. We have used random graphs of
various sizes between 50K and 500K vertices, but do not show the details about all synthetic graphs in the table, due to
space constraints. All runtimes shown are a mean of 5 individual runs of the Algorithm.

Label Input Graph #vertices #edges #max–bicliques Output Size CDFS CD0 CD1 CD2

1 p2p-Gnutella09 8114 26013 20332 203779 113 60 79 80
2 email-EuAll-0.6 125551 168087 292008 4580577 42023 4188 415 406
3 com-Amazon 334863 925872 706854 6369954 186 65 95 101
4 amazon0302 262111 1234877 886776 7276888 396 264 102 97
5 com-DBLP-0.6 251226 419573 1875185 41407481 1659 285 239 314
6 email-EuAll-0.4 175944 252075 2003426 55685463 DNF 33300 3140 2196
7 ego-Facebook-0.6 3928 35397 6597716 157777680 8657 2773 918 1847
8 loc-BrightKite-0.6 49142 171421 10075745 388709764 28585 6511 1381 1997
9 web-NotreDame-0.8 150615 300398 19941634 471150086 DNF 27827 1044 1577
10 ca-GrQc-0.4 5021 17409 16133368 1550607157 37279 4104 3728 4085
11 ER-50K 50000 275659 51756 558376 96 57 76 81
12 ER-500K 500000 3751823 506319 7528935 374 128 170 163
13 Bipartite-50K-100K 150000 1999002 306874 4628028 873 122 163 170
14 Bipartite-75K-150K 225000 11250524 27650168 136660625 DNF 8956 8351 8149
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Fig. 4: Runtime in seconds of parallel algorithms on real and random graphs. If an algorithm failed to complete in 12
hours the result is not shown. All algorithms were run using 100 reducers. All runtimes are a mean of 5 individual
runs of the Algorithm. Runtime includes overhead of all MapReduce rounds including graph clustering, i.e. formation of
2–neighborhood.

13.2 million. Hence we observe that our optimizations are
successful in pruning the search tree by effectively removing
redundant search paths.

5.2 Impact of Load Balancing
From Figure 4, we observe that for graphs on which the
algorithms do not finish very quickly (within 200 seconds),
load balancing helps significantly. In Figure 4d, for graph
email–EuAll–0.6, the Load Balancing approaches (CD1 and
CD2) are 10 to 10.3 times faster than CD0, which incorpo-
rates the pruning optimization, without load balancing. In
Figure 4b, we note that for input graph web–NotreDame–
0.8, CD1 was 26.7 times faster than CD0 and CD2 was about
17.6 times faster. We can also observe the improvements
in Load Balance from the reducer timings. For input graph

email–EuAll–0.4, we observe that for CD0, most reducers
finish in a few minutes. A very few took 2 hours. However,
the last two reducers took 4.5 hours and 9.25 hours. By
improving load balance in Algorithms CD1 / CD2, we
redistribute this work load bringing the parallel runtime of
both Algorithms to below one hour.

For most input graphs, the versions optimized through
load balancing and pruning (Algorithms CD1 and CD2)
worked the best overall, and both these optimizations
helped significantly in reducing the runtime.

However, for graphs that completed quickly, load bal-
ancing performs slightly slower than Algorithm CD0 (see
Figure 4a). This can be explained by the additional overhead
of load balancing (an extra round of MapReduce), which
does not payoff unless the work done at the DFS step is



significant.
There are two approaches to load balancing, one based

on the vertex degree (Algorithm CD1) and the other on the
size of the 2-neighborhood of the vertex (Algorithm CD2).
From Figure 4 we observe that no one approach was con-
sistently better than the other, and the performance of the
two were close to each other in most cases. For some input
graphs, like Email-EuAll-0.4, the 2-neighborhood approach
(CD2) fared better than the degree approach (CD1), whereas
for some other input graphs like web-NotreDame-0.8, the
degree approach fared better.

To better understand the impact of load balancing, we
calculated the mean and the standard deviation of the run
time of each of the 100 reducers for the last round of
MapReduce of Algorithms CD0, CD1 and CD2. We present
results of this analysis for input graphs loc-BrightKite-0.6
and ego-Facebook-0.6 in Table 4. The load balanced CD1
and CD2 have a much smaller standard deviation for
reducer runtimes than CD0.

We observe that random graphs have less variance in de-
gree / size of 2–neighborhood than real world graphs. This
leads to approximately balanced load on each node in the
cluster, irrespective of how the work is distributed. Hence
we don’t get benefit out of the extra overhead involved in
CD1 and CD2. Thus for randoms graphs, Algorithm CD0
performs better than Algorithms CD1 / CD2.
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Fig. 5: Runtime versus Number of Reducers.
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Fig. 6: Speedup versus Number of Reducers.

5.3 Scaling with Number of Reducers
In Figure 5 we plot the runtime of CD1 and CD2 with
increasing number of reducers. In Figure 6, we also plot
the speedup, defined as the ratio of the time taken with
1 reducer to the time taken with r reducers, as a function
of the number of reducers r. We observe that the run-
time decreases with increasing number of reducers. Both
CD1 and CD2 achieves acceptable speedup. For instance
for Algorithm CD1 and input graph email-EuAll-0.6, for
5 reducers we get 4.8 speedup while for 80 reducers, we
get 49.54 speedup. Similarly, for Algorithm CD2 and input
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graph email-EuAll-0.6, we achieve speedup of 4.9 with 5
reducers and 55.73 speedup with 80 reducers. This data
shows that the algorithms are scalable and may be used
with larger clusters as well.

5.4 Relationship to Output Size
We observed the change in runtime of the algorithms with
respect to the output size. We define the output size of
the problem as the sum of the numbers of edges of all
enumerated maximal bicliques. Figure 7 shows the runtime
of algorithms CD0, CD1, and CD2 as a function of the out-
put size. This data is only constructed for random graphs,
where the different graphs considered are generated using
the same model, and hence have very similar structure. We
observe that the runtime increases almost linearly with the
output size for all three algorithms CD0, CD1, and CD2.

With real world graphs, this comparison does not seem
as appropriate, since the different real worlds graphs have
completely different structures; however, we observed that
the runtimes of Algorithms CD1 and CD2 are well corre-
lated with the output size, even on real world graphs.

5.5 Large Maximal Bicliques
Next, we considered the variant where only large bicliques,
whose total number of vertices is at least s, are required to
be emitted. Figure 8 shows the runtime as the size threshold
s varies from 1 to 5. We observe that the runtime decreases
significantly as the threshold increases. Also, Algorithms
CD1 and CD2 were not able to enumerate all maximal
bicliques from input graph email-EuAll-0.2 even after 12



TABLE 4: Mean and standard deviation computation of all 100 reducer runtimes for Algorithms CD0, CD1 and CD2. The
analysis is done for the reducer of the last MapReduce round as it performs the actual depth first search.

loc-BrightKite-0.6 CD0 CD1 CD2

Average 637.27 387.77 393.68
Variance 1259680.12 81447.47 111443.13

Standard Deviation 1122.35 285.39 333.83

ego-Facebook-0.6 CD0 CD1 CD2

Average 313.56 245.21 273.43
Variance 203661.36 29166.29 108260.19

Standard Deviation 451.29 170.78 329.03
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consensus with Algorithms CD1 and CD2. We observe that
the consensus algorithm performs poorly in comparison
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hours. However, with size threshold 5, Algorithm CD1 took
less than 6 hours to process this graph while Algorithm CD2
took about 3.5 hours.

5.6 Consensus versus Depth First Search

Finally we compare the two sequential techniques used in
this work. The basic clustering method was used with the
consensus technique and compared with Algorithms CD1
and CD2. Figure 9 shows the performance of Algorithms
CD1 and CD2 against the consensus approach. We note that
the cluster generation approach using the consensus tech-
nique performed very poorly compared with the DFS based
algorithm. For example for the input graph p2p–Gnutella09,
CD1 and CD2 took 79 and 80 seconds respectively (using
100 reducers). This is in contrast with the implementation
of the clustering method using the consensus technique
which took 1469 seconds (again with 100 reducers). In all
instances except for very small input graphs, clustering
using consensus was 6 to 15 times slower than CD1 and CD2
or worse, and in many cases, clustering consensus did not
finish within 12 hours while CD1 and CD2 finished within
1 - 2 hours.

We also compared the runtime of the more direct parallel
implementation of the consensus technique as described in
Algorithm 13. The direct parallel consensus, which uses
a different parallelization strategy was 13 to 400 times
slower than clustering consensus. For example, for input
graph ER–500K, Algorithm CD1 finished processing in 170
seconds, whereas Algorithm 13 took over 18 hours. Further,
it could not process the p2p–Gnutella09 input graph within
12 hours.

6 CONCLUSION

Maximal biclique enumeration is a fundamental tool in
uncovering dense relationships within graphical data. We
presented a scalable parallel method for mining maximal
bicliques from a large graph. Our method uses a basic
clustering framework for parallelizing the enumeration, fol-
lowed by two optimizations, one for reducing redundant

work, and another for improving load balance. Experimen-
tal results using MapReduce show that the algorithms are
effective in handling large graphs, and scale with increasing
number of reducers. To our knowledge, this is the first work
to successfully enumerate bicliques from graphs of this size;
previous reported results were mostly sequential methods
that worked on much smaller graphs.

The following directions are interesting for exploration
(1) How does this approach perform on even larger clusters,
and consequently, larger input graphs? What are the bot-
tlenecks here? and (2) Can these be extended to enumerate
near-bicliques (quasi-bicliques) from a graph?
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