Overview

- The problem - comparing shapes.

- Skeletons or “Shock Graphs”.

- Application of Edit distance here.

- Edit distance algorithm.
Problem: Comparing Shapes

Simple closed curves in a plane, i.e *no holes*.

General Approach:

1. Represent a shape by its “skeleton”, a graph. (Vision community has techniques for doing so.)

2. Compare the skeletons using edit distance.
Shock Graphs

- Shock Graphs are constructed from the *locus of centers of maximal circles at least bitangent to the boundary*.

- Convert into a combinatorial object. Now the arcs of this graph have attributes like:
 - *Radius* - the distance from the boundary.
 - *Velocity* - rate of change of radius.
Shock Graph example
Shock Graph example (2)
Edit Distance

- Observation: These graphs are trees if the shapes are simple and closed.

- Idea: Use tree edit distance to compare shapes.

 Edit distance between two trees T_1 and T_2 is the minimum cost of a sequence of "edit operations" that takes tree T_1 to tree T_2.

Traditionally, edit operations are Edge insertion, Edge deletion, Matching an edge in T_1 to one in T_2.
Example of an edit sequence

contract c, e

match corresponding edges.

insert r
Tree Edit Distance - contd

An alternative (equivalent) definition which we will use:

Edit distance is the minimum cost of separately transforming the two input trees into a common tree.

We now don’t need the insert (or uncontract) operation.

contract c, e

match corresponding edges
The twist in our problem

We require a more general set of edit operations.

Merge: Combine two edges with a common endpoint (of degree two) into a single edge.

![Diagram of Merge Operation]

Prune: If common endpoint has degree three, merge is still allowed. The subtree rooted at the other incident edge is *pruned* off.

![Diagram of Prune Operation]

Considered natural and essential edit operations by the vision researchers (Kimia and Sharvit).
Problem Definition

Input: Two trees T_1 and T_2

Output: The Minimum cost sequence of
(1) merges, prunes
(2) contracts and
(3) relabelings
that transform the two input trees into a common tree.

Restriction on contract (related to vision application): An edge can be contracted only if both its endpoints have degree greater than or equal to three.
Basic Tree Edit distance

Earlier work: Zhang and Shasha’s algorithm for tree edit distance with edit operations set = \{ edge contract, edge relabeling\}.

Basic idea: Dynamic Programming

We give here our version of their algorithm, which is based on Euler strings.

Euler String:

Left: \(aa'bce'b' \) Right: \(xyy'x' \)
Let’s look at an edit sequence on a pair of trees and see how it affects the corresponding euler strings.

Original Pair of trees.
\((a \ldots g', p \ldots r')\).

After contract \(g'\) on left
\((a \ldots d', p \ldots r')\).
Contract r' on right $a\ldots d', pqq'p'stt'uu's'$. T2's euler string can also be written as $(pqq'p' \quad r \quad stt'uu's')$, so that

1) it is a substring of $p\ldots r'$.
2) it still does not contain r (dart r' is absent)

Match d' to s'. This leads to two subproblems:

1) $(a\ldots a', p\ldots p')$.
2) $(e\ldots f', t\ldots u')$.
Algorithm for basic tree edit distance

- Dynamic programming on set of all possible pairs of Euler strings of T_1 and T_2.

- A subproblem is (s_1, s_2) where s_i is a substring of the Euler string of T_i.

- Cost of a subproblem can be computed from the costs of a few other “smaller” subproblems, shown overleaf.

- What could happen to the rightmost edges (e_1, e_2) of the Euler strings in the optimal edit sequence?

 (1) e_1 gets contracted
 (2) e_2 gets contracted
 (3) e_1 gets matched to e_2
Initial Subproblem:

\[(aa'bcc'dd'b', pqq'r'r'p's't't's')\]

Contract Left:

\[(aa'bcc'dd', pqq'r'r'p's't't's')\]
Contract Right:

\((a a' b c c' d d' b', p q q' r r' p' s t t')\)

Match \(b\) to \(s\):

\((a a', p q q' r r' p')\) and \((c c' d d', t t')\)
Algorithm with merge and prune

- Each half of our subproblems has just one merged edge.
- formed by merging consecutive edges on root-leaf path
- Represent it using one extra parameter, v in each half of the subproblem.

We merge a path into a single edge. v is the top of the path.

The arrows show the start and end of the Euler string. The path from d to v (dotted lines) is merged into a single edge.
Algorithm for merge and prune - continued

Again look at all possible operations on the rightmost edges.

- contract the merged edge in T_1
- contract the merged edge in T_2
- further merge the edge in T_1 with its descendant
- further merge the edge in T_2 with its descendant
- match the two merged edges
Initial Subproblem - Arrows denote the start and endpoints of the Euler string. \(X\) and \(Y\) are the top of the merged edges.

\[(aa'bcc'dd'b', X, pqq'rr'p'stt's', Y)\]

Subproblem for Left Tree merge down with left child.

\[(aa'bcc', X, pqq'rr'p'stt's', Y)\]
Problem with pruning away left child

The Initial Half Subproblem

After merging p with q (pruning our r)
After contracting q

In this subproblem it’s now ambiguous whether r was pruned out or not.

The same sub-problem could have been reached by contracting p and q separately!
The Fix

If you want to merge a few edges and then contract the result, then do it in two parts.

(1) contract p
(2) contract q
(3) when you encounter r, decide whether to prune it off or not.

This imposes a condition on the cost function (refer to paper).
Complexity

Time Complexity: number of subproblems
\[O(n_1^2 n_2^2 d_1 d_2), \]
where \(n_i \) is size of \(T_i \) and \(d_i \) is the depth of \(T_i \).

Space complexity: We don’t have to store the solution to every subproblem all the time.
\[O(n_1 n_2). \]
Future work

- Empirical Evaluation of the algorithm
- Faster algorithms
- Extend to matching 3D surfaces