Approximate Covering Detection
Among Content-Based Subscriptions
Using Space Filling Curves

Zhenhui Shen
Akamai Technologies
(work done while at Iowa State University)

Srikanta Tirthapura
Dept. of Electrical and Computer Engg.
Iowa State University
Publish-Subscribe (Pub-Sub)

- Publishers generate *events*
- Subscribers register interests via *subscriptions*
- Pub-Sub middleware forwards events to interested subscribers
Content-based Pub-Sub

- **Event**: a set of <attribute,value> pairs
 (issue=Microsoft, price=$27, vol = 1000)

- **Subscription**: conjunction of predicates
 (issue=Microsoft, 25 < price < 30, vol > 500)
Content-based Event Filtering

- Google: stock = Google, change = 4.5%, shares = 2000, price = $468.12
- Microsoft: stock = Microsoft, shares > 3000, price in [20,30]
- IBM: stock = IBM, shares < 4000, price < 35
- Shares: shares = 2000
- Price: price = 468.12
- Price in [20,30]: price in [20,30]
Subscription Propagation can be Costly!
Subscription Covering

\[s_1 = (\text{price} \in [0,50], \text{year} \in [1990,2004]) \]
\[s_2 = (\text{price} \in [0,30], \text{year} \in [1998,2000]) \]
Benefits of Covering

- Reduces number of subscriptions forwarded (less processing overhead)

- Reduces routing table size (faster event filtering)
The Covering Detection Problem

\[s = (price \in [0,50], year \in [1990,2004]) \]

Is S covered by an existing subscription?
Covering = Rectangle Containment

\[s_1 = (\text{price} \in [10,50], \text{year} \in [1990,2004]) \]

\[s_2 = (\text{price} \in [20,30], \text{year} \in [1998,2000]) \]
Rectangle Containment Reduces to Point Dominance

Point \(P_1 \) \textit{dominates} Point \(P_2 \) iff every coordinate of \(P_1 \) is \textit{no less than} the corresponding coordinate of \(P_2 \).
Rectangle Containment Reduces to Point Dominance

Edelsbrunner and Overmars (1982) show that the reduction goes both ways.
Covering = High Dimensional Range Search

d-dimensional subscription \([x_{11}, x_{12}], [x_{21}, x_{22}], \cdots [x_{d1}, x_{d2}]\)

2d-dimensional point \((-x_{11}, x_{12}, -x_{21}, x_{22}, \cdots -x_{d1}, x_{d2})\)
High Dimensional Range Searching is Hard

• Fredman (Journal of ACM, 1981)
 a mixed seq. of \(n \) insertions, deletions and queries
 requires \(\Omega(n \log^d n) \) time in d-dim space

• Chazelle (Journal of ACM, 1990)
 Any structure trying to answer query in \(O(\text{polylog}(n) + k)\)
 time must have size \(\Omega(n(\log n / \log \log n)^{d-1}) \)

• “Curse of Dimensionality” – Indexing cost is exponential
 in the number of dimensions
To Cover or Not to Cover?

Approximate Covering
Cheaper than Exact covering
Still useful

- Ignore covering, it still works
- Use covering, makes system leaner and meaner

Opponent
Proponent
Approximate Covering

- For a user given ε, search $(1 - \varepsilon)$ fraction of search space

- **Safe Optimization**: A subscription will never be held back if it is not covered

- **Main Technical Result**: Even for small ε, approximate covering can be substantially faster than exact covering
Related Work

• Covering has been implemented in many distributed pub-sub systems, including SIENA, JEDI, REBECA

• Li, Hou and Jacobsen (ICDCS 2005)
 – Exact covering using binary decision diagrams

• Shen, Tirthapura, Aluru (PDCS 2005)
 – Exact Covering for Numeric Subscriptions

• Ouksel, Jurca, Podnar and Aberer (Middleware 2006)
 – Covering by union of subscriptions
 – Monte Carlo algorithms
Data Structures for Covering (numeric subscriptions)

• High dimensional spatial data structures

• Space Filling Curves (SFC)
 – Maps points in high dimensions to a single dimension
 – Tried and tested

• Other Alternatives
 – K-d trees
 – Quad Trees
Z Space Filling Curve
Z Space Filling Curve
Z Space Filling Curve

Linear ordering of all cells in the space
SFC Array

An array containing all input points sorted in the SFC order

SFC array
Standard Cube

Any cube arising during a recursive decomposition of the space.

<table>
<thead>
<tr>
<th></th>
<th>Standard Cube</th>
<th>Not a standard cube</th>
<th>Std Cube</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Run
Set of cells that are consecutive in the SFC

Runs are more complicated sets than standard cubes

Fact: Every standard cube is a single run
Covering Detection Using SFC

Subscription is a point

Region to be searched is an extremal rectangle

Divide the extremal rectangle into minimum number of runs
Cost of Covering using SFC

Worst-case Cost = Min # of Runs

[Lucky

Unlucky

[Moon, Jagadish, Faloutsos, Saltz, IEEE TKDE 2001]
For the Hilbert SFC, the average # of runs in a d-dimensional rectilinear polyhedron is proportional to its surface area
Exact vs. Approximate Covering

- Exact covering searches 385 runs
- 99%-covering searches only a single run

385 runs in total, lots of them in marginal area
Exact vs. Approximate Covering

• Is approximate covering always much cheaper than exact?

• Not quite..

• However, true for all extremal rectangles with a good “aspect ratio”
Upper Bound on Approximate Covering

Theorem: For a d-dimensional hyper rectangle, let l_{max} and l_{min} be the length of the longest (shortest) side of the rectangle, let α be its “aspect ratio”, the cost of approximate search using ZSFC, which examines $(1-\varepsilon)$ of the solution space, is no greater than

$$O\left(\log\left(\frac{d}{\varepsilon}\right) \cdot \left(2^{\alpha+1} \frac{d}{\varepsilon}\right)^{d-1}\right)$$

while the cost of exact covering using ZSFC is

$$\Omega\left((2^{\alpha-1} l_{\text{min}})^{d-1}\right)$$

$\alpha \approx \log_2\left(\frac{l_{\text{max}}}{l_{\text{min}}}\right)$
Algorithm for Approximate Covering

Algorithm deals with standard cubes, rather than general runs.

Greedy Algorithm: Examine the standard cubes in the extremal rectangle in the decreasing order of size.

Track γ, the fraction of volume examined.

e.g. $\varepsilon = 10\%$

$\gamma = 45.7\%$

$\gamma = 57.1\%$

$\gamma = 68.6\%$

$\gamma = 91.4\%$
Complexity of Approximate Covering
or, “How many runs?”

Diagram:
- D_0
- D_1
- D_2

Grid:
- 2x2
- 4x4
- 5

Labels:
- D_0
- D_1
- D_2
Complexity of Approximate Covering

This characterization used to find the number of standard cubes of each size.
Complexity of Approximate Covering

<table>
<thead>
<tr>
<th>Side Lengths</th>
<th>8 x 8 standard cubes</th>
<th>None!</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 0 1</td>
<td>1 0 0 0</td>
<td></td>
</tr>
<tr>
<td>0 1 1 0</td>
<td>0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>2^3 2^2 2^1 2^0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4 x 4 standard cubes</th>
<th>2 x 2 standard cubes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 0 0</td>
<td>1 1 0 0</td>
</tr>
<tr>
<td>0 1 0 0</td>
<td>0 1 1 0</td>
</tr>
<tr>
<td>$12 \times 4 / 16 = 3$</td>
<td>$(12 \times 6 - 48)/4 = 6$</td>
</tr>
</tbody>
</table>
Upper Bound on Approximate Covering

Theorem: For a d-dimensional hyper rectangle, let l_{\max} and l_{\min} be the length of the longest (shortest) side of the rectangle, let α be its “aspect ratio”, the cost of approximate search using ZSFC, which examines $(1-\varepsilon)$ of the solution space, is no greater than

$$O\left(\log\left(\frac{d}{\varepsilon}\right) \cdot \left(2^{\alpha} + 1\right) \frac{d}{\varepsilon}^{d-1}\right)^{l_{\max}} \approx \log_2\left(\frac{l_{\max}}{l_{\min}}\right)$$
Lower Bound on Exact Covering

Lower bound on the number of runs, rather than the number of standard cubes

Idea: Construct an extremal rectangle with a set of standard cubes S such that no two standard cubes in S can belong to the same run
Keys of Standard Cubes

Key is the position of the cube in the SFC
Keys of Standard Cubes

Key is the position of the cube in the SFC
Keys of Standard Cubes

Key is the position of the cube in the SFC
Lower Bound for Exact Covering

side length

key pattern

after interleaving

(1) no two cubes are adjacent

(2) can’t be connected by other cubes which are in the same query region

Predecessor
Generalization to d-Dimensional Extremal Rectangle

$$\alpha = b(l_1) - b(l_{d-1})$$

Aspect Ratio = α
Generalization to \(d\)-Dimensional Extremal Rectangle

\[\alpha = b(l_1) - b(l_d) \]

(1) no two cubes are adjacent
(2) can’t be connected by other cubes which are in the same query region

\[
\begin{align*}
\text{runs (} R \text{)} &= \text{cubes (} R \text{)} = \text{vol (} R \text{)} = \\
&= \prod_{j=1}^{d-1} 2^{b(l_j)-1} = \left(\frac{2^{b(l_d)} \cdot 2^{\alpha}}{2} \right)^{d-1} = \left(2^{\alpha-1} \cdot l_{\min} \right)^{d-1}
\end{align*}
\]
Summary

• Approximate Covering may be much cheaper than exact covering, while providing many of the advantages

• “Safe” Optimization, does not affect correctness

• Algorithm for numeric subscriptions using space filling curves
 – Provably fast for subscriptions with small aspect ratio
 – Performance better than lower bound for exact covering
 – Very practical and uses simple data structures
Future Directions

• Does approximation help other numeric covering data structures such as k-d trees?

• Covering Data structures for non-numeric (string) subscriptions?