Self Stabilizing
Smoothing and Counting

Maurice Herlihy, Brown University
Srikanta Tirthapura, Iowa State University
Overview

• Smoothing and Counting Networks

• Analysis of behavior without proper initialization
 - upper and lower bounds

• Self stabilization of smoothing networks
In a k-smoothing Network, the numbers of Tokens on different output wires differ by at most 2.
Counting Networks

• 1-smoothing networks with other additional properties

• Aspnes, Herlihy and Shavit in 1991

• Since then, scalable Construction and Properties well studied

• Bitonic and Periodic networks are two popular counting networks
Balancer
Balancer
Balancer
Counting Network

Depth = 4

Width = 4

Initial State: All balancers pointing up
1-Smoothing Property
Questions

• How do counting networks perform when initialized incorrectly (or by an adversary)?

• How to recover from illegal states reached during execution?
Motivation

- Initializing to a “correct” global state is hard or may be impossible
 - global reconfiguration expensive
 - network switches reboot

- Step towards building fault tolerant and dynamic smoothing networks
Our Results(1)

Periodic and *Bitonic* Counting Networks:

• When started from an arbitrary state, output is $\log w$ smooth ($w =$ width of network)

• Tight lower bound: We demonstrate inputs such that the output is not $\log k$ smooth for any $k < w$
Our Results (2)

Self-stabilization of Balancing Networks

• Add extra state and actions
• If network begins in illegal state, will eventually return to a legal state
• Upper bound on the time till stabilization, and extra space required
Periodic[w] Counting Network
Definitions

• Sequence $X = x_1x_2...x_l$ is k-smooth if $|x_i - x_j| \leq k$ for all $i, j < l$

• Matching layer of balancers for sequences X and Y joins x_i and y_i in a one-to-one correspondence
If X and Y are each k-smooth then result of matching X and Y is $(k+1)$-smooth

Holds irrespective of the orientations of balancers
Block[w] is (log w)-smooth

• Proof by Induction

• Assume Output of Block[n] is log n smooth

• Show that output of Block[2n] is log (2n) smooth
Lower Bound

- **Worst Case bound:**
 There exist input sequences and initial states such that output of Block[w] is not k-smooth for any $k < \log w$

- Show a *fixed-point sequence* for Block[w] which is not k-smooth for any $k < \log w$
Fixed Point Sequence

Sequence not k-smooth for any $k < \log (\text{width})$
Bitonic Counting Network

Starting from an arbitrary initial state
• Output is always $\log w$ smooth, where $w=$width
• Matching worst case lower bound on smoothness
Self Stabilization

• Extra state and actions added to the network

• Self-stabilizing Actions enabled only if network in illegal state otherwise, normal execution
Self Stabilization

- **Definition:** Legal State can be reached in an execution starting from the Correct Initial State

- Natural definition, but hard to use directly, so need alternate characterization

- Local state can be observed easily

- **Strategy:** Characterize legality in terms of local states
Global vs Local States
Additional State

These counters can be bounded - details in paper
Local States

• Balancer is Legal if
 (1) Top In + Bot In = Top Out + Bot Out
 (2) Toggle State is correct

• Wire is Legal if
 Tokens entering the wire = Tokens leaving the wire + Tokens in Transit
Global Legality in terms of Local

Theorem:

Iff (every wire and every balancer is in legal local state), then (the network is in a legal global state)

Now focus on stabilizing the local states - simpler problem
Space and Time Complexity

• Time to Stabilization = d parallel timesteps where $d = \text{depth of network}$

• Total additional space = $O(wd^2)$
 $w = \text{width of network}$
Issues

• Lazy versus pro-active stabilization

• Transient Behavior till stabilization might differ from “legal” behavior

• Tokens might be unevenly distributed till then
Summary

• Even if bitonic and periodic networks are not initialized, they are log smooth

• If only approximate smoothing is needed, then use \((\log w)\) depth uninitialized block network

• Can be converted into 1-smooth behavior by self-stabilization
 - overhead is small and analytically bounded