
A Deterministic Algorithm for Summarizing

Asynchronous Streams over a Sliding Window

Costas Busch1 and Srikanta Tirthapura2

1 Department of Computer Science
Rensselaer Polytechnic Institute, Troy, NY 12180, USA

buschc@cs.rpi.edu
2 Department of Electrical and Computer Engineering

Iowa State University, Ames, IA 50010, USA
snt@iastate.edu

Abstract. We consider the problem of maintaining aggregates over re-
cent elements of a massive data stream. Motivated by applications in-
volving network data, we consider asynchronous data streams, where the
observed order of data may be different from the order in which the data
was generated. The set of recent elements is modeled as a sliding times-
tamp window of the stream, whose elements are changing continuously
with time. We present the first deterministic algorithms for maintaining
a small space summary of elements in a sliding timestamp window of an
asynchronous data stream. The summary can return approximate an-
swers for the following fundamental aggregates: basic count, the number
of elements within the sliding window, and sum, the sum of all element
values within the sliding window. For basic counting, the space taken by
our summary is O(log W · log B · (log W + log B)/ε) bits, where B is an
upper bound on the value of the basic count, W is an upper bound on
the width of the timestamp window, and ε is the desired relative error.
Our algorithms are based on a novel data structure called splittable his-
togram. Prior to this work, randomized algorithms were known for this
problem, which provide weaker guarantees than those provided by our
deterministic algorithms.

1 Introduction

Many massive data sets naturally occur as streams; elements of a stream are
visible to the processor in a sequence, one after another, and random access is
impossible. Often, streams are too large to be stored in memory, and have to
be processed in a single pass using extremely limited workspace, typically much
smaller than the size of the data. Examples include IP packet streams observed
by internet routers, a stream of stock quotes observed by an electronic stock
exchange, and a sequence of sensor observations observed by an aggregator. In
spite of the volume of the data and a highly constrained model of computation,
in all the above applications it is important to maintain reasonably accurate
estimates of aggregates and statistics on the data.

In many applications, only the most recent elements of a stream are impor-
tant. For example, in a stream of temperature readings obtained from a sensor
network, it may be necessary to maintain the moving average of the tempera-
ture over the last 1 hour. In network monitoring, it is useful to track aggregates
such as the volume of traffic originating from a particular subnetwork over a
recent window of time. Motivated by such applications, there has been extensive
work [1, 6, 7, 2, 5, 9] on designing algorithms to compute aggregates over a sliding
window of the most recent elements of a data stream.

Most previous work on computing aggregates over a stream has focused on a
synchronous data stream where it is assumed that the order of arrival of elements
in the data aggregator is the same as the time order of their generation. However,
in many applications, especially those involving network data, this may not be
the case. Data streams may be asynchronous, and the order of arrival of elements
may not be the same as their order of generation. For example, nodes in a sensor
network generate observations that are aggregated at the sink node. When data
is being transmitted to the sink, different observations may experience different
delays in reaching the sink due to the inherent asynchrony in the network. Thus,
the received order of observations at the sink may be different from the time
order in which data was generated. If each data item had a timestamp that was
tagged at the time of generation, the sink may observe a data stream whose
elements are not arriving in increasing order of timestamps. Asynchronous data
streams are inevitable anytime two streams of observations, say A and B, fuse
with each other and data processing has to be done on the stream formed by the
interleaving of A and B. Even if individual streams A or B are not inherently
asynchronous, i.e. elements within A or within B arrive in increasing order of
timestamps, when the streams are fused, the stream could become asynchronous.
For example, if the network delay in receiving stream B is greater than the
delay in receiving elements in stream A, then the aggregator may consistently
observe elements with earlier timestamps from B after elements with more recent
timestamps from A.

We consider the problem of maintaining aggregates over recent elements of
an asynchronous data stream. An asynchronous stream is modeled as a sequence
of elements R = d1, d2, . . . , dn observed by an aggregator node, where d1 is the
element that was received the earliest and dn is the element that was received
most recently. Each element is a tuple di = (vi, ti) where vi is the value of the
observation, and ti is a timestamp, tagged at the time the value was generated.
Let c denote the current time at the aggregator. We are interested in all elements
that have a timestamp within w of the current time, i.e. all elements in the set
Rw = {d = (v, t) ∈ R |t ∈ [c − w, c]}. Since this window of allowed timestamps
[c − w, c] is constantly changing with the current time c, we call it a sliding
timestamp window. When the context is clear, we sometimes use the term sliding
timestamp window to refer to the set Rw.

Definition 1. For 0 < ε < 1, an ε-approximation to a number X is a number
Y such that |X − Y | ≤ εX.

Contributions. We present the first deterministic algorithms for summarizing
asynchronous data streams over a sliding window. We first consider a funda-
mental aggregate called the basic count, which is simply the number of ele-
ments within the sliding window. We present a data structure that can summa-
rize an asynchronous stream in a small space and is able to provide a prov-
ably accurate estimate of the basic count. More precisely, let W denote an
upper bound on the window size and B denote an upper bound on the basic
count. For any ε ∈ (0, 1), we present a summary of the stream that uses space
O(log W · log B · (log W + log B)/ε) bits. For any window size w ≤ W presented
at the time of query, the summary can return an ε-approximation to the num-
ber of elements whose timestamps are in the range [c − w, c] and arrive in the
aggregator no later than c, where c denotes the current time. The time taken to
process a new stream element is O(log W · log B) and the time taken to answer
a query for basic count is O(log B + log W

ε
).

We next consider a generalization of basic counting, the sum problem. In
a stream whose observations {vi} are positive integer values, the sum prob-
lem is to maintain the sum of all observations within the sliding window,∑

{(v,t)∈R |t∈[c−w,c]} v. Our summary for the sum provides similar guarantees

as for basic counting. For any ε ∈ (0, 1) the summary for the sum uses space
O(log W · log B · (log W + log B)/ε) bits, where W is an upper bound on the
window size, and B is an upper bound on the value of the sum. For any win-
dow size w ≤ W , the summary can return an ε-approximation to the sum of all
element values within the sliding window [c − w, c]. The time taken to process
a new stream element is O(log W · log B) and the time taken to answer a query
for the sum is O(log B + log W

ε
).

It is easy to verify that even on a synchronous data stream, a stream sum-
mary that can return the exact value of the basic count within the sliding window
must use Ω(W) space in the worst case. The reason is that using such a summary
one can reconstruct the number of elements arriving at each instant within the
sliding window. Hence, to achieve space efficiency it is necessary to introduce
approximations. Datar et. al. [5] show lower bounds for the space complexity of
approximate basic counting on a synchronous stream. They show that if a sum-
mary has to return an ε-approximation for the basic count on distinct timestamp
elements, then it should use space at least Ω(log2 W/ε). Since the synchronous
stream is a special case of an asynchronous stream, the above lower bound of
Ω(log2 W/ε) applies to approximate basic counting over asynchronous streams
too. To compare our results for basic counting with this lower bound, let us con-
sider the case when the timestamps of the elements are unique. In such a case,
log B = O(log W), since the value of the basic count cannot exceed W , and thus
the space required by our summary is O(log3 W/ε).

Techniques. Our algorithm for basic counting is based on a novel data structure
that we call a splittable histogram. The data structure consists of a small number
of histograms that summarize the elements within the sliding window at various
granularities. Within each histogram, the elements in the sliding window are
grouped into buckets, that are each responsible for a certain range of timestamps.

Arriving elements are placed in appropriate buckets within this histogram. When
a bucket becomes “heavy”, i.e. gets too many elements, it is split in half to
produce two buckets of smaller sizes, each responsible for a smaller range of
timestamps. Buckets may be recursively split if the again become too heavy
due to future insertions. A key technical ingredient is the analysis of the error
resulting from this recursive splitting of buckets. In contrast, earlier uses of
histograms in processing data streams over a sliding window, for example, Datar
et al. [5] and Arasu and Manku [1] have all been based on merging smaller
histogram buckets into larger ones, rather than splitting them as we do here.

Comparison to Prior Work. Prior to our work, deterministic algorithms were
known for summarizing synchronous streams over a sliding window [5, 7], but
only randomized algorithms were known for summarizing asynchronous streams.
In a previous work, Tirthapura, Xu and Busch [12] presented randomized algo-
rithms for summarizing asynchronous streams over a sliding window. Their sum-
mary yields an (ε, δ)-approximation for the sum problem and for basic count-
ing, i.e. the answer returned is within a relative error ε of the actual answer
with probability at least 1 − δ; this is a weaker guarantee that is provided by
the deterministic algorithm. The space used by their algorithm for the sum is
O((1

ε2
)(log 1

δ
)(log W log B)), where W is a bound on the maximum window size,

B is an upper bound on the value of the sum, ε is the relative error, and δ is the
failure probability. When compared with our deterministic algorithm, which uses
space O(log W · log B · (log W + log B)/ε), the randomized algorithm arguably
takes more space, since (log W +logB) is typically smaller than (1

ε
)(log 1

δ
). Thus,

the deterministic algorithm that we present here not only gives a stronger guar-
antee than the randomized one but also (arguably) uses lesser space. Neverthe-
less, the randomized algorithm in [12] has the advantage of being more flexible
and it can be used for other aggregates, including the median and quantiles.

Related Work. With the exception of [12], earlier work on summarizing data
streams over a sliding window have all considered the case of synchronous
streams, where the stream elements appear in increasing order of timestamps.
Datar et al. [5] were the first to consider basic counting over a sliding window
under synchronous arrivals. They present a deterministic algorithm for summa-
rizing synchronous streams which is based on a data structure called the ex-
ponential histogram. This summary can give an ε-approximate answer for basic
counting, sum and other aggregates. For a sliding window size of maximum size
W , and an ε relative error, the space taken by the exponential histogram for basic
counting is O(1

ε
log2 W), and the time taken to process each element is O(log W)

worst case, and O(1) amortized. Their summary for the sum of elements within
the sliding window has space complexity O(1

ε
log W (log W + log m)), and worst

case time complexity of O(log W + log m) where m is an upper bound on the
value of an item. Gibbons and Tirthapura [7] gave an improved algorithm for
basic counting that uses the same space as in [5], but whose time per element
is O(1) worst case. Since then, there has been much work on summarizing syn-
chronous data streams to approximate various aggregates over a sliding window,

including Arasu and Manku [1] on frequency counts and quantiles, Babcock et
al. [2] on variance and k-medians, Feigenbaum et al. [6] on the diameter of a set
of points. Much other recent work on data stream algorithms has been surveyed
in [10].

2 Basic Counting

For basic counting, the values of the stream elements do not matter, so the stream
is essentially a sequence of timestamps R = t1, t2, . . . , tn. The timestamps may
not be distinct and do not necessarily arrive in an increasing order. Let c denote
the current time. The goal is to maintain a sketch of R which will provide an
answer for the following query: for a user-provided w ≤ W , which is given at
the time of the query, return the number of elements in the current timestamp
window [c − w, c].

2.1 Algorithm

We assume that timestamps are non-negative integers. The universe of possible
timestamps is divided into intervals I0, I1, . . . of length W each; I0 = [0, W −
1], I1 = [W, 2W − 1], . . . , Ik = [kW, (k + 1)W − 1], A separate data structure
Di is maintained for each interval Ii, and all timestamps belonging in Ii are
inserted into Di. If c is the current time, then any timestamp that is less than
c−W will never be useful for a query, whether current or future. Thus we only
need to maintain data structures Di for those Ii that intersect [c − W, c]. It is
easy to verify that there exists j ≥ 0 such that [c − W, c] ⊂ Ij ∪ Ij+1. Thus,
the only data structures that are needed at time c are Dj and Dj+1, and the
algorithm only needs to maintain two such data structures at any time. When
a query is asked for the basic count over a timestamp window of width w ≤ W ,
there are two possibilities:

(1)The window [c−w, c] is completely contained within Ij , i.e. [c−w, c] ⊆ Ij .
In this case Dj is queried for the number of elements in the range [c−w, c], and
this estimate is returned by the algorithm.

(2)The window [c −w, c] falls partially in Ij and in Ij+1. In such a case, the
algorithm consults Dj for the number of elements in the range [c−w, (j+1)W−1]
and consults Dj+1 for the number of timestamps in the range [(j + 1)W, c], and
returns the sum of the two estimates. If each estimate is within an ε relative
error of the correct value, their sum is also within an ε relative error of the total
number of elements in the sliding timestamp window.

In the remainder of this section, we discuss the algorithms for maintaining
and querying data structure D0. Other Dis can be maintained similarly. For
D0 we assume that all timestamps are in the range [0, W − 1]. Without loss of
generality, we assume W is a power of 2 (since W only needs to be an upper
bound on the window size, it is always acceptable to increase it without affecting
the correctness). Let B be an upper bound on the number of elements with
timestamps in I0 = [0, W − 1]. Let M = dlog Be, and α =

⌈
(1 + log W) · 2+ε

ε

⌉

where ε is the desired relative error.

Intuition: Our algorithm is based on a novel data structure splittable his-
togram, which we introduce here. Data structure D0 consists of M + 1 his-
tograms S0, S1, . . . , SM . Each histogram Si consists of no more than α buckets.
Each bucket in Si is a tuple b = 〈w(b), l(b), r(b)〉 where: which is (1)[l(b), r(b)] ⊆
[0, W −1] is the range of all timestamps the bucket is responsible for and (2)w(b)
is the weight of the bucket which is an estimate of the number of elements with
timestamps in the range [l(b), r(b)].

The timestamp ranges of different buckets within Si are disjoint. For each
i = 0, . . . , M , we maintain the following invariant for Si: If Si has two or more
buckets, then the weight of every bucket in Si is in the range [2i, 2i+1−1], except
for those buckets which are responsible for a single timestamp. Intuitively, if
i1 > i2, then histogram Si1 contains “coarser’ information about the distribution
of elements than does Si2 , since it uses buckets of a larger size. Modulo some
significant details, this setup is similar to the one used in Datar et. al. [5] and
Gibbons and Tirthapura [7] to process synchronous streams.

An arriving element with timestamp t is inserted into every Si, i = 0, . . . , M .
Within Si, the element is inserted into a bucket b which is responsible for the
timestamp of the element (t ∈ [l(b), r(b)]), and the weight w(b) of the bucket
is incremented. Since stream elements are arriving asynchronously, the bucket
into which the arriving element is inserted may not be the bucket responsible
for the most recent timestamps. This is a fundamental departure from the way
histograms were employed to process synchronous streams in previous work [5,
7]. The algorithms in [5, 7] rest on the fact that an arriving element is always
inserted into the most recent bucket. Thus, when the size of the most recent
bucket exceeds 2i, the most recent bucket is “closed” and a new bucket is created
to hold future elements.

In our case, since elements arriving in the future may fall into a bucket which
is not the most recent bucket, we are unable to “close” a bucket. Thus, due to
arrival of elements in an arbitrary order, the weight of a bucket may increase
and may reach 2i+1, causing it to become too heavy. A heavy bucket of the
form 〈2i+1, l, r〉 is “split” into two lighter buckets 〈2i, l, (l + r + 1)/2 − 1〉 and
〈2i+1, (l + r + 1)/2, r〉, each of which has half the weight of the original bucket,
and is responsible for half the timestamp range of the original bucket.

Clearly, this splitting is inaccurate, since in the earlier grouping of all 2i+1

elements into a single bucket, the information about the timestamps of the in-
dividual elements has already been lost, and assigning half the elements of the
bucket into half the timestamp range may be incorrect. The key intuition here
is that the error due to this split is controlled, and is no more than 2i at each
bucket resulting from the split. Any future insertions of elements in the times-
tamp range [l, r] are considered more carefully, since they are being inserted
into buckets whose timestamp ranges are smaller. The buckets resulting from
the split may further increase in weight due to future insertions, and may split
recursively. The error due to splitting may accumulate, but only to a limited
extent, as we prove. A bucket resulting from log W recursive splits is respon-
sible for only a single timestamp, since the range of timestamps for a bucket

decreases by a factor of 2 during every split, and the initial bucket is responsible
for a timestamp range of length W . A bucket that is responsible for a single
timestamp is treated as a special case, and is not split further, even if its weight
increases beyond 2i+1.

Due to the splits, the number of buckets within Si may increase beyond α,
in which case we only maintain the α buckets that are responsible for the most
recent timestamps. Given a query for the basic count in window [c − w, c], the
different Sis are examined in increasing order of i. For smaller values of i, Si

may have already discarded some buckets that are responsible for timestamps
in [c − w, c]. But, there will always be a level ` ≤ M that will have all buckets
intersecting the range [c−w, c] (this is formally proved in Lemma 2). The algo-
rithm selects the earliest such level to answer the basic counting query, and we
show that the resulting relative error is within ε.

The algorithm for basic counting is given below. Algorithm 1 describes the
initialization of the data structure, Algorithm 2 describes the steps taken to pro-
cess a new element with a timestamp t, and Algorithm 3 describes the procedure
for answering a query for basic count.

Algorithm 1: Basic Counting: Initialization

α←
⌈
(1 + log W) · 2+ε

ε

⌉
, where ε is the desired relative error;

S0 ← φ; T0 ← −1;

for i = 1, . . . , M do

Si is a set with a single element 〈0, 0, W − 1〉;
Ti ← −1;

end

2.2 Proof of Correctness

Let c denote the current time. We consider the contents of sets Si and the values
of Ti at time c. For any time t, 0 ≤ t ≤ c, let st denote the number of elements
with timestamps in the range [t, W − 1] which arrive until time c. For level i,
0 ≤ i ≤ M , ei

t is defined as follows.

Definition 2.

ei
t =

∑

{b∈Si|l(b)≥t}

w(b)

Lemma 1. For any level i ∈ [0, M], for any t such that Ti < t ≤ c,
|st − ei

t| ≤ 2i · (1 + log W)

Proof. For level i = 0 we have st = e0
t , since each element x with timestamp

t′, where t ≤ t′ ≤ W − 1, is counted in the bucket b = 〈w(b), t′, t′〉 which is a
member of S0 at time c. Thus, |st − e0

t | = 0.
Consider now some level i > 0. We can construct a binary tree A whose nodes

are all the buckets that appeared in Si up to current time c. Let b0 = 〈0, 0, W−1〉

Algorithm 2: Basic Counting: When an element with timestamp t ar-
rives

// level 0

if there is bucket 〈w(b), t, t〉 ∈ S0 then
Increment w(b);

else
Insert bucket 〈1, t, t〉 into S0;

end

// level i, i > 0
for i = 1, . . . , M do

if there is bucket b = 〈w(b), l(b), r(b)〉 ∈ Si with t ∈ [l(b), r(b)] then
Increment w(b);
if w(b) = 2i+1 and l(b) 6= r(b) then

// bucket too heavy, split

// note that a bucket is not split

// if it is responsible for only a single time stamp

New bucket b1 = 〈2i, l(b), l(b)+r(b)+1
2

− 1〉;

New bucket b2 = 〈2i, l(b)+r(b)+1
2

, r(b)〉;
Delete b from Si;
Insert b1 and b2 into Si;

end

end

end

// handle overflow

for i = 0, . . . , M do

if |Si| > α then

// overflow

Discard bucket b∗ ∈ Si such that r(b∗) = minb∈Si
r(b);

Ti ← r(b∗);
end

end

Algorithm 3: Basic Counting: Query(w)
Input: w, the width of the query window, where w ≤ W
Output: An estimate of the number of elements with timestamps in [c− w, c]

where c is the current time
Let ` ∈ [0, . . . , M] be the smallest integer such that T` < c− w;

return
∑

{b∈S`|l(b)≥c−w}
w(b);

be the initial bucket which is inserted into Si during initialization (Algorithm
1). The root of A is b0. For any bucket b ∈ A, if b is split into two buckets bl

and br, then bl and br will appear as the respective left and right children of b
in A. Note that in A a node is either a leaf or has exactly two children. Tree A
has depth at most log W (the root is at depth 0), since every time that a bucket
splits the time period divides in half, and the smallest time period is a discrete
time step. For any node b ∈ A let A(b) denote the subtree with root b; we will
also refer to this as the subtree of b.

Consider now the tree A at time c. The buckets in Si appear as the |Si|
rightmost leaves of A. Let S ′

i denote the set of buckets in Si with l(b) ≥ t.
clearly, ei

t =
∑

b∈S′

i

w(b). The buckets in S′
i are the |S′

i| rightmost leaves of A.

Suppose that S′
i 6= ∅ (the case S′

i = ∅ is discussed below). Let b′ be the leftmost
leaf in A among the buckets in S ′

i. Let p denote the path in A from the root to
b′. For the number of nodes |p| of p it holds |p| ≤ 1 + log W . Let H1 (H2) be the
set that consists of the right (left) children of the nodes in p, such that these
children are not members of the path p. Note that b′ /∈ H1 ∪ H2. The union of
b′ and the leaves in the subtrees of H1 (∪b∈H2

A(b)) constitute the nodes in S ′
i.

Further, each bucket b /∈ S ′
i is in a leaf in a subtree of H2.

Consider some element x with timestamp t′. Initially, when x arrives it is
initially assigned to the bucket b which t′ belongs to. If b splits to two (children)
buckets b1 and b2, then we can assume that x is assigned arbitrarily to one of
the two new buckets arbitrarily. Even through x’s timestamp may belong to b1,
x may be assigned to b2, and vice-versa. If again the new bucket splits, x is
assigned to one of its children, and so on. Note that x is always assigned to a
leaf of A.

At time c, we can write

ei
t = st + |X1| − |X2 ∪ X3|, (1)

such that: X1 is the set of elements with timestamps in [0, t−1] which are assigned
to buckets in S′

i; X2 is the set of elements with timestamps in [l(b′), W −1] which
are assigned to buckets outside of S ′

i; and, for t < l(b′), X3 is the set of elements
with timestamps in [t, l(b′)−1] which are assigned to buckets outside of S ′

i, while
for t = l(b′), X3 = ∅. Note that the sets X1, X2, X3 are disjoint.

First, we bound |X1|. Consider some element x ∈ X1 with timestamp in
[0, t− 1] which at time c appears assigned to a leaf bucket bl ∈ S′

i. Since bl ∈ S′
i,

t cannot be a member of the time range of bl, that is, t /∈ [l(bl), r(bl)]. Thus, x
could not have been initially assigned to bl. Suppose that bl 6= b′. Then, there is
a node b̂ ∈ H1 such that bl is the leaf of the subtree A(b̂). None of the nodes in

A(̂b) contain t in their time range, since all the leaves of A(b̂) are members of S′
i.

Therefore, x could not have been initially assigned to A(b̂). Thus, x is initially
assigned to a node bp ∈ p′ = p − {b′}, since x could not have been assigned
to any node in the subtrees of H2 which would certainly bring x outside of S ′

i.
Similarly, if bl 6= b′, x is initially assigned to a node bp ∈ p′. Since at most 2i+1

elements are initially assigned to the root, and at most 2i elements are initially

assigned to each of the subsequent nodes of p′, we get:

|X1| ≤ 2i · (|p′| − 1) + 2i+1 = 2i · |p| ≤ 2i · (1 + log W). (2)

With a similar analysis (the details are omitted due to space constraints) in
can be shown that:

|X2 ∪ X3| ≤ 2i · (1 + log W). (3)

Combining Equations 1, 2, and 3 we can bound st − ei
t:

−2i · (1 + log W) ≤ −|X1| ≤ st − ei
t ≤ |X2 ∪ X3| ≤ 2i · (1 + log W).

Therefore, |st − ei
t| ≤ 2i · (1+ log W). In case S ′

i = ∅, ei
t = st − |X3| = 0, and the

same bound follows immediately. ut

Lemma 2. When asked for an estimate of the number of timestamps in [c−w, c]
(1)There exists a level i ∈ [0, M] such that Ti < c − w, and
(2)Algorithm 3 returns e`

c−w where ` ∈ [0, M] is the smallest level such that
T` < c − w.

The proof of Lemma 2 is omitted due to space constraints, and can be found
in the full version [3]. Let ` denote the level used by Algorithm 3 to answer a
query for the number of timestamps in [c − w, c]. From Lemma 2 we know `
always exists.

Lemma 3. If ` > 0, then sc−w ≥ (1+log W)·2`

ε
.

Proof. If ` > 0, it must be true that T`−1 ≥ c − w, since otherwise level ` − 1
would have been chosen. Let t = T`−1 + 1. Then, t > c−w, and thus sc−w ≥ st.
From Lemma 1, we know st ≥ e`−1

t − (1 + log W) · 2`−1. Thus we have:

sc−w ≥ e`−1
t − (1 + log W) · 2`−1 (4)

We know that for each bucket b ∈ S`−1, l(b) ≥ t. Further we know that each
bucket in S`−1 has a weight of at least 2`−1 (only the initial bucket in S`−1

may have a smaller weight, but this bucket must have split, since otherwise T`−1

would still be −1). Since there are α buckets in S`−1, we have:

e`−1
t ≥ α2`−1 ≥ (1 + log W) ·

2 + ε

ε
· 2`−1 (5)

The lemma follows from Equations 4 and 5. ut

Theorem 1. The answer returned by Algorithm 3 is within an ε relative error
of sc−w.

Proof. Let X denote the value returned by Algorithm 3. If ` = 0, it can be
verified that Algorithm 3 returns exactly sc−w (proof omitted due to space con-
straints). If ` > 0, from Lemmas 1 and 2, we have |X − sc−w| ≤ (1 + log W) · 2`.
Using Lemma 3, we get |X − sc−w| ≤ ε · sc−w as needed. ut

Theorem 2. The worst case space required by the data structure for basic count-
ing is O((log W · log B) · (log W + log B)/ε) where B is an upper bound on the
value of the basic count, W is an upper bound on the window size w, and ε is
the desired upper bound on the relative error. The worst case time taken by Al-
gorithm 2 to process a new element is O(log W · log B), and the worst case time
taken by Algorithm 3 to answer a query for basic counting is O(log B + log W

ε
).

The proof is omitted due to space constraints, and can be found in the full
version [3].

3 Sum of Positive Integers

We now consider the maintenance of a sketch for the sum, which is a generaliza-
tion of basic counting. The stream is a sequence of tuples R = d1 = (v1, t1), d2 =
(v2, t2), . . . , dn = (vn, tn) where the vis are positive integers, corresponding to
the observations, and tis are the timestamps of the observations. Let c denote
the current time. The goal is to maintain a sketch of R which will provide an
answer for the following query. For a user provided w ≤ W that is given at the
time of the query, return the sum of the values of stream elements that are within
the current timestamp window [c−w, c]. Clearly, basic counting is a special case
where all vis are equal to 1.

An arriving element (v, t), is treated as v different elements each of value 1
and timestamp t, and these v elements are inserted into the data structure for
basic counting. Finally, when asked for an estimate for the sum, the algorithm
for handling a query in basic counting (Algorithm 3) is used. The correctness
of this algorithm for the sum follows from the correctness of the basic counting
algorithm (Theorem 1). The space complexity of this algorithm is the same as
the space complexity of basic counting, the only difference being that the number
of levels in the algorithm for the sum is M = dlog Be, where B is an upper bound
on the value of the sum within the sliding window (in the case of basic counting,
B was an upper bound on the number of elements within the window).

If naively executed, the time complexity of the above procedure for process-
ing an element (v, t) could be large, since v could be large. The time complexity
of processing an element can be reduced by directly computing the final state
of the basic counting data structure after inserting all the v elements. The in-
tuition behind the faster processing is as follows. The element (v, t) is inserted
into each of the M + 1 levels. In each level i, i = 0, . . . , M , the v elements are
inserted into Si in batches of unit elements (1, t) taken from (v, t). A batch con-
tains enough elements to cause the current bucket containing timestamp t to
split. The next batch contains enough elements from v to cause the new bucket
containing timestamp t to split, too, and so on. The process repeats until a
bucket containing timestamp t cannot split further. This occurs when at most
O(max(v/2i, log W)) batches are processed (and a similar number of respective
new buckets is created), since at most O(2i) elements from v are processed at
each iteration in a batch, and a bucket can be recursively split at most log W

times until it is responsible for only one timestamp, at which point no further
splitting can occur (and any remaining elements are directly inserted into this
bucket). The complete algorithm for processing (v, t) and its analysis can be
found in the full version of the paper [3], where it is proved that upon receiving
element (v, t), the algorithm for the sum simulates the behavior of Algorithm 2
upon receiving v elements each with a timestamp of t.

Theorem 3. The worst case space required by the data structure for the sum is
O((log W · log B)(log W +logB)/ε) bits where B is an upper bound on the value
of the sum, W is an upper bound on the window size w, and ε is the desired
upper bound on the relative error. The worst case time taken by the algorithm
for the sum to process a new element is O(log W · log B), and the time taken to
answer a query for the sum is O(log B + (log W)/ε).

References

1. A. Arasu and G. Manku. Approximate counts and quantiles over sliding windows.
In Proc. ACM Symposium on Principles of Database Systems (PODS), pages 286–
296, 2004.

2. B. Babcock, M. Datar, R. Motwani, and L. O’Callaghan. Maintaining variance and
k-medians over data stream windows. In Proc. 22nd ACM Symp. on Principles of
Database Systems (PODS), pages 234–243, June 2003.

3. C. Busch and S. Tirthapura. A deterministic algorithm for summarizing asyn-
chronous streams over a sliding window. Technical report, Iowa State University,
2006. Available at http://archives.ece.iastate.edu/view/year/2006.html.

4. G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava. Space- and time-
efficient deterministic algorithms for biased quantiles over data streams. In Proc.
ACM Symposium on Principles of Database Systems, pages 263–272, 2006.

5. M. Datar, A. Gionis, P. Indyk, and R. Motwani. Maintaining stream statistics over
sliding windows. SIAM Journal on Computing, 31(6):1794–1813, 2002.

6. J. Feigenbaum, S. Kannan, and J. Zhang. Computing diameter in the streaming
and sliding-window models. Algorithmica, 41:25–41, 2005.

7. P. Gibbons and S. Tirthapura. Distributed streams algorithms for sliding windows.
Theory of Computing Systems, 37:457–478, 2004.

8. S. Guha, D. Gunopulos, and N. Koudas. Correlating synchronous and asyn-
chronous data streams. In Proc.9th ACM International Conference on Knowledge
Discovery and Data Mining (KDD), pages 529–534, 2003.

9. A. Manjhi, V. Shkapenyuk, K. Dhamdhere, and C. Olston. Finding (recently)
frequent items in distributed data streams. In Proc. IEEE International Conference
on Data Engineering (ICDE), pages 767–778, 2005.

10. S. Muthukrishnan. Data Streams: Algorithms and Applications. Foundations and
Trends in Theoretical Computer Science. Now Publishers, August 2005.

11. U. Srivastava and J. Widom. Flexible time management in data stream systems.
In Proc. 23rd ACM Symposium on Principles of Database Systems (PODS), pages
263–274, 2004.

12. S. Tirthapura, B. Xu, and C. Busch. Sketching asynchronous streams over a slid-
ing window. In Proc. 25th annual ACM symposium on Principles of distributed
computing (PODC), pages 82–91, 2006.

