
Ordered Multicast and Distributed Swap
preliminary report

Maurice Herlihy∗ Srikanta Tirthapura∗

Roger Wattenhofer†

August 13, 2000

Abstract

A multicast protocol is ordered (or totally ordered) if it ensures
that messages multicast to a group of nodes are delivered in the same
order at each destination node, even when those messages are gener-
ated concurrently from several sources. Ordered multicast is a natural
foundation for push-based cache coherence and certain kinds of mid-
dleware.

This paper shows how to reduce the complex problem of enforcing
multicast ordering to a simpler distributed coordination problem we
call distributed swap. Any distributed swap protocol can transform an
unordered reliable multicast into an ordered multicast in a modular
way.

We introduce two novel distributed swap protocols, and discuss
their corresponding ordered multicast protocols. These protocols have
lower latency than more obvious approaches based on distributed
counting.

1 Introduction

The ordered multicast problem is the problem of ensuring that messages mul-
ticast to a group of nodes are delivered in the same order everywhere, even
when these messages are generated concurrently at several sources. (This

∗Computer Science Department, Brown University, Providence, RI 02912; {herlihy,
snt}@cs.brown.edu.

†Microsoft Research, rogerwa@microsoft.com

1



kind of multicast is sometimes called totally ordered.) We are interested in
scalable multicast protocols that allow nodes to enter or leave the multicast
group without the need for global reconfiguration.

To understand why ordered multicast can be useful, consider a distributed
object cached at multiple nodes in a network, where each node multicasts
updates to the cached copies, a technique called push-based cache coherence.
If several nodes issue concurrent updates, each of the copies must apply
those updates in the same order. More generally, ordered multicast is useful
in any kind of middleware where the order of events originating at different
nodes in a distributed system must be reflected consistently among the nodes
“listening” to such events. For example, publish-subscribe systems such as
Gryphon [3] can use such a service to provide ordered delivery of events to
subscribers.

The contribution of this paper is to point out a simple reduction from the
ordered multicast problem to a much simpler distributed coordination prob-
lem, called distributed swap, and to explore the consequences of this reduc-
tion. Our intent is to draw the attention of the community to this approach,
and to encourage others to work on this problem and related problems. We
have found this reduction helpful in designing two novel ordered multicast
protocols, the arrow multicast and the combining multicast, both described
below.

The reduction works as follows. A distributed swap protocol can be com-
bined with any reliable multicast protocol from the literature (such as SRM
[6] or RMTP [10]), to yield a reliable ordered multicast protocol. This re-
duction is of interest because distributed swap has not been widely studied,
and there is some evidence that ordered multicast protocols based on dis-
tributed swap may be more efficient than more obvious approaches based on
distributed counting.

We believe that any truly scalable multicast protocol must be anonymous,
in the sense that a node performing a multicast may not be aware of the
identities of the recipients. IP multicast [13], SRM [6], and RMTP [10] are
all anonymous in this sense. If all nodes (or even some nodes) must know
every group member, then entering or leaving the group requires a global
reconfiguration, which is clearly not scalable beyond local area networks.
Our approach to ordered multicast thus differs in fundamental ways from
that employed by systems based on notions of virtual synchrony [1, 4, 12, 15],
in which each node knows the exact group membership. In these systems,
each node entering or leaving the group provokes a global reconfiguration
(called a “view change”). These systems trade fault-tolerance for scalability,
while we do the opposite.

2



2 Model

We now describe our assumptions about the underlying system and the ser-
vices it provides. Formally, a distributed system is a connected undirected
graph G, where processors correspond to graph nodes, and edges to direct
communication links. We assume that there is

• a reliable FIFO unicast service (such as TCP), and

• a reliable single source FIFO1 (but otherwise unordered) multicast ser-
vice (such as SRM [6] or RMTP [10]).

Our goal is to provide a layer on top of these services that forces a total order
on message delivery.

We believe that a layered approach, in which we focus exclusively on
ordering, reflects a sensible separation of concerns. Many existing proposals
for reliable multicast [6, 10, 11] stack a repair layer on top of an unreliable
multicast layer. In the same spirit, we stack an ordering layer on top of
reliable multicast so we can focus on ordering independently of repair and
retransmission.

We distinguish between receiving a message at a node, which typically
involves placing the message in a buffer, and delivering the message to the ap-
plication running at the node. Ordered multicast requires only that message
deliveries be totally ordered.

We do not consider fault tolerance for now. We assume here that nodes do
not crash, and that with sufficient retransmission, any message can eventually
cross any link. Fault tolerance is discussed briefly in the conclusions.

3 The Reduction

In the distributed swap problem, a collection of processes have to implement
a distributed swap object, which encapsulates a value, initially the distin-
guished value ⊥. The object provides a single operation, swap(v), which
changes the object’s value to v and returns the object’s previous value.

It is straightforward to use distributed swap to impose a total order on re-
liable multicasts. Each multicast group has an associated swap object. Each
message m has a unique identifier, id(m). Node u then calls swap(id(m)),
which returns id(m′), the identifier of m′, the immediate predecessor to m.

1“Single-source FIFO” means that messages sent by any single processor are delivered
in the order sent.

3



Node u then calls the reliable multicast service to send the pair 〈id(m′), m〉
to each member of the multicast group. A node that receives 〈id(m′), m〉 de-
livers m only after delivering m′. (A message with predecessor ⊥ is delivered
immediately.)

To see why it may be advantageous to use swap to implement ordered
multicast, let us consider another, perhaps more obvious reduction. The dis-
tributed counting problem requires issuing successive integers to requesting
processes. One could implement ordered multicast simply by using any dis-
tributed counting protocol [2, 14, 16] to assign a sequence number to each
message, and delivering a message only after all lower-numbered messages
have been delivered.

Nevertheless, it may sometimes be faster to identify a message’s immedi-
ate predecessor than to discover the number of predecessors of that message.
Both distributed swap protocols examined in this paper are actually “trun-
cated” versions of counting protocols, in which each participant quits early,
after discovering its immediate predecessor, but without waiting to count its
other predecessors. The task of finding a predecessor has lower latency in
swap-based protocols than in the corresponding counting-based ones.

We present two techniques for ordered multicast based on distinct dis-
tributed swap protocols. The first protocol, the arrow multicast, is based
on the arrow distributed directory protocol [5, 9]. The arrow protocol was
originally developed as a scalable way for tracking the location of mobile
objects. It uses a simple path-reversal technique to construct a distributed
queue of access requests. The corresponding distributed swap protocol is a
“truncated” version of the directory protocol, in which a message is multicast
as soon as it chooses a position in the distributed queue.

The second protocol, the combining multicast, is based on a combining
tree structure. The combining multicast protocol is a “truncated” version of a
distributed counting protocol. In the basic combining-tree protocol, messages
move from leaves to the root, combining wherever possible. In the counting
protocol, each message is assigned a value only after a round trip to the root
and back. The swap protocol is a truncated version of the counting protocol:
when two messages are combined, one becomes the other’s predecessor and
the later one can be multicast immediately.

4 Arrow Multicast

The arrow directory protocol [5] ensures mutually exclusive access to mobile
objects. This protocol is designed to avoid scalability problems inherent in

4



many directory services currently used in distributed shared object systems.
We now show how to adapt this protocol to support distributed swap, and
hence ordered multicast.

Recall that the network is modeled as a graph G. The protocol maintains
a tree T , a subgraph of G, spanning the nodes in the multicast group. Each
node v in the tree has two attributes: link(v) is a node, either v itself, or a
neighbor of v in T , and value(v) is a value. A node v is a sink if link(v) = v.
The component value(v) is meaningful only if v is a sink. The directory tree
is initialized so that following the the link(·) variables from any node leads
to a unique sink v such that value(v) = ⊥. Informally, except for the unique
sink node, a node knows only in which “direction” the sink lies. Figure 1
shows the initial system state..

When a node v initiates swap(a), it sends a swap(a) message to u1 =
link(v) and sets link(v) to v and value(v) to a. When node ui receives
a swap(a) message from node ui−1, where ui+1 = link(ui), it immediately
“flips” link(ui) to ui−1. If ui+1 6= ui, then ui forwards the message to ui+1.
Otherwise, ui is a sink, and it returns value(ui) to the originating node v,
and v’s swap operation is complete.

Ordered multicast is performed in a similar way. When a node u multi-
casts m, it initiates swap(id(m)), sending m along with the swap message.
When this message reaches a sink ui, instead of returning value(ui) to u, ui

immediately performs an unordered multicast of 〈value(ui), m〉, indicating
that the message with id value(ui) is the immediate predecessor of m in the
total order. This protocol is illustrated in Figures 1 through 5.

It is not hard to show that every message eventually finds a sink, and
that the maximal number of links traversed from source to sink is at most
the diameter of the tree T . Moreover, the protocol never waits between the
time a message is multicast and the time it is received at the destination
nodes. (Once a message m is received, however, a node may need to wait for
earlier messages to catch up before it can deliver m.)

Note that this swap protocol can be considered as a truncated version
of a distributed counting protocol. Interpret value(v) as a mobile sequence
number, initially 0. The arrow protocol forms a distributed queue of access
requests (in this case requests for sequence numbers). The sequence number
goes through the requests in the queue in order. Each request stores the
current value of the sequence number, increments it and sends it on to the
next request in the queue. It then performs an unordered multicast with
sequence number that it has stored.

If requests occur sequentially, the counting-based and swap-based multi-
cast protocols are the same, but in the presence of concurrency, the swap-

5



v

wvalue(u) = ⊥u

z

y x

Figure 1: Arrow multicast. The initial system state.

vz

y x

value(u) = ⊥u w

value(v) = id(m1)

m1

Figure 2: Arrow multicast. v sends message m1, which is on its way to x.

based multicast will always have lower latency because messages do not need
to wait to count their predecessors.

5 The Combining Multicast

Combining trees [7, 8] are a well-known technique for implementing dis-
tributed data structures in which concurrent requests are combined as they
move up towards the root of a tree. We now show how a distributed counting
protocol based on combining trees can also be truncated to yield a distributed
swap protocol.

The directory maintains a tree T , a subgraph of G, spanning the members
of the multicast group. The tree includes a fixed root r, and edges of the tree
are oriented toward r. The root stores a value value(r), initially ⊥.

To execute swap(a), where a is a value, a node v sends a swap(a, a)
message to its parent in T . If two messages swap(a, b) and swap(c, d) meet

6



vz

y x

u w

m1

value(v) = id(m1)

value(w) = id(m2)

value(u) = ⊥

m2

Figure 3: Arrow multicast. w sends m2, now on its way to x.

vz

y x

u w

value(v) = id(m1)

value(w) = id(m2)

value(u) = ⊥

m2

m1

Figure 4: Arrow multicast. m1 and m2 follow the arrows, flipping their
direction along the way. Note that m2 has been “deflected” towards v.

vz

y x

u wvalue(w) = id(m2)

multicast 〈id(m1), m2〉

multicast 〈⊥, m1〉

Figure 5: Arrow multicast. Both m1 and m2 find their predecessors concur-
rently and are multicast along with that information. Note that value(v)
and value(u) are no longer useful.

7



r

x

value(r) = ⊥

m1

y

w

u v

m2

m3

Figure 6: Combining multicast. Messages m1, m2 and m3 start their journey
towards the root.

r

y

x

value(r) = ⊥

u v

wmulticast〈id(m1), m2〉

m1m2 m3

Figure 7: Combining multicast. m1 and m2 combine. m2 is multicast as m1’s
successor.

at a non-root node y, b is designated to be the result of c’s swap, the messages
are combined into a single message swap(a, d), and the combined message is
sent to y’s parent. (More than 2 messages can be combined in a similar way.)
When a swap(a, b) message arrives at the root, the root’s value value(r) is
designated to be the result of a’s swap, and value(r) is set to b.

An ordered multicast is performed in the same way, except that message
identifiers replace values, and a node performs an unordered multicast as
soon as it identifies a message’s predecessor.

This swap protocol can also be viewed as a truncated counting protocol.
If we were to use the combining tree to generate sequence numbers, then a
message would be assigned a sequence number only after it had completed a
round trip to the root (possibly combined with other messages).

8



r

y

x

value(r) = ⊥

u v

w

multicast 〈id(m3), m1〉
m3m1m2

Figure 8: Combining multicast. m1m2 and m3 combine. m1 is multicast as
m3’s successor. m3m1m2 continues towards the root.

r

y

x

u v

w

value(r) = id(m2)
multicast 〈⊥, m3〉

Figure 9: Combining multicast. m3m1m2 reaches the root. m3 is multicast
as the successor of ⊥ (i.e. m3 is the first message in the total order). The
value id(m2) is swapped into value(r).

9



6 Discussion

In this section, we briefly compare the two ordered multicast protocols. We
also discuss how to enter and leave multicast groups and fault tolerance.

6.1 Comparison

The arrow multicast has a useful locality property: swap-related message
traffic occurs only on links between multicasting nodes, so if there is only
one multicasting node, there is no swap-related traffic. In the combining
tree, however, all swap-related message traffic passes through the root, even
if there is only one multicaster.

6.2 Entering and Leaving

We now briefly discuss how a node might enter or leave a multicast group.
Both the arrow and the combining protocols use spanning trees for connecting
the member nodes. In either protocol, joining the group is straightforward:
a node u just links itself as a leaf adjacent to any node v already in the tree,
and informs v that it has done so. In the arrow protocol, u’s arrow points to
v, while in the combining protocol, v is u’s parent in the tree.

Leaving a group is similar. In the arrow protocol, node u first “locks”
its immediate neighbors in the tree, ensuring that message traffic between u
and the neighbors has quiesced. If u is a sink, it chooses a neighbor v and
makes v a sink in its place, setting value(v) = value(u) and link(v) = v. For
each neighbor w such that link(w) = v, it sets link(w) = link(u). Node u
then unlocks its neighbors and leaves the group. The combining protocol is
similar, except that the sink issue does not arise.

The important point is that group membership changes are local opera-
tions whose complexity depends on the degree of the node, not the size of
the multicast group.

6.3 Fault Tolerance

Fault tolerance is the subject of current research. It is straightforward to
incorporate redundant links in either the arrow or combining tree protocols,
permitting messages to circumnavigate some failed nodes. In the arrow pro-
tocol, however, it is more difficult to tolerate a sink node crash, and in the
combining tree protocol, a root node crash.

10



We think that the challenge here is to define sensible failure semantics,
specifying the kind of behavior that can occur in the presence of node and
link failures. We favor the following variation of the “total order with gaps”
guarantee. If m0 and m1 are both delivered at nodes u and v, then they
are of course delivered in the same order at both. If m0, m1 and m2 are
delivered at u, but only m0, and m2 at v, then the application at v is notified
that there may be one or more missing messages between m0 and m2. This
kind of fault-tolerance is consistent in spirit with that currently provided by
modern reliable multicast protocols.

6.4 Conclusions

We have found the notion of distributed swap to be helpful in designing
and analyzing scalable ordered multicast protocols. We think this approach
merits more attention from the research community, and we hope to convince
others to explore this approach.

References

[1] Y. Amir, D. Dolev, S. Kramer, and D. Malki. Transis: A communi-
cation subsystem for high availability. In Twenty-Second International
Symposium on Fault-Tolerant Computing, pages 76–84, July 1992.

[2] J. Aspnes, M.P. Herlihy, and N. Shavit. Counting networks. Journal of
the ACM, 41(5):1020–1048, September 1994.

[3] G. Banavar, T. Chandra, B. Mukherjee, J. Nagarajarao, R. Strom, and
D. Sturman. An efficient multicast protocol for content-based publish-
subscribe systems. In Proceedings of the International Conference on
Distributed Computing Systems, 1999.

[4] K. P. Birman. The process group approach to reliable distributed com-
puting. Communications of the ACM, 36(12):37–53, December 1993.

[5] M. Demmer and M.P. Herlihy. The arrow directory protocol. In Pro-
ceedings of 12th International Symposium on Distributed Computing,
September 1998.

[6] S. Floyd, V. Jacobson, C. Liu, S. McCanne, and L. Zhang. A reliable
multicast framework for light-weight sessions and application level fram-

11



ing. IEEE/ACM Transactions on Networking, 5(6):784–803, December
1997.

[7] Gottlieb and Kruskal. Coordinating parallel processors: A partial unifi-
cation. Computer Architecture News, 9, 1981.

[8] A. Gottlieb, B. D. Lubachevsky, and L. Rudolph. Basic techniques for
the efficient coordination of very large numbers of cooperating sequential
processors. ACM Transactions on Programming Languages and Systems,
5(2):164–189, April 1983.

[9] M. Herlihy and M. Warres. A tale of two directories: Implementing
distributed shared objects in java. In ACM Java Grande Conference,
June 1999.

[10] J.C.Lin and S.Paul. Rmtp: A reliable multicast transport protocol. In
Proceedings of IEEE INFOCOM, pages 1414–1424, 1996.

[11] B. N. Levine and J.J. Garcia-Luna-Aceves. A comparison of reliable mul-
ticast protocols. Multimedia Systems Journal (ACM/Springer), 6(5),
August 1998.

[12] L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, R. K. Budhia, and
C. A. Lingley-Papadopoulos. Totem: A fault-tolerant multicast group
communication system. Communications of the ACM, April 1996.

[13] S.Deering. Host extensions for ip multicasting. RFC 1112, August 1988.

[14] Nir Shavit and Asaph Zemach. Diffracting trees. ACM Transactions on
Computer Systems, 14(4):385–428, November 1996.

[15] R. van Renesse, K. P. Birman, R. Friedman, M. Hayden, and D. A. Karr.
A framework for protocol composition in horus. In Proceedings of the
13th Annual ACM Symposium on Principles of Distributed Computing,
pages 80–89, August 1995.

[16] Roger Wattenhofer. Distributed Counting: How to Bypass Bottlenecks.
PhD thesis, Swiss Federal Institute of Technology (ETH) Zürich, 1998.

12


