Distinct Random Sampling from a Distributed Stream

Yung-Yu Chung, Srikanta Tirthapura
Electrical and Computer Engineering
Iowa State University
Random Sampling from Data

Requests at a busy website

Random Sample
Size 3

ip = ip1
bytes = 300
req = m1

ip = ip1
bytes = 300
req = m1

ip = ip1
bytes = 300
req = m1

ip = ip2
bytes = 3000
req = m2

ip = ip3
bytes = 30000
req = m2

ip = ip1
bytes = 300
req = m1

ip = ip1
bytes = 300
req = m1

ip = ip1
bytes = 300
req = m1

ip = ip1
bytes = 300
req = m1
Distinct Random Sampling

Sample from the Set of Distinct Elements within data

Requests at a busy website

Distinct Elements

Random Sample

Distinct Random Sample

Conceptual View
Problem at a High Level

Continuously maintain a distinct random sample from a data source whose elements are arriving as continuous stream of updates at multiple geographically distributed sites.
Importance of Distinct Random Sampling

- Network Anomaly Detection (Venkataraman et al. NDSS 2005)
- Database Query Optimization (Ganguly et al. VLDB 2005, Poddar 2011, Gibbons VLDB 2001)
- Sampling Operators a core part of Streaming Systems
 - Sampling Algorithms in a Stream Operator (Johnson et al. SIGMOD 2005)
 - IBM Infosphere Streams
- BlinkDB “Big Data” database is based on random sampling for approximate answers (Agarwal et al. Eurosyst 2013)
Distributed Streams

Server 1 (Hyderabad)

Server 2 (Bangalore)

Server 3 (Iowa)

Events

Master Server

Average age of a client?

Number of distinct clients from area X?
Distinct Sampling Problem Definition (1)

Let $S = S_1 \cup S_2 \cup \ldots \cup S_k$

Let $\text{distinct}(S)$ be set of distinct elements in S

Task: continuously maintain a random sample of size s chosen without replacement from $\text{distinct}(S)$
Distinct Sampling Problem Definition (2)

- **Cost:** Number of messages transmitted between sites and coordinator

- **Synchronous Model**
 - Execution proceeds in rounds
 - In each round, each site observes one or more items, and can send a message to coordinator, receive a response

- **Two Versions:**
 - Infinite Window: Sample drawn from all items seen so far
 - Sliding Window: Sample drawn from items seen in recent rounds
Our Results (Upper Bound)

An algorithm that continuously maintains a distinct sample from a distributed stream S, with the following performance guarantees

- Expected total messages for processing all of S is $2ks \ln (de/s)$
- $O(s)$ memory consumption per site
- $O(s)$ memory at the coordinator, and
- $O(1)$ processing time per element

$k =$ number of sites
$d =$ size of distinct(S)
$s =$ sample size desired
Our Results (Lower Bound)

For any algorithm A and parameter d, there exists an input distributed stream, I_A with d distinct elements such that the expected number of messages sent by the algorithm upon receiving I_A is at least $(ks/2) \ln (de/s)$

$k =$ number of sites
d = size of distinct(S)
s = sample size desired
Results Summary

<table>
<thead>
<tr>
<th></th>
<th>Our Algorithm</th>
<th>Lower Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Messages</td>
<td>$2ks \ln (de/s)$</td>
<td>$(ks/2) \ln (de/s)$</td>
</tr>
<tr>
<td>Memory at Coordinator</td>
<td>$O(s)$</td>
<td>$\Omega(s)$</td>
</tr>
<tr>
<td>(in words)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Prior and Related Work

• Distinct Sampling on a Stream and Applications (Gibbons and Tirthapura SPAA 2001, Gibbons VLDB 2001)

• Continuous Distributed Streaming Model (Cormode et al. SODA 2008, and many other works)

• Continuous Random Sampling on Dist. Streams
 • Cormode, Muthu, Yi, Zhang, JACM 2011
 • Tirthapura and Woodruff, DISC 2011

• Stream Sampling has a rich history starting from the reservoir sampling algorithm
Sampling Algorithm Basics

- U be the universe of all elements in S

- Algorithm first chooses \(h: U \rightarrow [0,1] \), a hash function that assigns a real number in \([0,1]\) to each element in U
 - On same input \(v \), \(h \) always yields same output \(h(v) \)
 - On distinct inputs, outputs of \(h \) are mutually independent random variables

- Random Sample of size \(s \) from S is the set of elements \(R \) that have the \(s \) smallest hash values in \(\{h(x) \mid x \in S\} \)
Distributed Maintenance of Sample

Coordinator maintains s smallest hash values so far

Site i:
1. Maintain view of current sample
2. if sees an element with smaller hash value, then inform coordinator
Algorithm: Element Arrives at Site 1 (maintain a sample of size 1)

\[u_1 = 1 \]

\[u = \text{Smallest hash value so far} = 1 \]
Algorithm: Element Arrives at Site 1

Weight = $h(A) = 0.6$

$u_1 = 1$

$u = \text{Smallest hash value so far} = 1$

Coordinator
Algorithm: Element Arrives at Site 1

1

\[u_1 = 0.6 \]

A

\[u = \text{Smallest hash value so far} = 1 \]

Coordinator
Algorithm: Element Arrives at Site 1

1

$u_1 = 0.6$

$u = \text{Smallest hash value so far} = 0.6$

Coordinator
Algorithm: Element Arrives at Site 2

$u_1 = 0.6$

$u_2 = 1$

$u = \text{Smallest hash value so far} = 0.6$
Algorithm: Element Arrives at Site 2

$u_1 = 0.6$

$h(B) = 0.8$

$u_2 = 1$

$u =$ Smallest hash value so far $= 0.6$
Algorithm: Element Arrives at Site 2

1. \(u_1 = 0.6 \)
2. \(h(B) = 0.8 \)

Coordinator

3. \(u_2 = 0.8 \)

A

B

\(u = \text{Smallest hash value so far} = 0.6 \)
Algorithm: Element Arrives at Site 2

1

\[u_1 = 0.6 \]

2

\[h(B) = 0.8 \]

\[u_2 = 0.8 \]

"Wasteful" Message

discarded

Coordinator

u = 0.6

A

B
Algorithm: Element Arrives at Site 2

1

$u_1 = 0.6$

2

$u_2 = 0.8$ changes to 0.6

Coordinator

"Wasteful" Message

BUT

Refresh Node 2’s state

B is discarded

$u = 0.6$

A

$u = 0.6$
Algorithm: Element Arrives at Sites 1, 2, 3

1. $h(C) = 0.3$
 - $u_1 = 0.6$

2. $h(C) = 0.3$
 - $u_2 = 0.6$

3. $h(C) = 0.3$
 - $u_3 = 1$

Coordinator:

- $u = 0.6$
Algorithm: Element Arrives at Sites 1, 2, 3

1. $u_1 = 0.3$
2. $u_2 = 0.3$
3. $u_3 = 0.3$

$h(C) = 0.3$

$u = 0.6$ changes to 0.3
Algorithm: Element Arrives at Sites 1, 2, 3

1
\[u_1 = 0.3 \]

2
\[u_2 = 0.3 \]

3
\[u_3 = 0.3 \]

 Coordinator
\[u = 0.3 \]
Distributed Algorithm Notes

1. State of coordinator is always current
2. State of site maybe out of sync, but is “safe”
3. A message from site either updates coordinator or results in an update to the state of the site
4. Each site maintains a view of current sample, to prevent sending the same element repeatedly to the coordinator
Algorithm at Site i

Init: Receive h from coordinator, set $u_i \leftarrow 1$, $P_i \leftarrow \phi$

Repeat forever
 If receive element e in stream S_i
 If ($h(e) < u_i$) and (e not in P_i)
 Insert e into P_i
 Send e to coordinator
 If receive value u from coordinator
 $u_i \leftarrow u$
 Discard all elements e from P_i such that $h(e) \geq u_i$
Algorithm at Coordinator

Init: P ← empty, u ← 1. Send hash function h to all sites

Repeat Forever
 If receive e from site i
 If h(e) < u:
 If e not in P, add it
 If |P| > s
 Discard element with largest hash value from P
 u ← max\{h(e) | e in P\}
 Send u to site i

 If receive query for random sample, then Return P
Analysis of Algorithm

1. Analyze communication from site \(i \) to coordinator
2. Multiply by two (coordinator feedback)
3. Sum over all sites

We sketch an analysis parameterized by the number of distinct elements \(d \)
Analysis of Algorithm (Upper Bound)

Lemma: The expected number of messages transmitted by site 1 $\leq s \log (d_1 e/s)$ where d_1 is number of distinct elements observed at site 1

Proof. Consider distinct element arrivals $j=1,2,3,d_1$ at site 1
Let $Y = $ total number of messages transmitted by site

For $j = 1$ to d_1, let $Y_j = 1$ if j^{th} arrival causes a message , 0 otherwise

$Y = Y_1 + Y_2 + \ldots Y_{d_1}$

$E[Y] = E[Y_1] + E[Y_2] + \ldots E[Y_{d_1}]$

$E[Y_j] = \text{Pr}[\text{arrival of } j^{th} \text{ distinct element causes a message to be sent}]$

$= 1$ for $j=1$ to s,

$= s/j$ for $j > s$

Summation over all j leads to the lemma
Analysis Notes

• Analysis does not assume any specific input distribution, hence worst-case

• Can achieve better bounds when more is known about input distribution

• Can a different algorithm do better in general?
Lower Bound

- For any algorithm A and parameter d, there exists an input distributed stream, I_A with d distinct elements such that the expected number of messages sent by the algorithm upon receiving I_A is at least $(ks/2) \ln (de/s)$

- Probability space is one from which the random sample is chosen
Suppose we have seen set of distinct elements \(D \) so far.

Supply an element \(e \) to site 1 that does not belong to \(D \).

\(e \) will belong to sample with probability \(s/(|D|+1) \).

Site 1 will send a message to Coordinator with probability at least \(s/2(|D|+1) \).
Suppose we have seen set of distinct elements D

Supply same element e (outside of D) to all sites 1, 2, ..., k

e will belong to sample with probability $s/(|D|+1)$

Site 1 will send a message to Coordinator with probability $s/2(|D|+1)$
So will every other site.
Expected number of messages sent in a round $\geq \frac{sk}{2(|D|+1)}$

Continue this process in rounds 1, 2, 3, ..., d
Expected number of messages sent $\geq \frac{sk}{2} \{\frac{1}{2} + \frac{1}{3} + ..+ \frac{1}{(d+1)} \}$
Comparison with Simple Random Sampling

<table>
<thead>
<tr>
<th>k = number of sites, s = sample size n = number of elements d = number of distinct elements</th>
<th>Number of Messages Over Entire Execution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distributed Simple Random Sampling</td>
<td>max{k,s} \log(n/s) (T, Woodruff & Cormode et al.)</td>
</tr>
<tr>
<td>Distributed Distinct Random Sampling</td>
<td>k s \log (d/s)</td>
</tr>
</tbody>
</table>
Sampling With Replacement

• Requirement: Each element in sample chosen uniformly from entire population

• Solution: Repeat s copies of single element sampling algorithm, in parallel

• Improvement: Combine messages of different copies of algorithm, reducing duplication
Sliding Window

- Random sample chosen from set of all elements observed in the w most recent time steps

- Idea: choose the elements with the smallest hash values from among the w most recent time steps

- Problem: maintaining minimum weight element within a sliding window is hard (communication wise)

- Idea: Use the fact that these are not arbitrary weights, but randomly chosen weights
Experiments: Datasets

<table>
<thead>
<tr>
<th>Dataset</th>
<th># Elements</th>
<th># Distinct</th>
</tr>
</thead>
<tbody>
<tr>
<td>OC48 Network Trace</td>
<td>42 mil</td>
<td>4.3 mil</td>
</tr>
<tr>
<td>Enron Email</td>
<td>1.5 mil</td>
<td>0.37 mil</td>
</tr>
</tbody>
</table>
Number of Messages vs Stream Size (OC48)
k (number of sites) = 10, s (sample size) = 5
Number of messages vs sample size (OC48)
Number of sites = 50
Number of messages vs Number of sites (OC48)
Sample size = 20
Messages vs skew in data (OC48)
sites = 20, sample size = 20
Conclusion

- Message Optimal Algorithm for Continuous Distributed Distinct Sampling
- Easy to implement, good practical performance
- Message complexity of distinct sampling inherently greater than simple random sampling
- Sampling Without and With Replacement, Sliding Windows
- Works in Asynchronous Model
Future Work

- Better Lower Bounds for Sliding Windows
- Other properties in a continuous distributed streaming model, including properties on graphs