
Monitoring Persistent Items in the Union of Distributed Streams

Sneha Aman Singha, Srikanta Tirthapuraa,∗

aDepartment of Electrical and Computer Engineering, Iowa State University, Ames, IA, 50010, USA.

Abstract

A persistent item in a stream is one that occurs regularly in the stream without necessarily contributing

significantly to the volume of the stream. Persistent items are often associated with anomalies in network

streams, such as botnet traffic and click fraud. While it is important to track persistent items in an online

manner, it is challenging to zero-in on such items in a massive distributed stream. We present the first

communication-efficient distributed algorithms for tracking persistent items in a data stream whose elements

are partitioned across many different sites. We consider both infinite window and sliding window settings,

and present algorithms that can track persistent items approximately with a probabilistic guarantee on

the approximation error. Our algorithms have a provably low communication cost, and a low rate of false

positives and false negatives, with a high probability. We present detailed results from an experimental

evaluation that show the communication cost is small, and that the false positive and false negative rates

are typically much lower than theoretical guarantees.

Keywords: distributed streams, persistent items

1. Introduction

It is a significant problem today to find trends and anomalies from large data sets. This problem

is especially challenging on streaming data that is continuously changing through a sequence of updates.

Motivated by distributed network monitoring, we consider monitoring of data that is not only streaming,

but also distributed across multiple sites, so that no single processor observes all the data. A single network

monitor can observe a local stream of network traffic, but the target of monitoring is the logical stream that

is formed through the union of all local streams. Monitoring each individual stream in isolation may not

yield the desired insights, and the interaction between the different streams needs to be considered carefully.

This setup is called the distributed streams model [17, 18, 11, 34, 26, 12, 36]. Web log analytics [14, 23, 32]

is an example application that can be modeled as a distributed stream. In this system, there are multiple

∗Corresponding author. Phone: +1 (515) 294 3546. Fax: +1 (515) 294 3637.
Email addresses: sneha@iastate.edu (Sneha Aman Singh), snt@iastate.edu (Srikanta Tirthapura)

Preprint submitted to Elsevier June 21, 2014

web servers each of which have their own log of web accesses, which is a (large) locally observable stream,

but patterns such as typical user behavior, and anomalies that could lead to malicious user behavior, have

to be detected on the union of the distributed web logs.

We address the identification of a feature called a “persistent item” from a massive distributed stream.

A persistent item is one that occurs regularly in the stream, but does not necessarily contribute significantly

to the volume of the stream. Let n denote the total number of timeslots in a stream S. The persistence of an

item d, denoted p(d), is defined as the number of distinct timeslots where d appeared in a stream. Clearly,

0 ≤ p(d) ≤ n. Note that multiple occurrences of the same item in the same timeslot do not contribute

repeatedly to the persistence of the item. For a parameter 0 ≤ α < 1, an α-persistent item is defined as

an item whose persistence is at least αn. The above metric was used in [19] in the context of botnet traffic

detection.

A persistent item is different from a “frequent item” in the stream (often known as a “heavy-hitter”). A

frequent item is one that appears with a high frequency in the stream, and hence contribute significantly to

the volume of the stream. A persistent item need not be a frequent item. For instance, consider an item

that occurs exactly once in every timeslot, so that its persistence is 100 percent. The frequency of this item

is very low, so that it will not be considered a frequent item in the stream. Similarly, a frequent item may

not be persistent either; consider for example an item that occurs in a bursty manner within a timeslot, but

never reoccurs within other timeslots. While this item contributes significantly to the volume of the stream,

its persistence is very low.

Persistence is typical of many stealthy types of traffic on the Internet. Identifying persistent items can

help in identifying anomalous and potentially malicious behavior in a network. For instance, Giroire et

al. [19] showed that tracking all persistent destinations arising in traffic from end hosts in a domain led

one to identify botnet Command and Control (C&C) destinations. The C&C destinations take control over

compromised end hosts to create a botnet and carry out malicious activities in the network. Giroire et. al.

observed that the C&C centers had to be in regular contact with the compromised end hosts to carry out

their activities, and hence the persistence of the C&C destinations were high in the streams emanating from

the end hosts. However, in order to evade detection by traditional volume-based anomaly detectors, the C&C

traffic was designed to be low-volume and hence the C&C centers did not show up as heavy-hitters within the

streams. Another instance is in Pay-Per-Click Online Advertising [1], where identifying persistent items can

be used to detect click fraud [39]. In this instance, rival companies generate false clicks on advertisements at

regular but infrequent intervals. In order to evade detection by volume-based detectors, the volume of such

false clicks is kept low, and hence these do not appear as heavy hitters in the click stream.

2

In general, persistence captures behavior when a set of entities (perhaps controlled by a malicious user)

together have regular communication with a remote entity, but try to hide the communication by keeping

its volume small and having it originate from different entities at different times. Such behaviors are not

caught by tracking frequent items within a stream.

We consider the following distributed streaming model, which has also been adopted in prior work [17,

18, 11]. The distributed system has k sites, numbered from 1 to k; each site i receives a local stream Si.

There is a special coordinator site that communicates with the individual sites and is required to perform

all aggregation and mining tasks in the (logical) stream
⋃k
i=1 Si formed by the union of all streams. A

persistent item is defined as follows. Suppose time is divided into “timeslots”1 Each local site observes a

stream of tuples (d, t), where d is an item identifier, and t the timeslot at which d appeared. Note that

multiple occurrences of the same item in the same timeslot, whether at the same site or at different sites, do

not contribute repeatedly to the persistence of the item.

An item can be highly persistent in the distributed stream without being persistent in any single local

stream. Consider the following situation where a particular destination IP address was present in every

timeslot from 1 till n, but kept moving from one local site another in different timeslots, to evade detection.

The persistence of the item in any local stream Si is only 1/k, but its overall persistence in the distributed

stream is 100%. Identifying persistent items in a distributed stream can help detect such coordinated and

distributed malicious behavior.

The goal of this work is to devise an algorithm for identifying persistent items, which minimizes (1) the

communication between the processors and (2) the memory footprint of the algorithm, both per node, and

overall. While memory has always been a primary concern in data stream algorithm design in a centralized

setting, in a distributed stream, the communication cost is even more important [17, 18, 11, 34, 30, 38],

hence communication will be our primary metric.

1.1. Approximate Identification of Persistent Items

We first note that any algorithm for exactly identifying persistent items and none other than the persistent

items must necessarily incur a large communication cost. In the worst case, this would need communication

of the order of the total stream size. Hence, we consider approximate identification of persistent items, with a

provable guarantee on the quality of approximation. Given persistence threshold α, 0 < α ≤ 1, approximation

parameter ε, 0 < ε < α, error probability δ ∈ [0, 1], the task is to design a low communication cost and space

1We assume that time is loosely synchronized between the different sites, so that the different sites agree on which “timeslot”
is currently in play. Since timeslots are typically of the order of minutes or more [19], the clocks only need to be synchronized
to within a few seconds or more.

3

efficient algorithm that identifies α-persistent items from
⋃k
i=1 Si, with the following properties:

• Low False Negative: If an item d has a persistence p(d) ≥ αn, then d is identified as α-persistent, with

probability at least (1− δ).

• Low False Positive: If an item d has a persistence p(d) < (α − ε)n, d is not reported as α-persistent,

with probability at least (1− δ).

We assume a synchronous communication model, where the system progresses in rounds. In each round,

each site can observe one element (or none), send a message to the coordinator, and receive a response from

the coordinator. The coordinator may receive up to k messages in a round, and respond to each of them in

the same round. This model is essentially identical to the model assumed in previous work on distributed

stream monitoring [11]. Our results do not change if the sites communicated at the end of each timeslot,

rather than at the end of observing each element. The sizes of the different local streams at the sites, their

order of arrival, and the interleaving of the arrivals at different sites, can all be arbitrary. The algorithm

cannot make any assumption about these.

We consider different models for limiting the scope of the data on which aggregation is performed. We

start with aggregation over the entire stream seen so far – referred to as the “infinite window” model, and

we also consider the popular “sliding window” model [13, 18, 20, 6, 31, 5, 16], which restricts the scope to

the most recently observed elements.

1.2. Contributions

We present the first communication-efficient algorithms for tracking persistent items over the union of

multiple distributed streams, with approximation parameter ε and error probability δ.

Infinite Window Algorithm. We first present an algorithm for the setting where the data of interest is the

union of all items over all the k streams observed so far. Let n denote the total number of timeslots so

far. The expected space complexity over all sites is O

(
kα2 log (log (1/δ)

2δ)P
ε3n

)
and the expected number of bytes

transmitted across all sites is O

(
kα2 log (log (1/δ)

2δ)P
ε3n

)
bytes, where P =

∑
d∈M p(d), where M is the set of all

distinct items observed in the stream, i.e. P is the sum of persistence values of all distinct items observed

in the union of all streams.

Sliding Window Algorithm. Next we consider the setting where the data of interest is the union of data

observed by all the k streams during the n most recent timeslots, and we present an algorithm for iden-

tifying persistent items within this data. The expected space complexity of our distributed algorithm

4

over all sites is O

(
kα2 log (log (1/δ)

2δ)P
ε3n

)
and the expected number of communication bytes over all sites is

O

(
kα2 log (log (1/δ)

2δ)P
ε3n

)
bytes, where P is the sum of persistence values within the last n time slots, of all the

distinct items seen in all the streams.

Simulations. We simulated our algorithm using real-world network trace data as well as synthetic data.

These simulations show that our algorithm tracks α-persistent items with the observed guarantees, and

that the communication and space overhead is much smaller than distributed implementation of existing

algorithms.

1.3. Solution Overview

A straightforward approach to tracking persistent items is as follows. Every site i maintains a data

structure Si, which contains the set of all distinct timeslots that each item has appeared in stream Si. Note

that this requires storing a set of up to n elements for each distinct item that has appeared in Si. Upon a

query, each site i sends Si to the coordinator, who can exactly compute the persistence of the item in the

distributed stream, and return only those items that has persistence of at least αn. While this requires no

coordination among the sites prior to the query, the total communication required at the time of the query

is prohibitive, since it communicates up to Θ(n) bytes per item, per site, which can be very large when the

number of distinct items is large. Clearly, this approach is expensive in terms of space required per site as

well.

A centralized small-space streaming algorithm for persistent items such as the one in [24] can be used

to track persistent items in each individual stream, but cannot be directly used in a distributed context.

The reason is that the algorithm in [24] depends on using a simple counter at each site to track the number

of slots an item has appeared in. In the distributed case, overlapping occurrences of the same item in the

same timeslot across different sites should still be discounted. Hence, a simple extension of the centralized

algorithm will not work here.

In our approach, we first reduce the number of items that are tracked using a hash-based random sampler,

similar to the one used in the centralized streaming algorithm in [24]. This sampler is used to (with high

probability) selectively maintain state for only those items whose persistence crosses a given threshold. The

threshold is chosen such that an α-persistent item is very likely to be tracked. Once tracking state has been

established for an item, we still need to maintain its persistence as more copies of this item arrive. We could

potentially do this through maintaining for each such item, a list of timeslots where the item has appeared.

When a query for persistent items is posed, the lists for different tracked items is sent to the coordinator,

5

who computes the union of different lists across all the sites, to compute the persistence of the tracked item.

However, this naive approach leads to a high memory requirement and communication cost.

We reduce the memory and communication cost through using a distributed distinct counting algo-

rithm [15, 21, 3, 7, 17, 4, 37, 22] to maintain, in a coordinated manner, a count of distinct timeslots of

occurrence for each tracked item across all the sites. A distributed distinct counting algorithm estimates the

number of distinct elements in the union of multiple distributed streams. More precisely, if dist(S) is the

number of distinct elements in a distributed stream S, then given a relative error 0 < γ < 1 and an error

probability 0 < υ < 1, a (γ, υ)-approximate distinct counting algorithm returns an estimate X such that

Pr[|dist(S) −X| > γ.dist(S)] ≤ υ. The algorithm that we use from [17, 4], is practical, and has an overall

space requirement of O
(

log 1/υ
γ2

)
words.

With our approach, there are two sources of error in the estimated persistence of an item. (1) We do

not track the persistence of each item, but only those which pass through the sampler. While this results in

reduced communication when compared with tracking the persistence of each item, it also results in an error

in the measured persistence of each item, even for those items that are tracked. (2) After tracking state has

been established for an item, the overall persistence in the distributed stream in forthcoming timeslots is

only computed approximately. Our analysis ensures that the combined error from these two sources does

not exceed the desired threshold. To achieve this, the total error budget is divided among the two sources of

error such that the communication cost is minimized and the final approximation guarantees are achieved.

Our analysis for the infinite window case the sliding window case are described in Sections 2 and 3 respectively.

1.4. Related Work

Prior work on identifying persistent items in a stream has considered the centralized case. This includes

work by Giroire et al. [19], who track persistent items in a centralized stream by exactly computing the

persistence of each distinct item in the stream, and an improved small space approximation algorithm by

Lahiri et al. [24].

A frequent item or a “heavy hitter” in a stream is one whose frequency in the stream is significant

when compared with the volume of the stream. There is much prior work on identifying frequent items or

heavy hitters from a data stream, including [9, 29, 27, 28, 33, 35, 25]. As discussed earlier, a frequent item

may not be persistent, and a persistent item in not necessarily frequent either. Frequent item identification

algorithms that are based on “sketches”, such as the Count Sketch [8] and the Count-Min Sketch [10], can

be implemented in a distributed manner. These algorithms maintain multiple counters, each of which is

the sum of many random variables. The sketch for the union of several streams is simply the sum of the

6

sketches over all the streams. However, adapting these algorithms for the case of persistent items does not

seem to be easy since these sketches count the number of occurrences (frequency) as opposed to the number

of occurrences in distinct timeslots (persistence).

Roadmap. We present the algorithm for tracking persistent items in an infinite window in Section 2,

followed by the algorithm for a sliding window in Section 3, and the experimental evaluation in Section 4.

2. Infinite Window

We now present an algorithm for the case of an infinite window, i.e. when the data of interest is the

union of all items from the beginning of time, that arrived across all streams.

Intuition: To reduce space and communication, the first step is to avoid tracking every item, especially

items with a low value of persistence. While tracking items with a low persistence cannot be completely

avoided, it can be reduced through sampling. Sites 1 through k share a common hash function h : ([1,m]×

[1, n])→ (0, 1). For two tuples (d1, t1) and (d2, t2) that are unequal either in one attribute or both, h(d1, t1)

and h(d2, t2) are independent random values chosen uniformly at random from the interval of real numbers

(0, 1).

Each site i maintains state for a subset of items that have arrived so far. When an item (d, t) arrives in

Si, if d is already being tracked by i, then the state corresponding to d is updated by adding t to the set of

time slots that d has appeared in. If d is not being tracked by i, then tracking state is established for d if

h(d, t) < τ (for a value τ to be decided), and a message is sent to all sites to start tracking d. Clearly, if an

item d appears in time slot t, tracking state is established for d with probability τ . We note the following.

• Multiple occurrences of d within the same time slot t do not increase the probability of d being tracked.

• A low-persistence item d which appears only in a few distinct time slots is not likely to be tracked. On

the other hand, a high-persistence item d′ which appeared in many distinct slots will be tracked with

a high probability.

• Since the same hash function h is shared by all sites, the result after distributed occurrences of d is

the same as if d was being observed by the same site.

Once tracking state has been established for an item d, future occurrences of d in subsequent time slots

are treated without needing further communication among the sites. A challenge here is that even with state

maintained at different nodes for an item d, it is still non-trivial to track the number of occurrences of d in

distinct time slots. For this purpose, we use a distributed distinct counter, from [17]. Equivalently, we could

7

use other algorithms for distinct counting that can be implemented in a distributed setting, such as the one

by Bar-Yossef et al. [4]. We use the one in [17] because it is simple and gives very good practical performance.

The accuracy and error probability of this distinct counter influences the overall space complexity of our

algorithm. Before we present the formal algorithm description, we present the guarantees expected from the

distinct counter.

When a query is posed for the set of persistent items, the coordinator combines the estimates of all the

distributed distinct counters to compute an estimate of the persistence of each item being tracked. This

estimate is used to decide whether or not an item is persistent. There are two sources of error in this

estimator: (1) the error due to sampling, before the item starts being tracked, and (2) the error due to the

approximate distinct counter for the item which is already being tracked. We first present the guarantees

provided by a distributed distinct counting algorithm. For a relative error parameter 0 < γ < 1 and an error

probability parameter 0 < υ < 1, a distinct counter Dυγ takes as input a stream of updates S and maintains

an estimate of dist(S), the number of distinct items in S.

Theorem 1 ([17]). There is a distinct counter Dυγ that takes space O
(

log 1/υ
γ2

)
words of space, and whenever

a query is asked for dist(S), returns an estimate X such that Pr[|X−dist(S)| > γ ·dist(S)] ≤ υ, for 0 < γ < 1

and 0 < υ < 1. This distinct counter can handle distributed updates, and the distributed state can be combined

together at the end of observation.

Note that we express the space complexity above in terms of the number of words, assuming that each

item identifier and timestamp can be stored in a constant number of words.

Algorithm Description: The inputs to our algorithm are: 1) m - domain size of the identifiers, 2) n

- total number of timeslots in the distributed stream, 3) α - persistence threshold, 4) ε - approximation

parameter, and 5) δ - error probability. The distributed algorithm has three parts: Algorithm 1 defines the

input parameter, and describes the initialization of the datastructures and global variables used, Algorithm 2

describes the algorithm at each local site, and Algorithm 3 describes the algorithm at the coordinator node

C.

Each site i maintains a sketch Si for stream Si seen so far, comprising of tuples of the form (d,Dε2δ2 [i](d)).

Here, d is an item ID, and Dε2δ2 [i](d) is the distinct counting datastructure maintained for estimating the

number of distinct time slots when the item d appeared. The distinct counting data structure is maintained

using the distributed distinct counting algorithm with approximation parameter ε2 and error probability δ2.

Here, ε2 and δ2 are parameters whose values are determined based on optimizing communication cost while

obeying the correctness constraints

The coordinator C maintains a sketch S which has tuples of the form (d, td) where d is the item ID and

8

td is the time when the item d was first tracked in the distributed stream. When an item (d, t) arrives at

site i in timeslot t, then the algorithm first looks into Si to check if d is being tracked (Algo 2: line 2). If

not, then (d, t) is passed through the hash function h. The algorithm starts tracking d if h(d, t) < τ , where

τ = 2/(ε1n) and ε1 = cεε (Algo 2: line 3), where 0 < cε < 1 is a constant; note this happens with probability

τ . Site i communicates with the other sites (Algo 2: lines 4-5) and the coordinator C (Algo 2: line 6) to

inform them about the newly tracked item. Once site i starts tracking the item d, it makes an entry of the

form (d,Dε2δ2) in Si and starts maintaining a distinct count datastructure Dε2δ2 [i](d) for item d (Algo 2: line

8). Once the item is tracked, with every appearance of the item in a new timeslot, Dε2δ2 [i](d) is updated using

the distinct counting algorithm (Algo 2: line 10).

If site i receives information about a newly tracked item d from some other site, it starts tracking d and

creates a new local entry (d,Dε2δ2) in Si (Algo 2: lines 12-15). It then updates (d,Dε2δ2) in Si for d with every

appearance of item d in a new timeslot in site i (Algo 2: line 8). When the coordinator receives information

about a newly tracked item d from any of the sites, it makes a new entry (d, td) in S (Algo 3: line 1).

When a query is made to the coordinator C, for each tracked item d ∈ S, it takes a union of the corre-

sponding distinct count data structure (d,Dε2δ2)[j](d) across all sites as per the distinct counting algorithm

to estimate the number of distinct slots n̂d, where item d appeared in the distributed stream since it was

tracked (Algo 3: lines 3-6). While we do not know how many distinct slots d may have appeared in before it

was first tracked, we can see this number is a geometric random variable X with parameter τ ; we estimate

the value of X using its expectation. We estimate the persistence of d, equal to the total number of distinct

slots where d appeared in the entire distributed stream, as p̂d as n̂d + E(X) = n̂d + 1/τ (Algo 3: line 10).

Also, in order to optimize our results, we compute p̂d as n̂d + td for the condition (1/τ) > td, (Algo 3: lines

7-8).

Algorithm 1: Infinite Window : Initialization

Input: m - Domain Size of identifiers; n - Total no. of time slots; α - persistence threshold; ε - error
parameter; δ - error probability

Hash function h : ([1,m]× [1, n])→ (0, 1)1

Approximation Parameters: ε1 ← cεε, ε2 ← (1− cε)ε/4α // 0 < cε < 1 is a constant2

Error Probability: δ2 = cδδ // 0 < cδ ≤ min
(

1, 2
log(1/δ)

)
is a constant3

Filter parameter τ ← 2
ε1n

4

Threshold T ← (1− ε2)(αn− 1
τ + 1)5

S ← ∅6

for i = 1, 2, .., k do7

Si ← ∅8

9

Algorithm 2: Infinite Window: Algorithm at node i

On receiving item (d, t) at node i1

if (d /∈ Si) then2

if h(d, t) < τ) then3

for every node j = 1 . . . k, j 6= i do4

Send ”Start Tracking (d, t)” to j5

Send (d, t) to the coordinator6

Si ← Si ∪ {(d,Dε2δ2 [i](d))}7

Insert t into Dε2δ2 [i](d)8

else // if d ∈ Si9

Insert t into Dε2δ2 [i](d)10

11

On receiving message “Start Tracking (d, t)”12

// Create a new data structure tracking d13

Si ← Si ∪ {(d,Dε2δ2 [i](d))}14

Insert t into Dε2δ2 [i](d)15

Algorithm 3: Infinite Window: Algorithm at the coordinator C.

Upon receiving (d, td): Insert (d, td) into S1

Upon receiving a query for the set of Persistent Items:2

for each (d, td) ∈ S do3

for i = 0, 1, ..., k − 1 do4

Compute the union of Dδ2
ε2 [i](d) data structures over all sites i.5

Let n̂d be the estimate of the distinct count over this union.6

if td < (1/τ) then7

p̂(d)← n̂d + td8

else9

p̂(d)← n̂d + 1
τ10

if p̂(d) ≥ T then11

Report d as α-persistent12

10

2.1. Infinite Window : Correctness

Let G(τ) be the geometric random variable with parameter τ . Let p(d) denote the persistence of item d,

and nd denote the number of distinct slots where d appeared in S after (and including) the time slot when

the algorithm started tracking d.

Lemma 1. If G(τ) ≤ p(d), then nd = p(d)−G(τ) + 1, else nd = 0.

Proof. Let the distinct time slots that d appears in distributed stream be t1, t2, . . ., in increasing order. d is

not tracked until we reach a time slot ti such that h(d, ti) < τ . The number of time slots required for this

to occur is G(τ). Note this is true even though the different sites are observing the tuples in a distributed

manner, since their decisions are based on the output of a hash function on (d, t). The expression for nd

follows.

Lemma 2. False Negative: If an item d is α-persistent, then the probability that it is not reported by the

coordinator in Algorithm 3 is at most
(
e−2 + 2δ

log (1/δ)

)
.

Proof. Consider an α-persistent item d. Let A denote the event that d is not reported. Let p̂(d) be the

estimate of its persistence at the end of observation. Also, let n̂d be an estimate of nd, the number of

distinct time slots where d appeared in S after being tracked. n̂d is obtained from the union of the distinct

count datastructures over the k sites. Per the above algorithm, p̂(d) = n̂d + 1/τ , and d is not reported if

p̂(d) < T . Consider that T = (1− ε2)(α+ 1− 1/τ) and δ2 = cδδ where cδ ≤ 2
log (1/δ) .

Pr [A] = Pr [p̂(d) < T] = Pr

[
n̂d <

(
T − 1

τ

)]
Let B denote the event (1− ε2)nd ≤ n̂d. We have the following:

Pr[A] = Pr[A|B] Pr[B] + Pr[A|B̄] Pr[B̄] ≤ Pr[A|B] + Pr[B̄] (1)

11

Pr[A|B] = Pr

[
n̂d <

(
T − 1

τ

) ∣∣∣(1− ε2)nd ≤ n̂d
]

≤ Pr

[
(1− ε2)nd <

(
T − 1

τ

)]
= Pr

[
p(d)−G(τ) + 1 <

(T − 1/τ)

(1− ε2)

]
using Lemma 1

= Pr

[
G(τ) > p(d) + 1− T

(1− ε2)
+

1

(1− ε2)τ

]

≤ Pr

[
G(τ) > αn+ 1−

(
αn+ 1− 1

τ

)
+

1

(1− ε2)τ

]
substituting T and given p(d) ≥ αn

≤ Pr

[
G(τ) >

2

τ

]
= (1− τ)

2
τ

≤ e−2 since (1− τ)θ ≤ e−τθ

The probability of B̄ depends on the guarantee given by the distinct counter Dδ2ε2 . Note that the number

of insertions into the distinct counter is nd, and the estimate returned by the distinct counter is n̂d. Using

Theorem 1, we have: Pr[(1− ε2)nd ≤ n̂d ≤ (1 + ε2)nd] ≥ (1− δ2). Hence,

Pr[B̄] = Pr[n̂d < (1− ε2)nd]

≤ Pr[n̂d < (1− ε2)nd] + Pr[n̂d > (1 + ε2)nd]

≤ δ2 ≤ 2δ

log (1/δ)
given δ2 = cδδ ≤ 2δ

log (1/δ)

Using these back in Equation 1, we get the desired result.

Lemma 3. False Positives: An item d with persistence p(d) < (α − ε)n is reported by the coordinator in

Algorithm 3 with probability at most 2δ
log (1/δ) .

Proof. Consider an item d with persistence p(d) < (α − ε)n. Let A denote the event that d is reported as

being α-persistent. If p̂(d) is the estimate of persistence of d at the end of observation, then p̂(d) > T . Also,

per the algorithm, p̂(d) = n̂d + 1/τ .

Pr[A] = Pr [p̂(d) > T] = Pr

[
n̂d >

(
T − 1

τ

)]
Let B denote the event n̂d ≤ (1 + ε2)nd. If T = (1 − ε2)

(
αn+ 1− 1

τ

)
, ε1 = cεε, and ε2 = ε(1−cε)

4α ,

where, cε is a constant s.t. 0 < cε < 1 then,

12

Pr[A|B] = Pr

[
n̂d > T − 1

τ

∣∣∣n̂d ≤ (1 + ε2)nd

]
≤ Pr

[
(1 + ε2)nd ≥ T −

1

τ

]
= Pr

[
p(d)−G(τ) + 1 ≥

(
1− ε2
1 + ε2

)(
αn+ 1− 1

τ

)
− 1

(1 + ε2)τ

]
substituting T and using Lemma 1

= Pr

[
G(τ) ≤ p(d) + 1−

(
1− ε2
1 + ε2

)(
αn+ 1− 1

τ

)
+

1

(1 + ε2)τ

]
≤ Pr

[
G(τ) ≤ (αn− εn) + 1−

(
1− ε2
1 + ε2

)
(αn+ 1) +

2− ε2
(1 + ε2)τ

]
given p(d) < (α− ε)n

≤ Pr

[
G(τ) ≤ (αn− εn) + 1− (1− 2ε2)(αn+ 1) +

2

τ

]
as, (1− 2ε2) < (1− ε2)/(1 + ε2)

= Pr

[
G(τ) ≤ 2ε2αn+ 2ε2 +

2

τ
− εn

]
≤ Pr

[
G(τ) ≤ 4ε2αn+ ε1n− εn

]
= 0 using τ = 2/ε1n, and, (2ε2αn+ 2ε2 ≤ 4ε2αn)

Using Theorem 1, we have: Pr[(1− ε2)nd ≤ n̂d ≤ (1 + ε2)nd] ≥ (1− δ2) Hence,

Pr[B̄] = Pr[n̂d > (1 + ε2)nd]

≤ Pr[n̂d < (1− ε2)nd] + Pr[n̂d > (1 + ε2)nd]

≤ δ2 ≤ 2δ

log (1/δ)

Using the relation Pr[A] ≤ Pr[A|B] + Pr[B̄], we get the desired result. We obtain that for cε = 1/3, the

space cost and the communication cost of this algorithm is optimized.

Theorem 2. By running at least log δ
log (e−2+cδδ)

parallel instances of the algorithm, we get the following guar-

antee:

1. An item d with persistence p(d) ≥ (αn) is reported as α-persistent with probability at least 1− δ.

2. An item d with persistence p(d) < (α− ε)n is not reported as persistent with probability at least 1− δ.

Proof. Let θ = log δ
log (e−2+cδδ)

. We return the union of all persistent items returned by all the parallel instances.

For an α-persistent item d, the probability that d is not reported is equal to the probability that it is not

reported by any of the θ instances. This probability is no more than (e−2 + cδδ)
θ
, which is bounded by δ

(where 0 < cδ ≤ 2
log (1/δ)).

Consider an item d with persistence less than (α−ε)n. The probability that d is reported is the probability

that d is reported by at least one of the θ parallel instances. Using the union bound, this probability is no

13

more than 2δθ
log (1/δ) . Upon substituting θ, we get the desired result.

2.2. Infinite Window: Complexity

We present an analysis of the communication and space complexity of the algorithm for an infinite

window. Let P be the sum of the persistence of all the distinct items in the distributed stream, n be the

total number of time slots in the stream. Recall that k is the number of sites.

Theorem 3. The expected space complexity of the distributed algorithm per site is O

(
α2 log (log (1/δ)

2δ)P
ε3n

)
,

and the expected space complexity over all sites is O

(
kα2 log (log (1/δ)

2δ)P
ε3n

)
Proof. The space complexity of tracking a single item is equal to the cost of an approximate distinct count

data structure Dδ2ε2 , for maintaining the number of distinct time slots for the item. Let Z(d) be a random

variable for item d such that Z(d) = 1 if item d is tracked, else Z(d) = 0.

Pr[Z(d) = 1] = 1− Pr[Z(d) = 0] = 1− (1− τ)
p(d)

≤ 1− e−2τp(d) using Taylor’s expansion

≤ 2τp(d) ≤ 1− (1− 2τp(d)) ≤ 2τp(d)

We know that space taken by distinct count operator for each item d at each site is O
(

log(1/δ2)
ε22

)
(Theo-

rem 1). The expected space taken by an item d per site is:

Pr[Z(d) = 1]

(
log (1/δ2)

ε22

)
≤ 2τp(d) log(1/δ2)

ε22
=

4p(d) log(1/δ2)

ε22ε1n

= O

(
p(d) log(1/δ2)α2

ε3n

)
since ε2 = O

(ε
α

)
; ε1 = O(ε); δ2 = O(δ)

≤ O

p(d) log
(

log (1/δ)
2δ

)
α2

ε3n

 given δ2 = cδδ ≤
2δ

log (1/δ)

Hence, total expected space taken by the algorithm per site is:

= O

∑
d

p(d) log
(

log (1/δ)
2δ

)
α2

ε3n

 = O

α2 log
(

log (1/δ)
2δ

)
P

ε3n

The total space over the entire distributed algorithm is k times the space cost of each site.

Theorem 4. Communication: The expected communication complexity of the distributed algorithm taken

over all sites is O

(
kα2 log (log (1/δ)

2δ)P
ε3n

)
bytes.

14

Proof. For each item that is tracked, the algorithm incurs O(k) messages to begin tracking the item. Finally,

in order to identify persistent items, it is necessary to have another round of communication among all the

sites and the coordinator. The total number of messages exchanged is thus O(kN) where N is the number

of items that are tracked. Since we know that E [E] = O
(
P
εn

)
(see the proof in Theorem 3), the expected

number of messages communicated over all sites is O(kPεn).

If we consider the number of bytes communicated, we find that each item leads to a communication of

O(α
2 log(1/δ2)

ε2) bytes, due to the distinct count data structure. Hence, the expected number of message bytes

communicated between the sites and the coordinator is O

(
kα2 log (log (1/δ)

2δ)P
ε3n

)

3. Sliding Window

At time slot c, the current window of size n is defined as the set of all events within the n most recent

time slots, i.e. slots (c − n + 1) to c, both endpoints inclusive. An item d is defined to be α-persistent in

a sliding window of size n if it occurred in at least αn distinct time slots within the current window. We

now present a distributed algorithm for approximately tracking the set of all α-persistent items within the

sliding window of size n.

Intuition: The sliding window algorithm uses the same sampling technique as for the infinite window

case, and if a site decides to track an item, it communicates with the other sites, following which each site

sets up local state for this item, and future occurrences of this item are handled locally without requiring

further communication. The main challenge with the sliding window case is that as future time slots arrive,

old occurrences go out of scope and have to be removed from consideration from the data structures. At

each site i, Si is continuously updated to discard expired time slots for each item.

Unlike the algorithm for infinite window, for each item d that is tracked, the error due to sampling is

a concern only as long as the starting time slot for tracking d, i.e. td, does not expire from the sliding

window. After slot td + n, a summary of all subsequent occurrences of d are tracked approximately by the

data structure. Thus the query processing will distinguish between the cases when the query is made after

td + n (Algo 6: lines 11-13), and when the query is made before td + n (Algo 6: lines 6-10). Another change

is that the distinct elements algorithm should work over sliding windows, rather than for the entire stream.

Algorithm Description: Similar to the infinite window version of persistence algorithm (Section 2),

the sliding window algorithm has three parts: Algorithm 4 initializes data structures, Algorithm 5 is the

algorithm run at each site, and Algorithm 6 gives the algorithm run at the coordinator node C. The input

to our algorithm is the same as that of infinite window version, except that n, in this case, is the maximum

number of timeslots in a window (Algorithm 4).

15

The algorithm (Algo 5) used at each site i is similar to the one used for infinite window. However, the

distinct count data structure is now maintained by the distinct counting algorithm for a sliding window [13,

18, 40].

When a query is made, the coordinator C takes a union of the distinct count datastructures for the k

sites (Algo 6: lines 2-5) and computes n̂d, number of distinct slots when d appeared in the current window,

per the distinct counting algorithm for sliding windows. As discussed above, the query processing in our

algorithm distinguishes between the cases when the query is made after td + n (Algo 6: lines 11-13), and

when the query is made before td+n (Algo 6: lines 6-10). If a query is made before td+n, then the persistent

items are tracked in the same way as done by the infinite window version of the algorithm, Algo 3 . However,

if a query is made after td + n, then persistence of an item d is estimated as n̂d.

For relative error parameter 0 < γ < 1 and an error probability parameter 0 < υ < 1, a distinct counter

Dυγ takes as input a stream of updates S and at any given time t maintains an estimate of dist(S), the

number of distinct elements in S, for the elements that occurred in most recent n slots.

Theorem 5 ([18, 13, 40]). There is a distinct counter Dυγ that takes space O(log 1/υ
γ2) words of space, and

whenever a query is asked for dist(S) in the most recent n time slots, returns an estimate X such that

Pr[|X − dist(S)| > γ · dist(S)] ≤ υ, where 0 < γ < 1 and 0 < υ < 1.

A detailed description of the algorithm is presented in Algorithms 4, 5, and 6.

Algorithm 4: Sliding Window: Initialization

Input: m - Domain Size of identifiers; n- maximum no. of time slots in a window; α - persistence
threshold; ε - error parameter; δ - error probability;

Hash function h : ([1,m]× [1, n])→ (0, 1)1

Approx. parameters ε1 ← cεε; ε2 ← (1− cε)ε/4α // 0 < cε < 1 is a constant2

Error Probability: δ2 = cδδ // 0 < cδ ≤ min
(

1, 2
log(1/δ)

)
is a constant3

Filter parameter τ ← 2
ε1n

4

Threshold T ← (1− ε2)(αn+ 1− 1
τ)5

Sketch at coordinator S ← ∅6

for each site i = 1 . . . k do7

Si ← ∅8

3.1. Sliding Window : Correctness

Let td be the slot when item d started to be tracked. Also, for a query q made on the distributed streams,

let tq be the last slot of the most recent window [tq − n+ 1, tq] on which query q has been posed.

Lemma 4. Let G(τ) be the geometric random variable with parameter τ . Also, let nd denote the number

of distinct slots in the distributed streams where d appears in current window after being tracked by the

16

Algorithm 5: Sliding Window: Algorithm at node i

On receiving item (d, t) at node i1

if (d, t) /∈ Si then2

if h(d, t) < τ) then3

for every node j = 1 . . . k, j 6= i do4

Send “Start Tracking (d, t)” to j5

Send (d, t) to the coordinator6

// Create a new data structure for d7

Si ← Si ∪ {(d,Dε2δ2 [i](d))}8

Insert t in Dε2δ2 [i](d))9

else // if d ∈ Si10

Insert t in Dε2δ2 [i](d)11

12

On receiving message “Start Tracking (d, t)”13

// Create a new data structure for d14

Si ← Si ∪ {(d,Dε2δ2 [i](d))}15

Insert t in Dε2δ2 [i](d)16

Algorithm 6: Sliding Window:Algorithm at the coordinator C:

On receiving tuple (d, td) : S ← S ∪ {(d, t)}.1

On receiving a query for the set of Persistent Items: for each (d, td) ∈ S do2

for i = 1 . . . k do3

Compute the union of Dδ2
ε2 [i](d) data structures over all sites i.4

Let n̂d be the estimate of the distinct count over this union.5

if t ≤ td + n then // t - current slot6

if td < (1/τ) then7

p̂(d)← n̂d + td;8

else9

p̂(d)← n̂d + (1/τ);10

else11

p̂(d)← n̂d;12

T ← (1− ε2)αn;13

if p̂(d) ≥ T then14

Report d as α-persistent item;15

17

algorithm. For each item d, nd can be expressed differently depending on tq and G(τ) in the following

manner.

1. If tq ≤ td + n: if G(τ) ≤ p(d), nd = p(d)−G(τ) + 1, else nd = 0.

2. If tq > td + n: nd = p(d).

Proof. The proof of the above Lemma is divided into two parts, for the two cases described above. Proof of

part 1) is the same as that of proof of Lemma 1.

For part 2), at (td + n)-th slot, the first slot when d was tracked expires, i.e. td expires. From the slot

td onwards, every occurrence of d is tracked. Hence, if the current window of the most recent n slots does

not include td, then persistence of d, p(d), over the current window is the number of occurrences of d in the

current window, i.e. p(d) = nd.

Lemma 5. Low False Negative: An α-persistent item d having a persistence p(d) ≥ αn during the most

recent n slots is not reported as α-persistent by the coordinator in Algorithm 6 with a probability at most

1. e−2 + 2δ
log (1/δ) if tq ≤ td + n

2. 2δ
log (1/δ) if tq > td + n

Proof. Consider an α-persistent item d, with persistence p(d) ≥ αn.

1. If tq ≤ td + n: Proof is same as that of Lemma 2, where n is the maximum number of slots in current

window instead of the entire distributed stream. Note that δ2 = cδδ. The error probability can be

reduced to δ by running log (δ)
log (e−2+cδδ)

parallel instances.

2. If tq > td + n Let A denote the event that d is not reported, i.e. the event that false negative occurs.

Using the proof in Lemma 4, we can also conclude that the estimate of persistence of d, p̂(d), in the

most recent n slots is the estimate returned by the distinct counter for item d, n̂d, to approximate the

count of distinct number of slots where d occurred over the most recent n slots, i.e. p̂(d) = n̂d. Per the

above algorithm, item d is not reported as α-persistent if p̂(d) < T . Pr[A] = Pr[p̂(d) < T] = Pr[n̂d < T].

Let B denote the event (1− ε2)nd < n̂d. From the above algorithm, T = (1− ε2)αn.

Pr[A|B] = Pr[n̂d < T |(1− ε2)nd < n̂d]

≤ Pr[(1− ε2)nd < T]

= Pr[(1− ε2)p(d) < T] using Lemma 4

≤ Pr[(1− ε2)αn < T] given p(d) ≥ αn

= 0 substituting T

18

The probability of B̄ depends on the guarantee given by the distinct counter Dδ2ε2 . Using Theorem 5 we

have: Pr[(1− ε2)nd ≤ n̂d ≤ (1 + ε2)nd] ≥ (1− δ2) Hence,

Pr[B̄] = Pr[n̂d < (1− ε2)nd]

≤ Pr[n̂d < (1− ε2)nd] + Pr[n̂d > (1 + ε2)nd]

≤ δ2 ≤ 2δ

log (1/δ)

Using Pr[A] ≤ Pr[A|B] + Pr[B̄], we get the desired result.

Lemma 6. Low False Positive: An item d which is far from persistent in the most recent n slots, i.e,

whose persistence p(d) < (α− ε)n in the current window of size n, is reported as α-persistent with probability

at most 2δ
log (1/δ) .

Proof. Consider an item d with persistence p(d) < (α − ε)n. d is far from persistent. The proof has two

cases based on when query is posed with respect to td, the slot when d is first tracked by algorithm.

1. If tq ≤ td+n:, proof of above lemma is the same as that of Lemma 3, n denoting the maximum number

of slots in a sliding window, and not the total number of slots in the entire distributed stream.

2. If tq > td + n: Persistence of an item d is the number of occurrences of d within the current window

which equals nd, i.e. p(d) = nd from Lemma 4. Also, p̂(d) = n̂d. Let A denote the event that d is

reported, i.e. the false positive occurs. Also, per the above algorithm, d is reported if p̂(d) ≥ T .

Pr[A] = Pr[p̂(d) ≥ T] = Pr[n̂d ≥ T]

Let B denote the event (1 + ε2)nd ≥ n̂d. We have T = (1− ε2)αn and ε2 = (1− cε)ε/4α.

Pr[A|B] = Pr[n̂d ≥ T |(1 + ε2)nd ≥ n̂d]

≤ Pr[(1 + ε2)nd ≥ T]

= Pr[(1 + ε2)p(d) ≥ T]

≤ Pr

[
(α− ε)n ≥ T

(1 + ε2)

]
given p(d) < (α− ε)n

≤ Pr [0 ≤ αn− εn− (1− 2ε2)αn] substituting T , and 1−ε2
1+ε2

> (1− 2ε2)

= Pr [0 ≤ 2ε2α− ε] = 0 since ε2 < ε/2α

19

Using Theorem 5,

Pr[B̄] = Pr[n̂d > (1 + ε2)nd]

≤ Pr[n̂d < (1− ε2)nd] + Pr[n̂d > (1 + ε2)nd]

≤ δ2 ≤ 2δ

log (1/δ)

Theorem 6. By running at least log δ
log (e−2+cδδ)

parallel instances of the above algorithm, where cδ ≤ 2
log (1/δ) ,

α-persistent items can be tracked with the following properties:

1. An item d with persistence p(d) ≥ (αn) is reported as α-persistent with probability at least 1− δ.

2. An item d with persistence p(d) < (α− ε)n is not reported as persistent with probability at least 1− δ.

Proof. Suppose we run θ parallel instances of the above algorithm, and take the union of the items returned

by all the instances. For the first part, consider an α-persistent item d. If d is not returned, it must not be

returned by any of the instances. With respect to the time of arrival of a persistent item d, if a query q is

posed on a window [tq−n+1, tq], then we have two cases: 1) If tq ≤ td+n, then d is reported with probability

(e−2 + cδδ)
θ
, where 0 < cδ ≤ 2

log (1/δ) . So, if we run log δ
log (e−2+cδδ)

parallel instances, the probability that false

negative occurs is at most δ. 2) If tq > td +n, then d is reported with probability
(

2δ
log (1/δ)

)θ
, and the proof

follows.

For an item d with persistence less than (α− ε)n, the proof is similar to the case of infinite window.

3.2. Sliding Window: Complexity Analysis

Theorem 7. Expected Space: Total expected space required by the sliding window algorithm per site is

O

(
α2 log (log (1/δ)

2δ)P
ε3n

)
and the expected space complexity over all sites is O

(
kα2 log (log (1/δ)

2δ)P
ε3n

)
Proof. Here, P is the sum of the persistence (total persistence till current time slot, c) of all the distinct

items in the distributed stream during the period [c−n+1, c]. The proof is similar to that of Theorem 3.

Theorem 8. Low Communication Overhead: The expected communication complexity of the sliding

window algorithm over all sites is O

(
kα2 log (log (1/δ)

2δ)P
ε3n

)
Proof. Proof is similar to that of Theorem 4, except that the communication occurs between sites only when

a new item is tracked and for the same item no further communication is done until the query is posed.

20

4. Experiments

We report on the observed performance of our implementation of the infinite window and the sliding

window algorithms.

Data. We have used synthetic as well as real-world data sets for our experiments. The real-world data is a

network traffic trace from CAIDA [2] taken at a US west coast OC48 peering link for a large ISP in 2002 and

2003, where we consider each source-destination pair to be an item. The network trace has approximately

400 million tuples with about 26 million distinct items. The trace has been captured over a duration of 1

hour. We also generated synthetic data using a zipfian distribution, with α = 1.5. This dataset has 500

million tuples, consisting of approximately 40 million distinct items.

Algorithms. We compared our algorithm with two other algorithms. The first one which we call algorithm

A, is an exact distributed algorithm for tracking persistence, which identifies α-persistent items by keeping

track of the exact persistence number of each item, through maintaining the distinct slots it occurred in.

Algorithm A is the most expensive in terms of space and communication.

The second algorithm, which we call Algorithm B, is a small space algorithm which selectively tracks

items using a hash-based sampler in the same way as our algorithm does. But for each item d that Algorithm

B tracks, it computes the exact number of distinct time slots where the item reappears by maintaining a list

of distinct time slots of appearance. Since Algorithm B does not incur an error cost in counting the number

of re-occurrences once it starts tracking an item, it can actually track fewer items than our algorithm for the

same value of ε. However, for each item tracked, B has to maintain significant amount of state for the item

(a list of all slots where the item appeared, at each site).

Our experiments evaluate the performance of our algorithms in terms of communication cost and accu-

racy, where accuracy is measured through the false positive and false negative rates. We also performed

experiments to show the effect of the width of time slot on the communication cost of the dataset. Unless

specified otherwise, we set the error probability δ to e−2. For the infinite window case, we divided the

real world trace into 34 million non-overlapping time slots (width of each time slot being 0.1 millisecond)

and the zipfian dataset into 36 million non-overlapping slots. To evaluate the sliding window version of the

algorithm, we considered a window size of 30 million distinct time slots (width of each time slot being 0.1

millisecond) for real world trace and 25 million distinct time slots for zipfian dataset.

Communication Cost vs Accuracy. In the first set of experiments, we kept the number of sites constant, at

10, and varied the approximation parameter ε. The results from the experiments on zipfian data is shown

21

in Figure 1a for the infinite window case and in Figure 1b for the sliding window case. From this data we

make the following observations.

There is a clear trade-off between accuracy and communication cost. The communication cost decreases

as we increase the value of ε for our algorithm as well as for Algorithm B. The communication cost incurred

by our algorithm for both infinite and sliding window is an order of magnitude smaller than that of Algorithms

B and A. In fact, we observe that the communication cost of algorithm B is only slightly smaller than the

naive algorithm A.

The results of experiments on the network trace are presented in Figures 1c and 1d. These are similar to

the results for zipfian data, and our algorithm has significantly lower communication cost when compared

with Algorithms A and B. However, since the size of the dataset is smaller and it has a relatively small

number of distinct time slots, the cost incurred by algorithm B is low. Hence, in this case the communication

cost of algorithm B, though higher than our algorithm, is not as high as in the case of zipfian data file. This

shows that the benefits of our algorithm are even greater on large datasets with a large number of time slots.

Communication Cost vs Number of Sites. In order to evaluate the scalability with the size of the distributed

system, we varied the number of sites in the system, while keeping the approximation error ε fixed at 0.025.

The results for zipfian data are shown in Figures 2a and 2b, and for the network trace in Figures 2c and 2d.

We observe that the communication cost of the algorithm increases linearly with the number of sites in the

system, in accordance with the theoretical results. The results also show that our algorithm consistently

performs better than the other two algorithms. Algorithms A and B also show a similar linear increase in

communication cost with the number of sites.

The increase in communication cost of our algorithms and that of algorithm B is due to the fact that

every site has a copy of each item tracked in the distributed system. Hence, increase in the number of sites

would lead to an almost linear increase of the space requirement and communication cost. In the case of the

algorithm A, the reason for the increase in the communication cost is as follows: multiple appearance of an

item in the same time slot does not affect the size of the datastructure maintained by the site, but if an item

appears multiple times in the same slot across different sites, then multiple copies (same as the number of

sites where they appear) of the items need to be maintained, increasing the communication cost.

Communication Cost vs Width of Timeslot. We performed experiments to study the effect of the width of

time slots for a given dataset on communication cost. We keep the value of ε fixed at .025 and the number

of sites fixed at 10. We use real network trace for our experiments. Using the same dataset traces, we vary

the width of each time slot from 0.1 millisecond to 2 milliseconds and measure the communication cost of

22

our algorithm.

The results are shown in Figure 3a for infinite window and Figure 3b for sliding window. We observe

that the communication cost of algorithm A decreases slightly with the increase in the width of time slot,

assuming that the threshold for persistence is kept fixed. The reason is that the distinct number of time

slots decreases with the increase in the width of time slot, hence, algorithm A has to maintain a smaller

datastructure. However, interestingly, the communication costs of our algorithm and Algorithm B increase

with the width of time slot. This is due to the fact that as the width of the time slot increases, the

number of persistent items for a given persistence threshold increases, and the data structures become

larger. Though the number of messages decreases, the size of the messages increases, leading to an overall

increased communication cost.

We have also included a graph showing the change in the total number of elements tracked across the

distributed system when the width of the time slot is varied. The results are shown in figure 4a for infinite

window and in figure 4b for sliding window. The number of elements tracked does not vary for algorithm A

as it tracks all the elements in the distributed dataset. However, for our algorithm and for algorithm B, the

number of elements tracked increases with the increase in the width of time slot.

We also compared the space cost, which is defined as the total space taken by the data structures at

the sites and the coordinator. In general, the space taken by our algorithm is much smaller than that of

Algorithms A and B, for most parameter settings. In Table 1, we show the space cost of each algorithm for

the sliding windows scenario, on the zipfian data on a distributed system of 10 nodes, for different values of

ε. The space cost of A is constant, since it is unaffected by the setting of ε, while that of B is rather large

due to the need to maintain the exact set of distinct time slots where the tracked elements appeared. The

results for the other data sets, and for the infinite windows version are similar.

Table 1: Space cost for Zipfian data on system of 10 nodes for algorithms A, B and our algorithm (SS) for sliding windows

Epsilon Space taken by SS Space taken by B Space taken by A
(in MBytes) (in MBytes) (in MBytes)

.01 149.129 1089.92 1860.38

.02 50.3261 1068.78 1860.38

.03 24.7846 1045.55 1860.38

.04 14.4616 1032.57 1860.38

.05 9.01553 1024.79 1860.38

.06 6.40722 1021.77 1860.38

.07 4.57717 1017.46 1860.38

Accuracy. We measure the actual false negative rate and the false positive rate of our algorithm for different

values of δ, using 10 sites, keeping the value of ε fixed at 0.025. We use real network trace and zipfian dataset

23

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.02 0.03 0.04 0.05 0.06 0.07

C
o

m
m

u
n

ic
at

io
n

 c
o

st
 (

in
 M

B
y

te
s)

Epsilon (No. of sites = 10)

SS - Approx. DC
SS - Exact DC

Naive

(a) Zipfian data α = 1.5 (Infinite Window)

 1

 10

 100

 1000

 0.01 0.02 0.03 0.04 0.05 0.06 0.07

C
o

m
m

u
n

ic
at

io
n

 c
o

st
 (

in
 M

B
y

te
s)

Epsilon (No. of sites = 10)

SS - Approx. DC
SS - Exact DC

Naive

(b) Zipfian data α = 1.5 (Sliding Window - 25 million time slots)

 1

 10

 100

 1000

 0.01 0.02 0.03 0.04 0.05 0.06 0.07

C
o

m
m

u
n

ic
at

io
n

 c
o

st
 (

in
 M

B
y

te
s)

Epsilon (No. of sites = 10)

SS - Approx. DC
SS - Exact DC

Naive

(c) Network Trace (Infinite Window)

 1

 10

 100

 1000

 0.01 0.02 0.03 0.04 0.05 0.06 0.07

C
o

m
m

u
n

ic
at

io
n

 c
o

st
 (

in
 M

B
y

te
s)

Epsilon (No. of sites = 10)

SS - Approx. DC
SS - Exact DC

Naive

(d) Network Trace (Sliding Window - 30 million time slots)

Figure 1: Communication Overhead for varying relative error ‘ε’, keeping number of sites fixed at 10

24

 1

 10

 100

 1000

 10000

 2 4 6 8 10 12 14 16 18 20

C
o

m
m

u
n

ic
at

io
n
 c

o
st

 (
in

 M
B

y
te

s)

No. of sites (Epsilon-value: 0.025)

SS - Approx DC
SS - Exact DC

Naive

(a) Zipfian α = 1.5 (Infinite Window)

 1

 10

 100

 1000

 2 4 6 8 10 12 14 16 18 20

C
o

m
m

u
n

ic
at

io
n
 c

o
st

 (
in

 M
B

y
te

s)

No. of sites (Epsilon-value: 0.025)

SS - Approx DC
SS - Exact DC

Naive

(b) Zipfian α = 1.5 (Sliding Window - 25 million time slots)

 1

 10

 100

 1000

 2 4 6 8 10 12 14 16 18 20

C
o

m
m

u
n

ic
at

io
n

 c
o

st
 (

in
 M

B
y

te
s)

No. of sites (Epsilon-value: 0.025)

SS - Approx. DC
SS - Exact DC

Naive

(c) Network Trace (Infinite Window)

 1

 10

 100

 1000

 2 4 6 8 10 12 14 16 18 20

C
o

m
m

u
n

ic
at

io
n

 c
o

st
 (

in
 M

B
y

te
s)

No. of sites (Epsilon-value: 0.025)

SS - Approx. DC
SS - Exact DC

Naive

(d) Network Trace (Sliding Window - 30 million time slots)

Figure 2: Communication Overhead for varying number of sites keeping ε fixed at 0.025

 10

 100

 1000

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

C
o

m
m

u
n

ic
at

io
n

 c
o

st
 (

in
 M

B
y

te
s)

Width of Time Slot (No. of sites = 10, Epsilon = 0.025)

SS - Approx. DC
SS - Exact DC

Naive

(a) Network Trace (Infinite Window)

 10

 100

 1000

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

C
o

m
m

u
n

ic
at

io
n

 c
o

st
 (

in
 M

B
y

te
s)

Width of Time Slot (No. of sites = 10, Epsilon = 0.025)

SS - Approx. DC
SS - Exact DC

Naive

(b) Network Trace (50 minutes Sliding Window)

Figure 3: Communication Overhead as a function of the width of time slot (in milliseconds)

25

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
o
ta

l
N

o
.
O

f
It

em
s

T
ra

ck
ed

Width of Time Slot (No. of sites = 10, Epsilon = 0.025)

SS - Approx. DC
SS - Exact DC

Naive

(a) Network Trace (Infinite Window)

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

N
u

m
b

er
 o

f
It

em
s

T
ra

ck
ed

Width of Time Slot in millisecond (No. of sites = 10, Epsilon = 0.025)

SS - Approx. DC
SS - Exact DC

Naive

(b) Network Trace (50 minutes Sliding Window)

Figure 4: Total number of items tracked across all sites as a function of the width of the time slot (in milliseconds)

for our experiments. For the experiments corresponding to the sliding window version of our algorithm, we

consider the window size of 30 million time slots for the network trace and 25 million time slots for zipfian.

According to our paper, we report an item d as persistent if its approximate persistence p̂d is at least

αn. Also, an item d is not reported as persistent if its estimated persistence p̂d is less than (αn− εn). Note

that for the infinite window version of the algorithm, n denotes the total number of time slots in the entire

dataset, and for the sliding window version of the algorithm, it denotes the maximum number of time slots

in the current window.

We define the false negative rate as a fraction of the persistent items which were not reported as persistent,

and the false positive rate as a fraction of the non-persistent items which were reported as persistent. Per

Theorem 2, the false negative rate and the false positive rate given by our algorithm is bounded by error

probability δ.

The false negative rate for the zipfian and the network trace is shown in Figure 5a for infinite window

and Figure 5b for sliding window. For this experiment, we vary δ from 0.001 to 0.1. The plot named “Error

Threshold” plots the maximum expected error for each value of δ. We observe that the false negative rate

for both datasets is always less than the error probability δ. In fact, for our experiments, the false negative

rate of network trace and zipfian did not exceed 0.025 for any value of δ. We also observe that for δ = 0.001,

there are no false negatives.

Similarly, we observe that the the false positive rates for the zipfian and the network trace, shown in

Figure 5c for infinite window and in Figure 5d for sliding window, is much below the error threshold. The

false positive rate of network trace and zipfian given by both infinite window and sliding window version of

26

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

F
al

se
 N

eg
at

iv
e

R
at

e

Delta (No. of sites = 10, Epsilon = 0.025)

Network Trace
Zipfian

Error Threshold

(a) False Negative Rate - Infinite Window

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

F
al

se
 N

eg
at

iv
e

R
at

e

Delta (No. of sites = 10, Epsilon = 0.025)

Network Trace (sliding win)
Zipfian (sliding win)

Error Threshold

(b) False Negative Rate - Sliding Window (30 million time slots)

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 0.02 0.04 0.06 0.08 0.1

F
al

se
 P

o
si

ti
v

e
R

at
e

(o
rd

er
 o

f
1

0
-7

)

Delta (No. of sites = 10, Epsilon = 0.025)

Network Trace
Zipfian

Error Threshold

(c) False Positive Rate - Infinite Window

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 0.02 0.04 0.06 0.08 0.1

F
al

se
 P

o
si

ti
v

e
R

at
e

(o
rd

er
 o

f
1

0
-7

)

Delta (No. of sites = 10, Epsilon = 0.025)

Network Trace
Zipfian

Error Threshold

(d) False Positive Rate - Sliding Window (30 million time slots)

Figure 5: False Negative Rate and False Positive Rate as a function of δ for Network Trace and Zipfian

our algorithm, are in the order of 10−5 to 10−7.

5. Conclusion

We presented algorithms for communication-efficient monitoring of persistent items in a distributed

stream of events. These can help detect situations such as when a malicious adversary is establishing a

regularly spaced connection to a remote entity, but is trying to evade detection through keeping the volume

of communication low and by having the communication originate from different sites. The total distributed

state maintained by our algorithms is far less than the number of distinct items observed in the stream, and

the communication overhead is also small compared with the number of events and the number of items ob-

served. Our experimental evaluations show that the communication cost and memory cost of our algorithms

are much smaller than those of straightforward algorithms, and their false positive and false negative rates

27

are typically much lower than theoretical predictions.

Acknowledgments

This work was funded in part by the National Science Foundation through grants 0834743 and 0831903

and through a fellowship from IBM. The views and conclusions contained in this document are those of the

authors and should not be interpreted as representing the official policies, either expressed or implied, of the

US National Science Foundation or the IBM Corporation.

References

[1] Pay per click - wikipedia.

http://en.wikipedia.org/wiki/Pay_per_click.

[2] The CAIDA UCSD Anonymized OC48 Internet Traces 2002-2003.

https://data.caida.org/datasets/oc48/oc48-original/.

[3] N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating the frequency moments.

In Proceedings of the 28th annual ACM symposium on Theory of computing (STOC), pages 20–29, 1996.

[4] Z. Bar-Yossef, T. S. Jayram, R. Kumar, D. Sivakumar, and L. Trevisan. Counting distinct elements in

a data stream. In Proceedings of the 6th International Workshop on Randomization and Approximation

Techniques (RANDOM), pages 1–10, 2002.

[5] V. Braverman, R. Ostrovsky, and C. Zaniolo. Optimal sampling from sliding windows. In Proceedings

of the 28th ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems (PODS),

pages 147–156, 2009.

[6] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M. Hellerstein, W. Hong, S. Krish-

namurthy, S. R. Madden, F. Reiss, and M. A. Shah. Telegraphcq: continuous dataflow processing. In

Proceedings of the 2003 ACM SIGMOD international conference on Management of data (SIGMOD),

pages 668–668, 2003.

[7] M. Charikar, S. Chaudhuri, R. Motwani, and V. Narasayya. Towards estimation error guarantees

for distinct values. In Proceedings of the nineteenth ACM SIGMOD-SIGACT-SIGART symposium on

Principles of database systems (PODS), pages 268–279, 2000.

28

http://en.wikipedia.org/wiki/Pay_per_click
https://data.caida.org/datasets/oc48/oc48-original/

[8] M. Charikar, K. Chen, and M. Farach-Colton. Finding frequent items in data streams. In Proceedings of

the 29th International Colloquium on Automata, Languages and Programming (ICALP), pages 693–703,

2002.

[9] G. Cormode and M. Hadjieleftheriou. Finding frequent items in data streams. Proceedings of the VLDB

Endowment, 1(2):1530–1541, Aug. 2008.

[10] G. Cormode and S. Muthukrishnan. An improved data stream summary: the count-min sketch and its

applications. Journal of Algorithms, 55(1):58–75, Apr. 2005.

[11] G. Cormode, S. Muthukrishnan, K. Yi, and Q. Zhang. Optimal sampling from distributed streams. In

Proceedings of the 29th ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems

(PODS), pages 77–86, 2010.

[12] G. Cormode, S. Muthukrishnan, and W. Zhuang. What’s different: Distributed, continuous monitoring

of duplicate-resilient aggregates on data streams. In Proceedings of the 22nd International Conference

on Data Engineering (ICDE), pages 57–, 2006.

[13] M. Datar, A. Gionis, P. Indyk, and R. Motwani. Maintaining stream statistics over sliding windows:

(extended abstract). In Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms

(SODA), pages 635–644, 2002.

[14] D. Eyers, T. Freudenreich, A. Margara, S. Frischbier, P. Pietzuch, and P. Eugster. Living in the present:

On-the-fly information processing in scalable web architectures. In Proceedings of the 2nd International

Workshop on Cloud Computing Platforms (CloudCP), pages 6:1–6:6, 2012.

[15] P. Flajolet and G. N. Martin. Probabilistic counting algorithms for data base applications. Journal of

Computer and System Sciences, 31(2):182–209, Sept. 1985.

[16] J. Gehrke, F. Korn, and D. Srivastava. On computing correlated aggregates over continual data streams.

In Proceedings of the 2001 ACM SIGMOD international conference on Management of data (SIGMOD),

pages 13–24, 2001.

[17] P. B. Gibbons and S. Tirthapura. Estimating simple functions on the union of data streams. In

Proceedings of the 13th annual ACM symposium on Parallel algorithms and architectures (SPAA), pages

281–291, 2001.

[18] P. B. Gibbons and S. Tirthapura. Distributed streams algorithms for sliding windows. In Proceedings of

the 14th annual ACM symposium on Parallel algorithms and architectures (SPAA), pages 63–72, 2002.

29

[19] F. Giroire, J. Chandrashekar, N. Taft, E. Schooler, and D. Papagiannaki. Exploiting temporal persis-

tence to detect covert botnet channels. In Proceedings of the 12th International Symposium on Recent

Advances in Intrusion Detection (RAID), pages 326–345, 2009.

[20] L. Golab, D. DeHaan, E. D. Demaine, A. Lopez-Ortiz, and J. I. Munro. Identifying frequent items in

sliding windows over on-line packet streams. In Proceedings of the 3rd ACM SIGCOMM conference on

Internet measurement (IMC), pages 173–178, 2003.

[21] P. J. Haas, J. F. Naughton, S. Seshadri, and L. Stokes. Sampling-based estimation of the number of

distinct values of an attribute. In Proceedings of the 21th International Conference on Very Large Data

Bases (VLDB), pages 311–322, 1995.

[22] R. Kannan, S. Vempala, and D. P. Woodruff. Principal component analysis and higher correlations for

distributed data. In Proceedings of the 27th Annual Conference on Learning Theory (COLT), pages

1040–1057, 2014.

[23] J. Kreps, N. Narkhede, and J. Rao. Kafka: A distributed messaging system for log processing. In

Proceedings of 6th International Workshop on Networking Meets Databases (NetDB), 2011.

[24] B. Lahiri, J. Chandrashekar, and S. Tirthapura. Space-efficient tracking of persistent items in a massive

data stream. In Proceedings of the 5th ACM international conference on Distributed event-based system

(DEBS), pages 255–266, 2011.

[25] B. Lahiri and S. Tirthapura. Finding correlated heavy-hitters over data streams. In Proceedings of the

IEEE 28th International Performance Computing and Communications Conference (IPCCC), pages

307–314, 2009.

[26] A. Manjhi, V. Shkapenyuk, K. Dhamdhere, and C. Olston. Finding (recently) frequent items in dis-

tributed data streams. In Proceedings of the 21st International Conference on Data Engineering (ICDE),

pages 767–778, 2005.

[27] G. S. Manku and R. Motwani. Approximate frequency counts over data streams. In Proceedings of the

28th international conference on Very Large Data Bases (VLDB), pages 346–357, 2002.

[28] A. Metwally, D. Agrawal, and A. El Abbadi. Efficient computation of frequent and top-k elements in

data streams. In Proceedings of the 10th international conference on Database Theory (ICDT), pages

398–412, 2005.

[29] J. Misra and D. Gries. Finding repeated elements. Technical report, Ithaca, NY, USA, 1982.

30

[30] O. Papapetrou, M. Garofalakis, and A. Deligiannakis. Sketch-based querying of distributed sliding-

window data streams. Proceedings of the VLDB Endowment, 5(10):992–1003, June 2012.

[31] K. Patroumpas and T. Sellis. Window specification over data streams. In Proceedings of the 2006

international conference on Current Trends in Database Technology (EDBT), pages 445–464, 2006.

[32] A. Rabkin and R. Katz. Chukwa: A system for reliable large-scale log collection. In Proceedings of the

24th International Conference on Large Installation System Administration, pages 1–15, 2010.

[33] N. Shrivastava, C. Buragohain, D. Agrawal, and S. Suri. Medians and beyond: new aggregation tech-

niques for sensor networks. In Proceedings of the 2nd international conference on Embedded networked

sensor systems (SenSys), pages 239–249, 2004.

[34] S. Tirthapura and D. P. Woodruff. Optimal random sampling from distributed streams revisited. In

Proceedings of the 25th International Conference on Distributed Computing (DISC), pages 283–297,

2011.

[35] S. Tirthapura and D. P. Woodruff. A general method for estimating correlated aggregates over a data

stream. In Proceedings of the 2012 IEEE 28th International Conference on Data Engineering (ICDE),

pages 162–173, 2012.

[36] S. Tirthapura, B. Xu, and C. Busch. Sketching asynchronous streams over a sliding window. pages

82–91, 2006.

[37] D. P. Woodruff and Q. Zhang. Tight bounds for distributed functional monitoring. In Proceedings of

the 44th Annual ACM Symposium on Theory of Computing (STOC), pages 941–960, 2012.

[38] D. P. Woodruff and Q. Zhang. When distributed computation is communication expensive. In Proceed-

ings of the 27th International Symposium on Distributed Computing (DISC), pages 16–30, 2013.

[39] L. Zhang and Y. Guan. Detecting click fraud in pay-per-click streams of online advertising networks. In

Proceedings of the 2008 The 28th International Conference on Distributed Computing Systems (ICDCS),

pages 77–84, 2008.

[40] W. Zhang, Y. Zhang, M. A. Cheema, and X. Lin. Counting distinct objects over sliding windows. In

Proceedings of the 21st Australasian Conference on Database Technologies - Volume 104, pages 75–84,

2010.

31

	Introduction
	Approximate Identification of Persistent Items
	Contributions
	Solution Overview
	Related Work

	Infinite Window
	Infinite Window : Correctness
	Infinite Window: Complexity

	Sliding Window
	Sliding Window : Correctness
	Sliding Window: Complexity Analysis

	Experiments
	Conclusion

