Optimal Sampling from Distributed Streams Revisited

Srikanta Tirthapura (Iowa State University)
David Woodruff (IBM Almaden)

Presentation at DISC 2011
Distributed Streams

Master Server

Server 1 (Georgia)

Server 2 (Italy)

Server 3 (India)

What is a typical Request like?

What are Frequent request types?
Distributed Streams

k Sites

Answers Queries About

$S = \bigcup_{j=1}^{k} S_j$

Sketches (Summaries)

Coordinator
Continuous Distributed Streaming Model

• **Multiple geographically distributed streams**
 – Data is a sequence of updates

• **Task:** A central coordinator **continuously** maintains a global property over the union of all streams

• **Cost Metric:** Number of messages transmitted
Problem Definition (1)

• k sites numbered $1, 2, 3, \ldots, k$

• At any point in time, site i has observed stream S_i

$$S = \bigcup_{i=1}^{k} S_i$$

• Task: At all times, the central coordinator must maintain a random sample of size s from S
Problem Definition (2)

• Synchronous Model
 – Execution proceeds in rounds
 – In each round, each site observes one or more items, and can send a message, receive a response

• Only Site \(\leftarrow\rightarrow\) Coordinator communication
 – does not lose generality

• Cost Metric: Total number of messages sent by the protocol over the entire execution of observing \(n\) elements
Random Sampling

Given a data set P of size n, a random sample S is defined as the result of a process.

1. **Sample Without Replacement of Size s ($1 \leq s \leq n$)**

 Repeat s times

 1. $e \leftarrow \{\text{a randomly chosen element from } P\}$
 2. $P \leftarrow P - \{e\}$
 3. $S \leftarrow S \cup \{e\}$

2. **Sample With Replacement of size s ($1 \leq s$)**

 Repeat s times

 1. $e \leftarrow \{\text{a randomly chosen element from } P\}$
 2. $S \leftarrow S \cup \{e\}$
Our Results: Upper Bound

• An algorithm for continuously maintaining a random sample of S with message complexity.

\[
O\left(\frac{k \log \frac{n}{s}}{\log\left(1 + \frac{k}{s}\right)}\right)
\]

• \(k\) = number of sites
• \(n\) = Total size of stream
• \(s\) = desired sample size
Our Results: Matching Lower Bound

• Any algorithm for continuously maintaining a random sample of S must have message complexity:

\[
\Omega \left(\frac{k \log \frac{n}{s}}{\log \left(1 + \frac{k}{s} \right)} \right)
\]

• $k =$ number of sites
• $n =$ Total size of stream
• $s =$ desired sample size
Prior Work

• Single Stream: Reservoir Sampling Algorithm
 – Waterman (1960s)

• Random Sampling on Distributed Streams
 – Cormode, Muthukrishnan, Yi, and Zhang: *Optimal sampling from distributed streams*. ACM PODS, pages 77–86, 2010
Related Work

• “Reactive” Distributed Streams:
 – Gibbons and Tirthapura, *Distributed streams algorithms for sliding windows*, SPAA 2002, pages 63-72
 – Coordinator can contact the sites during query processing

• Frequency Moments, Distinct Elements in Distributed Streams
 – Introduced the continuous distributed streaming model

• Entropy on Distributed Streams
 – Study non-monotonic functions, unlike [Cormode et al. 2008]
Prior Work

$k = \text{number of sites}$
$n = \text{Total size of streams}$
$s = \text{desired sample size}$

<table>
<thead>
<tr>
<th></th>
<th>Upper Bound</th>
<th>Lower Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Our Result</td>
<td>Cormode et al.</td>
</tr>
<tr>
<td>$s < k/8$</td>
<td>$O\left(\frac{k \log(n/s)}{\log(k/s)}\right)$</td>
<td>$O(k \log n)$</td>
</tr>
<tr>
<td>$s \geq k/8$</td>
<td>$O(s \log (n/s))$</td>
<td>$O(s \log n)$</td>
</tr>
</tbody>
</table>
Algorithm: Element arrives at 1
Weight for each element

Weight of each element
= random number in [0,1]
Weight for each element

1

0.6

Coordinator
Algorithm

Coordinator

1

2

k

0.6

0.2

0.33
Algorithm: Random Sample

Random Sample = set of Elements with s smallest Weights

$u = 0.33$
s-th smallest weight seen so far

Coordinator

0.2
0.33
Algorithm: Sites “Cache” value of \(u \)

\[u_1 \text{ is 1’s view of } u = 0.6 \]

\[u = 0.33 \]

1

2 \(u_2 = 0.5 \)

3

\[u_k = 0.33 \]

Coordinator

Random Sample

Optimal Sampling in Distributed Streams
DISC 2011
Algorithm: Effect of Caching

\[u_1 = 0.6 \quad 1 \quad 2 \quad u_2 = 0.5 \quad k \quad u_k = 0.33 \]

\(u_1, u_2, \ldots, \) are all at least \(u \)

So, elements that belong to

The sample are definitely sent

\(u = 0.33 \)
Optimal Sampling in Distributed Streams

DISC 2011

Element at 1

- $u_1 = 0.6$
- $u_2 = 0.5$
- $u_k = 0.33$

Coordinator

Random Sample

- $u = 0.33$
- 0.2
- 0.33
Discarded Locally

\[u_1 = 0.6 \]

\[u_2 = 0.5 \]

\[u_k = 0.33 \]

\[u = 0.33 \]

Optimal Sampling in Distributed Streams
DISC 2011
Optimal Sampling in Distributed Streams

DISC 2011

Element at 1

$u_1 = 0.6$

$u_2 = 0.5$

$u_k = 0.33$

$u = 0.33$

Random Sample

0.2

0.33
“Wasteful” Send

\[u_1 = 0.6 \]

\[u_2 = 0.5 \]

\[u_k = 0.33 \]
Discarded by Coordinator

\[u_1 = 0.6 \]

\[u_2 = 0.5 \]

\[u_k = 0.33 \]

Random Sample

0.2 0.33
But: Coordinator Refreshes Site’s View

\[u_1 = 0.6 \]

\[u_2 = 0.5 \]

\[u_k = 0.33 \]

Random Sample

0.2

0.33

Optimal Sampling in Distributed Streams
DISC 2011
Site’s View is Refreshed

\[u_1 = 0.33 \]
\[u_2 = 0.5 \]
\[u_k = 0.33 \]

\[u = 0.33 \]
Algorithm Notes

• A message from site to coordinator either
 – Changes the coordinator’s state
 – Or Refreshes the client’s view
Algorithm at Site i when it receives element e

// u_i is i’s view of the minimum weight so far in the system
// u_i is initialized to ∞

1. Let $w(e)$ be a random number between 0 and 1

2. If $(w(e) < u_i)$ then
 1. Send $(e, w(e))$ to the coordinator, and receive u' in return
 2. $u_i \leftarrow u'$
Algorithm at Coordinator

1. Coordinator maintains u, the s-th smallest weight seen in the system so far

2. If it receives a message $(e, w(e))$ from site i,
 1. If ($u > w(e)$), then update u and add e to the sample
 2. Send u back to i
Analysis: High Level View

- An execution divided into a few “Epochs”
- Bound the number of epochs
- Bound the number of messages per epoch
Analysis: Epochs

- Epoch 0: all rounds until \(u = \frac{1}{r} \) or smaller
- Epoch \(i \): all rounds after epoch \((i-1) \) till \(u \) has further reduced by a factor \(r \)
- Epochs are not known by the algorithm, only used for analysis

\(u \) is the \(s \)-th smallest weight seen in the system, so far.
Bound on Number of Epochs

Let ξ denote the number of epochs in an execution.

Lemma: $E[\xi] \leq \left(\frac{\log\left(\frac{n}{s}\right)}{\log r} \right) + 2$

Proof: $E[\xi] = \sum_{i \geq 0} \Pr[\xi \geq i]$

At the end of i epochs, $u \leq \frac{1}{r^i}$
At the end of $\left(\frac{\log\left(\frac{n}{s}\right)}{\log r} \right) + j$ epochs, $u \leq \left(\frac{s}{n} \right) \frac{1}{r^j}$

We can show using Markov rule, $\Pr\left[\xi \geq \left(\frac{\log\left(\frac{n}{s}\right)}{\log r} \right) + j \right] \leq \frac{1}{r^j}$

$n = \text{stream size}$
$s = \text{desired sample size}$
$r = \text{a parameter}$
Algorithm B versus A

- Suppose our algorithm is “A”. We define an algorithm “B” that is the same as A, except:
 - At the beginning of each epoch, coordinator broadcasts u (the current s-th minimum) to all sites
 - B easier to analyze since the states of all sites are synchronized at the beginning of each epoch

- Random sample maintained by “B” is the same as that maintained by A

- Lemma: The number of messages sent by A is no more than twice the number sent by B
 - Henceforth, we will analyze B
Analysis of B: Bound on Messages Per Epoch

- $\mu =$ total number of messages
- $\mu_j =$ number of messages in epoch j
- $X_j =$ number messages sent to coordinator in epoch j
- $\xi =$ number of epochs

- $\mu = \sum_{j=0}^{\xi-1} \mu_j$
- $\mu_j = k + 2X_j$
- $\mu = \xi k + 2 \sum_{j=0}^{\xi-1} X_j$

Now, only need to bound X_j, the number of messages to coordinator in epoch j
Bound on X_j

• Lemma: For each epoch j, $E[X_j] \leq 1 + 2rs$

• Proof:
 – First compute $E[X_j]$ conditioned on n_j and m_j
 – Remove the conditioning on n_j (the number of elements in epoch j)
 – Remove the conditioning on m_j (the value of u at the beginning of epoch j)
Upper Bound

Theorem: The expected message complexity is as follows

- If \(s \geq \frac{k}{8} \) then \(E[\mu] = O\left(s \log \left(\frac{n}{s}\right)\right)\)
- If \(s < \frac{k}{8} \) then \(E[\mu] = O\left(\frac{k \log \left(\frac{n}{s}\right)}{\log \left(\frac{k}{s}\right)}\right)\)

Proof: \(E[\mu] \) is a function of \(r \). Minimize with respect to \(r \), to get the desired result.

k = number of sites
n = Total size of stream
s = desired sample size
\(\mu = \) message complexity
Suppose m elements observed so far.
Lower Bound: Execution 1

Suppose \(m \) elements observed so far.

Site 1 saw \(\frac{m}{s} \) more elements.

\(s \) is the sample size.
Suppose m elements Observed till this point

Site 1 saw $\frac{m}{s}$ more elements

Constant probability that one of site 1’s elements will be included in the sample

s is the sample size
Suppose m elements observed till this point.

Site 1 saw $\frac{m}{s}$ more elements and (on expectation) sent a constant number of messages to coordinator.

There is a constant probability that one of site 1's elements will be included in the sample.

s is the sample size.
Lower Bound: Execution 2

Suppose m elements observed so far

Site 2 saw $\frac{m}{s}$ more elements And (on expectation) sent a constant number of messages to coordinator

Suppose m elements Observed so far

s is the sample size
Lower Bound: Execution 3

Cannot distinguish from Execution 2, unless it received a message from coordinator – message cost here

Site 2 saw \(\frac{m}{s} \) more elements

Site 1 saw \(\frac{m}{s} \) more elements

Suppose \(m \) elements observed so far

\(s \) is the sample size
Lower Bound: Execution 3

Cannot distinguish from Execution 2, unless it received a message from coordinator – message cost here

Site 2 saw $\frac{m}{s}$ more elements

Suppose m elements Observed so far

Site 1 saw $\frac{m}{s}$ more elements

Cannot distinguish from Execution 1, unless it received a message from coordinator – message cost here
Lower Bound

Theorem: For any constant \(q, 0 < q < 1 \), any correct protocol must send

\[
\Omega \left(\frac{k \log \left(\frac{n}{s} \right)}{\log(1 + \frac{k}{s})} \right)
\]

messages with probability at least \(1 - q \), where the probability is taken over the protocol’s internal randomness.

\(k = \) number of sites \\
\(n = \) Total size of stream \\
\(s = \) desired sample size
Conclusion

• Random Sampling without replacement on distributed streams

• Optimal message complexity, within constant factors

• Through a reduction, also leads to the best known message complexity for heavy-hitters over continuous distributed streams

• Algorithm for Random Sampling with Replacement
Open Problems

• **Tight Lower Bounds for other Problems**
 – Estimating Number of Distinct Elements
 – Heavy-Hitters (Frequent Elements)
 – Random Sampling With Replacement

• **Fault Tolerance**
 – Need definition of fault models