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Abstract— This paper proposes a method for interactive recog-
nition of household objects by a robot using proprioceptive
feedback. In our experiments, the robot observed the changes
in its proprioceptive stream while performing five exploratory
behaviors (lift, shake, drop, crush, and push) on 50 common
household objects (e.g., bottles, cans, balls, toys, etc.). Specifically,
the robot used its own joint torques recorded during each
interaction to recognize the object that it was manipulating. The
results show that the robot can learn to recognize objects solely
from the proprioceptive information obtained while interacting
with them. Furthermore, by applying multiple behaviors on
the same object, the robot was able to significantly improve
its object recognition accuracy. Overall, the results show that
proprioception should be considered as an important source of
information for object recognition and object manipulation tasks.

I. I NTRODUCTION

Traditionally, most object recognition systems used in
robotics have relied heavily on computer vision techniques
[1, 2]. Given a clear view of an object, such systems can
achieve a high degree of recognition accuracy, but still suffer
from several important limitations. For example, a computer
vision system cannot distinguish between a heavy object anda
light object that otherwise look identical. Nor can a computer
vision system recognize an object that a robot is manipulating
outside its field of view. The human visual system suffers from
these same limitations. Studies in cognitive psychology have
repeatedly shown that other sensory modalities are necessary
in order to resolve perceptual ambiguities about objects (e.g.,
is the object heavy or light?) [3, 4]. Hence, there is a great
need to integrate other sensory modalities into robots’ object
recognition models.

This paper investigates the use of proprioceptive feedback
as a source of information about objects that a robot interacts
with. We build upon our previous work on acoustic object
recognition [5, 6] by showing that the model used for the rep-
resentation of acoustic information in [5] is also very effective
for representing proprioceptive feedback in the form of joint
torque values. In this work, the robot interacted with 50 objects
using five different behaviors (lift, shake, drop, crush,and
push). The robot represented the proprioceptive information
from each interaction as a sequence of state activations in
a Self-Organizing Map (SOM). The SOM allows the robot
to turn the high-dimensional proprioceptive information into
a sequence of tokens drawn from a finite alphabet - in this

Fig. 1. The robot used in this study, shown here performing thelift
exploratory behavior on thenerf football object, one of 50 objects that the
robot has experience with.

case, the set of nodes in the map. The robot was tasked with
recognizing the object in the interaction using proprioceptive
data alone. Two different learning algorithms, designed to
work on sequence data, were evaluated: Multinomial Naı̈ve
Bayes (MNB) and k-Nearest Neighbors(k-NN). The results
indicate that the robot can learn to recognize objects solely
from the proprioceptive information observed while interacting
with them. Furthermore, by applying multiple behaviors on
the same object, the robot was able to significantly improve
its object recognition accuracy.

II. RELATED WORK

A. Psychology and Cognitive Science

The ways in which humans use proprioceptive information
is a well-studied topic in psychology and cognitive science.
Some studies have investigated human integration of propri-
oception with other sensory modalities, such as Sappet al.’s
study [3], in which toddlers were presented with a sponge that
was deceptively painted as a rock. All of the toddlers believed
that the object was a rock until the moment they touched
it or picked it up. While the children could recognize the
object quickly with vision alone, proprioceptive information



was found to be necessary in order to resolve ambiguities
about the object at hand.

In a similar study, Helleret al. [4] studied how a mirror
could create conflicting visual and proprioceptive information.
Subjects were asked to identify raised letters by touching them
and viewing them through a mirror that inverted the letters
vertically (e.g. a ‘p’ became a ‘b’). More than half of the time
the subjects had to use proprioceptive data to correctly identify
the letters. Thus, proprioceptive feedback can be more useful
than vision in object recognition tasks. This implies that robots
that learn to recognize objects using proprioceptive input(in
addition to other modalities) would be better suited for human-
inhabited environments such as our homes and offices.

Several studies have shown that both animals and humans
use stereotyped exploratory behaviors to extract information
about objects [7]. One study has even suggested that some
birds use almost their entire behavioral repertoire to explore a
novel object [8]. Presumably, a robot may also interact with
objects using a stereotyped behavioral sequence in order to
obtain better object recognition accuracy. It is, however,not
immediately clear which behaviors a robot should utilize. This
paper explores the usefulness of five exploratory behaviorsfor
proprioceptive recognition.

B. Robotics

Object recognition is not a novel problem – it has been
studied heavily in the visual domain and moderately in the
auditory domain. There has been very little previous work
dealing exclusively with proprioceptive object recognition.
One such example is the work by Nataleet al. [9] in which
proprioceptive data captured from the robot’s hand was used
to recognize objects. One of seven objects was placed in the
robot’s hand, whereupon the hand would close until it reached
a preset torque limit. The resulting joint angles on the hand
were then read and fed to a self-organizing map. The robot
was able to distinguish between objects of different sizes as
well as between objects of similar size but different rigidity.

In other related work, Kubuset al. [10, 11] have demon-
strated a method for the direct estimation of several physical
properties of objects (e.g., mass and moment of inertia). These
properties were then used to recognize objects as being one
of three known objects [10]. It is important to note that
objects rigidly grasped by the robot behave like additional
links. Thus, methods for estimating dynamic models of the
robot’s body (see [12, 13, 14, 15] for a representative sample)
can also be applicable when estimating an object’s mass and
moment of inertia. In contrast, this paper explores how a
general sequential representation for high-dimensional sensory
data, coupled with standard machine learning algorithms, can
be used by the robot to learn to recognize the objects it
manipulates. Thus, the method described here can also be
applied to other sensory modalities (e.g., audition [5]).

Nakamuraet al. [16] describe a robot that used propriocep-
tion along with video and audio information when interacting
with objects. They investigated whether a robot could infer
object properties grounded in one modality from another (e.g.,

Fig. 2. The 50 objects used in this study (not shown to scale).

whether an object would make noise when picked up after only
looking at it). They found a much higher correlation between
visual and proprioceptive information than between visualand
auditory information.

Proprioception was used in a study by Mettaet al. [17]
to bootstrap a robot’s ability to work with objects. While
the robot primarily relied on vision to complete its task
(determining the principal axis of an object and its relation
to how the object rolls), the use of proprioception also aided
the robot in locating the object. This shows that proprioception
can be an effective tool for use by a robot.

There has also been some work in active robot object
recognition. Fitzpatricket al. [18] studied a robot that actively
learned about objects by initiating interactions with them
instead of passively observing and reacting. Similarly, Natale
et al. [19] have demonstrated how basic interactions can be
used by a robot to learn how objects would move after a certain
behavior was performed on them. Also, Takamukaet al [20]
used a robotic arm to shake nine different objects, and utilized
the sounds generated by this shaking behavior to group the
objects into three categories (rigid objects, paper, and water
bottles).
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Fig. 3. Beforeandafter snapshots of the five behaviors used by the robot.

This paper describes a method for interactive object recog-
nition using only proprioceptive data. The method is tested
using a large-scale experimental study with 50 household
objects. We build upon our previous work on acoustic object
recognition [5, 6] by showing that the model utilized for the
representation of acoustic information is also very effective
for proprioceptive information. Furthermore, we improve the
object recognition model developed in [5] by allowing the
robot to combine predictions from multiple behaviors on the
test object in an intelligent manner.

III. EXPERIMENTAL SETUP

A. Robot

An upper-torso humanoid robot which has two 7-d.o.f.
Barrett WAMs for arms and two 3-finger Barrett hands was
used to perform this study. The robot is controlled in real time
from a Linux PC at 500 Hz over a CAN bus interface. The
raw torque data was captured and recorded at 500Hz using the
robot’s low-level API.

B. Objects

The robot interacted with a set of objects,O, which consists
of 50 common household objects, including: cups, bottles,
boxes, toys, etc. (see Fig. 2). The objects were made of various
substances such as metal, plastic, paper, foam, and wood.
Objects were selected using three criteria: 1) they must be
graspable by the robot; 2) they must not break or permanently
deform when the robot interacts with them; and 3) they must
not damage the robot.

C. Behaviors

The set of behaviors,B, consists of five exploratory be-
haviors that the robot performs on each object:lift , shake,
drop, crush, andpush. Behaviors were selected based on their
expected ability to produce unique and useful information.
For example, thelift and crush behaviors were expected to
yield information related to the weight and compliance of the
objects, respectively. The behaviors were implemented with
the Barrett WAM API. Fig. 3 showsbeforeand after images
for each of the five exploratory behaviors. The raw propriocep-
tive data (joint torques) was recorded for the duration of each
interaction (start to end). Each object was placed in (roughly)
the same configuration (i.e., position and orientation) prior to
behavior execution. Due to human error, however, there was
still variation of the grasp contact points, as well as the contact
points with the object during thepush and crush behaviors
across multiple trials with the same object.

IV. L EARNING METHODOLOGY

A. Feature Extraction

During the execution of each behavior, the robot records
the joint torque values for all 7 joints of the left arm over the
time of the interaction. The first step in the feature extraction
routine is to noise filter the raw joint torque values recorded
during each interaction. The dotted line in Figure 4 shows
the joint torque values for J2 (shoulder joint) as the robot
lifts the dumbbell object. As can be seen from the figure, the
raw values are somewhat noisy and contain spike readings.
To reduce this noise, the raw data is filtered using a filter
of width 10 which checks for data points that lie more than
3 standard deviations away from the window median. Any
such values are thrown out and replaced with the window
median. The time series is then smoothed using a moving-
average filter of size 10. The solid line in Figure 4 shows the
resulting smoothed joint-torque values after the noise-filtering
procedure is performed.

The proprioceptive feedback,Pi, from theith interaction is
represented as a sequence of states on a Self-Organizing Map
(SOM) [21], which is one of several ways to quantize data
vectors into discrete tokens or clusters. This representation is
obtained as follows: letTi = [ti1, t

i
2, . . . , t

i
li
] be the noise-

filtered joint torque values for some given interactioni, where
eachtij ∈ R

7 denotes the torque values for all 7 joints at time
stepj. Given a collection of joint torque recordsT = {Ti}

K
i=1,

a set of individual joint torque vectors is sampled and used
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Fig. 4. Joint torque values for the shoulder joint (J2) as the robot lifts the
dumbbell object. The blue line shows the raw joint torques recorded using
the robot’s low-level API. The red line shows the filtered joint torques. See
the text for filter details.
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Fig. 5. Illustration of the procedure used to train the Self-Organizing Map
(SOM). Given a set of joint torques recorded at 500 Hz during multiple
interactions with different objects, a set of column vectorsis sampled at
random and used as a dataset for training the SOM. Each of these vectors is in
R

7 and denotes the values of the 7 joint torques at a particular point in time.
Once trained, the SOM can map any particular joint torque configuration to
one of the SOM’s states (i.e., the most highly activated state).

as an input training dataset for a SOM. In other words, the
SOM is trained with input datapointstij ∈ R

7 where each data
point denotes some particular recorded joint torque valuesfor
all 7 joints. The Growing Hierarchical SOM toolbox was used
to train a 6 by 6 SOM (i.e., 36 total states) using the default
parameters for a non-growing 2-D single layer map [22]. Due
to memory constraints, only1/5 of the available input data
pointstij ∈ R

7 were sampled at random and used for training.
Figure 5 gives a visual overview of the training procedure.

After training the SOM, each torque recordTi =
[ti1, t

i
2, . . . , t

i
li
] is mapped to a sequence of SOM states, by

mapping each vectortij ∈ R
7 to a state on the map. A mapping

?

Trained SOM

?

. . .Pi : pi
1 pi

2 pi
3 pi

li

a)

b)

Fig. 6. Processing the proprioception data stream: a) The noise-filtered
torque data for all 7 joints recorded while the robot lifts the dumbbell object.
The horizontal axis denotes time while the color in each band indicates the
torque values for each particular joint (white indicates low values while black
indicates high values); b) The sequence of states in the SOM corresponding to
the torques recorded during this interaction, obtained after eachR

7 column
vector of torque data is mapped to a node in the SOM. The length of the
sequencePi is li, which is the same as the length of the horizontal time
dimension of the torque data shown in a). Each sequence tokenpi

j ∈ A,
whereA is the set of SOM nodes.

function is defined,M(tij) → pi
j , wheretij ∈ R

7 is the input
torque vector andpi

j is the node in the SOM with the highest
activation value given the current inputtij . Hence, each torque
record Ti is represented as a sequence,Pi = pi

1p
i
2 . . . pi

li
,

where pi
k ∈ A, A is the set of SOM nodes, andli is the

temporal length of the torque recordTi, as shown in Fig. 6.
Thus, eachPi consists of a discrete sequence over a finite
alphabet. This representation reduces the dimensionalityof
the proprioceptive feedback, thus affording the use of standard
machine learning algorithms designed to work on sequential
data.

B. Data Collection

Let B = {lift , shake, drop, crush, push} be the set of
exploratory behaviors available to the robot. For each of the
five interactions, the robot performed ten trials with all 50
objects for a total of5×10×50 = 2500 recorded interactions.
During theith trial, the robot recorded a data triple of the form
(Bi, Oi, Pi), whereBi ∈ B is the executed behavior,Oi ∈ O
is the object in the current interaction, andPi = pi

1p
i
2 . . . pi

li

is the sequence of most highly activated SOM nodes as the
interaction with the object unfolds.

Given this data, the task of the robot is to learn a model such
that given a proprioceptive sequence,Pi, the robot can estimate
the object,Oi, that generated the sequence. Put in another way,
given a proprioceptive sequencePi, for each behaviorBi ∈ B,
the robot should be able to estimatePrB(Oi = o|Pi) for each
object o ∈ O. The next section describes the two learning
algorithms used to solve this task.

C. Learning Algorithms

Two learning algorithms were used to solve the task of
object recognition: Multinomial Näıve Bayes (a Bayesian



probabilistic model) and k-Nearest Neighbors (a lazy distance-
based learning algorithm).

1) Multinomial Näıve Bayes:The first learning algorithm
used in this study was the Multinomial Naı̈ve Bayes (MNB) al-
gorithm, which falls under the family of probabilistic models.
MNB is commonly used for sequence classification tasks and
has found wide applicability in natural language processing,
bioinformatics, and more [23].

Under the MNB model, each sequencePi is represented as
a vectordi = (x1

i , . . . , x
|V |
i ) of counts whereV is the vocabu-

lary and eachxt
i ∈ {0, 1, 2, . . .}. Eachxt

i indicates the number
of times wordwt occurs in the sequencePi. For example, if
the sub-sequenceabappears 50 times in the sequence, thenxab

i

= 50. Given this representation, the task of the MNB model
is to assign the correct object labelOi given a proprioceptive
sequencePi. Given model parametersPr(wt|Oj) and object
prior probabilitiesPr(Oj), MNB computes the most likely
label for a data pointdi in the following way:

O∗(di) = argmax
j

Pr(Oj)Pr(di|Oj)

= argmax
j

Pr(Oj)

|V |∏

t=1

Pr(wt|Oj)
n(wt,di)

where n(wt, di) is the number of occurrences of wordwt

in sequencePi as specified in the feature vectordi. The
probabilitiesPr(wt|Oj) and Pr(Oj) are estimated from the
available training data using maximum likelihood with a
Laplacian prior (see [23] for details). To compute the feature
vectordi for each sequencePi, we used k-gram features with
k = 2. Hence, the vocabularyV consisted of all possible single
and double letter combinations. With 36 states in the SOM,
this corresponds to a feature vector of length36+362 = 1332.

2) k-Nearest Neighbors:K-Nearest Neighbors (k-NN) is
a distance-based algorithm which does not build an explicit
model of the training data [24, 25]. Instead, given a test data
point, it simply finds thek closest neighbors and outputs a
prediction, which is a smoothed average over those neighbors.
In this studyk was set to 3.

The k-NN algorithm requires a distance measure, which
can be used to compare the test data point to the training
data points. Since each data point in this study is represented
as a sequence over a finite alphabet, the Needleman-Wunsch
global alignment algorithm [26, 27] was used, which can
estimate how similar two sequences are. While normally used
for comparing biological or text sequences, the algorithm is
applicable to other situations that require a distance measure
between two strings. The algorithm requires a substitution
cost to be defined over each pair of possible sequence tokens,
e.g., the cost of substituting ‘a’ with ‘b’. Since each token
represents a state on a Self-Organizing Map, the cost for each
pair of tokens was set to the Euclidean distance between their
corresponding SOM states in the 2-D plane.

These two learning algorithms were selected because they
utilize the sequence information in dramatically different
ways. The MNB model discards nearly all temporal informa-

TABLE I

OBJECTRECOGNITION ACCURACY USINGPROPRIOCEPTIVEFEEDBACK

Behavior k-NN Multinomial Näıve Bayes

Lift 64.8 % 36.8 %
Shake 15.2 % 17.0 %
Drop 45.6 % 21.8 %
Crush 84.6 % 65.2 %
Push 15.4 % 10.4 %

Average 45.1 % 30.2 %

tion, while the k-NN model utilizes this temporal information
exclusively. The ultimate effect is that the MNB model em-
phasizes the attributes of each proprioceptive sequence, while
the k-NN model emphasizes the relationship of events within
that sequence.

V. RESULTS

A. Object Recognition Results

In the first experiment, the robot is tested on how well it can
estimate the object in the interaction,Oi, given the recorded
proprioceptive informationPi, i.e., the robot predicts the class
of a novel data point,(Bi, Oi, Pi), given only the torque
data sequencePi ∈ Ali . Given a test data point, the robot
predicts the object class,o, that maximizesPr(Oi = o|Pi).
The performance is estimated using 10-fold cross-validation,
i.e., the set of data points(Bi, Oi, Pi)

N
i=1, where N = 2500, is

split into ten folds. During each of the ten iterations, nineof
these folds are used for training the k-NN and Bayesian models
and the remaining fold is used for evaluation. The performance
of the model is reported in terms of the percentage of correct
predictions (the accuracy) where:

% Accuracy =
# correct predictions

# total predictions
× 100

Table I shows the performance of the k-NN and Bayesian
models on this task when evaluated with 10-fold cross-
validation. The accuracies for each individual behavior are also
shown. As a reference, a chance predictor would be expected
to achieve(1/|O|) × 100 = 2.00% accuracy (for|O| = 50
different objects).

Both the k-NN and Bayesian models perform substantially
better than chance. Table I also shows that performance
varies depending on the behavior performed on the object.
Recognition is most accurate with thelift andcrushbehaviors,
while theshakeandpushbehaviors are much less successful.
The k-NN model generally outperforms the Bayesian model,
with the exception of theshakebehavior, for which the two
models were not significantly different. This difference in
performance implies that the overall structure of the sequence
is generally more important than the distribution of SOM states
throughout the sequence.

The primary reason the performance varied so dramatically
between the five interactions is that each interaction implicitly
captured different object properties, some of which may be
better suited for the task object recognition than others. For



example, thelift behavior implicitly captures the mass of the
object. Thecrushbehavior, on the other hand, indirectly cap-
tures some geometric properties as well as some information
regarding the compliance of the object (e.g., the nerf football
object can be compressed, while the wooden block cannot).
The way in which these behaviors capture different properties
of the objects implies that combining the predictions of several
behaviors performed on a test object could improve the robot’s
recognition accuracy.

B. Recognition using Multiple Behaviors

The robot is also evaluated on its ability to recognize objects
based on data from multiple interactions. The predictions of
each interaction are combined in two different fashions –
one which weighs the predictions of each behavior equally,
and another which weighs the predictions of each behavior
according to the behavior’s overall accuracy. Let{Pi}

M
i=1 be

a set of proprioceptive sequences generated from the same
object but each coming from a different interaction (e.g.,
P1 may be the proprioceptive sequence when the object is
lifted, while P2 may be the sequence when the object is
subsequently dropped). In the first scenario, the robot will
assign the prediction to the object class,o, that maximizes∑M

i=1 Pr(Oi = o|Pi). In the second scenario, given previ-
ously estimated per-behavior accuraciesα1, . . . , α5, the robot
will assign the prediction to the object class that maximizes∑M

i=1 αiPr(Oi = o|Pi). The robot is evaluated by varying the
value for M from 1 (the default case, in which information
from only one behavior is used for prediction) to 5 (when the
information from all five exploratory behaviors is utilized).

Figure 7 shows the recognition accuracy of the k-NN model
as the robot uses multiple proprioceptive sequences. The
results show that when data from multiple interactions are
used, the recognition performance improves significantly,with
both weighted and unweighted combination of behaviors.

Figure 7 also plots the accuracies of the best and the worst
combinations of behaviors, shown as the dotted lines. For ex-
ample, when only 2 behaviors are performed, the combination
of the lift and crush behaviors achieves accuracy of around
92%, while performingshakeandpushachieves only around
15%. This is to be expected given the results in Table I since
some behaviors are far more informative about the identity
of the object than others. For example, theshakebehavior
is extremely unreliable in recognizing the object. Therefore,
when using all 5 behaviors, and combining their predictions
with equal weights, the recognition accuracy is still lower
than the best possible combination of 2, 3, and 4 behaviors.
The intelligently weighted combination of the predictions,
however, improves upon the unweighted combination in nearly
every case. Most notably, combining the predictions of all 5
behaviors and weighing them based on the performance of
each behavior results in an accuracy of93.6%, which is better
than any other possible combination of behaviors.

These results indicate that interactive object recognition can
provide highly accurate classification for a large set of objects,
as long as the robot is allowed to perform several interactions
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Fig. 7. Object recognition performance using proprioceptive information with
k-Nearest Neighbor as the number of interactionsM with the test objects
is varied from 1 (the default, used to generate Table I) to 5 (applying all
five behaviors on the object). The blue line shows the performance of the
intelligently weighted algorithm, while the red line shows the performance
of the unweighted algorithm. The four dotted lines indicate the performance
of each of the two algorithms given either the best or the worstpossible
combination of behaviors for each value ofM . For example, when using
only 2 behaviors, performing thelift and crush behaviors achieves accuracy
of around92%, while performingshakeandpushachieves only around15%.
Overall, with all five behaviors, the robot’s object recognition accuracy is
93.6%.

with the object and combine the resulting predictions in an
intelligent manner. As described in Section II, several studies
have found that infants and animals also use stereotyped
exploratory behaviors when faced with a new object [7].
Furthermore, some animals use almost their entire behavioral
repertoire to explore a previously unseen object [8]. These
observations lend further credence to our approach.

VI. CONCLUSION AND FUTURE WORK

This paper presented a method for proprioceptive-based
object recognition. The robot in this study interacted with
50 different objects by applying five different behaviors on
them: lift , shake, drop, crush, andpush. The robot represented
the proprioceptive feedback as a sequence of the most highly
activated nodes in a Self-Organizing Map. Using machine
learning algorithms designed to work on sequential data, the
robot was able to recognize the object in the interaction signif-
icantly better than chance. Furthermore, as multiple behaviors
are performed on the objects, the robot was able to combine
multiple predictions, which resulted in recognition accuracy of
over90%. The robot was also able to estimate the reliability of
each behavior for the given task and, thus, weigh predictions
from different behaviors accordingly, achieving an even higher
recognition rate.

These results indicate that traditional vision-based object
recognition systems for robots can be further improved by
using proprioceptive feedback as an additional modality. In
particular, incorporating other modalities is important for
robots because their visual system suffers from the same



limitations as the human visual system. For example, using
vision alone, one cannot tell the difference between a wooden
ball and a plastic ball that look identical (e.g., painted inthe
same color). Hence, interactive object recognition (as opposed
to passive object recognition) can be used by the robot in many
situations to resolve perceptual ambiguities about objects.

There are several promising directions for future work.
First, other methods for dimensionality reduction (e.g., vector
quantization, or Spatio-Temporal Isomap, as used in [28])
can be applied in order to find meaningful patterns in the
robot’s proprioceptive sensory stream. Another direct line for
future work is to combine proprioception with information
from other modalities (e.g., audio, visual movement, etc.). The
representation used in this work has already shown promise
when applied to audio sensory data for the tasks of object
recognition [5] and object categorization [29]. Although only
proprioceptive information was used in this paper, both propri-
oceptive and auditory sensory feedback were recorded during
the data collection process. The predictions from an auditory
and a proprioceptive model could be combined in order to
achieve potentially greater recognition accuracy and greater
robustness to environmental changes. Some preliminary results
indicate that integration of audio and proprioception indeed
results in an even better object recognition accuracy.
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