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Abstract— This paper proposes a method for interactive recog-
nition of household objects by a robot using proprioceptive
feedback. In our experiments, the robot observed the changes
in its proprioceptive stream while performing five exploratory
behaviors (lift, shake, drop, crush, and push) on 50 common
household objects (e.g., bottles, cans, balls, toys, etc.). Sifieally,
the robot used its own joint torques recorded during each
interaction to recognize the object that it was manipulating. The
results show that the robot can learn to recognize objects solely
from the proprioceptive information obtained while interacting
with them. Furthermore, by applying multiple behaviors on
the same object, the robot was able to significantly improve
its object recognition accuracy. Overall, the results show that
proprioception should be considered as an important source of
information for object recognition and object manipulation tasks.

I. INTRODUCTION

Traditionally, most object recognition systems used in
robotics have relied heavily on computer vision techniqué@g-l 1-t TgehfoF’Ot US(;? i”f ffhistbStIlIstg_ Sft‘OW” hefrgopegmpi“t% 't"t?]
. . . exploratory behavior on theert rootball object, one 0O opjects tha e
[1, 2]. G|vep a clear view of an_object, such systems C8bhot has experience with.
achieve a high degree of recognition accuracy, but stillesuf
from several important limitations. For example, a compute

vision system cannot distinguish between a heavy objechangase, the set of nodes in the map. The robot was tasked with
light object that otherwise look identical. Nor can a congput recognizing the object in the interaction using propridiep
vision system recognize an object that a robot is manimdatigata alone. Two different learning algorithms, designed to
outside its field of view. The human visual system sufferstfro\york on sequence data, were evaluated: Multinomiaivila
these same limitations. Studies in cognitive psychologyehagayes (MNB) and k-Nearest Neighbors(k-NN). The results
repeatedly shown that other sensory modalities are negessggicate that the robot can learn to recognize objects wolel
in order to resolve perceptual ambiguities about objects.(€ from the proprioceptive information observed while intetiag

is the object heavy or light?) [3, 4]. Hence, there is a gregfith them. Furthermore, by applying multiple behaviors on
need to integrate other sensory modalities into robotseahj the same object, the robot was able to significantly improve

recognition models. its object recognition accuracy.
This paper investigates the use of proprioceptive feedback
as a source of information about objects that a robot interac Il. RELATED WORK

with. We build upon our previous work on acoustic object . .

recognition [5, 6] by showing that the model used for the repr: PSychology and Cognitive Science

resentation of acoustic information in [5] is also very effee The ways in which humans use proprioceptive information
for representing proprioceptive feedback in the form ohjoi is a well-studied topic in psychology and cognitive science
torque values. In this work, the robot interacted with 5Cegb§ Some studies have investigated human integration of propri
using five different behaviorslift, shake, drop, crushand oception with other sensory modalities, such as Seipal’s
push. The robot represented the proprioceptive informatiostudy [3], in which toddlers were presented with a spongé tha
from each interaction as a sequence of state activationswas deceptively painted as a rock. All of the toddlers believ
a Self-Organizing Map (SOM). The SOM allows the robothat the object was a rock until the moment they touched
to turn the high-dimensional proprioceptive informationta it or picked it up. While the children could recognize the
a sequence of tokens drawn from a finite alphabet - in thitbject quickly with vision alone, proprioceptive infornt



was found to be necessary in order to resolve ambiguities
about the object at hand.

In a similar study, Helleret al. [4] studied how a mirror
could create conflicting visual and proprioceptive infotioa.
Subjects were asked to identify raised letters by touchiegnt
and viewing them through a mirror that inverted the letters
vertically (e.g. a ‘p’ became a ‘b’). More than half of the 8m
the subjects had to use proprioceptive data to correctiytifye
the letters. Thus, proprioceptive feedback can be moreulisef
than vision in object recognition tasks. This implies thaiats
that learn to recognize objects using proprioceptive infut
addition to other modalities) would be better suited for lamm
inhabited environments such as our homes and offices.

Several studies have shown that both animals and humans/
use stereotyped exploratory behaviors to extract infoionat
about objects [7]. One study has even suggested that some
birds use almost their entire behavioral repertoire to esph
novel object [8]. Presumably, a robot may also interact with
objects using a stereotyped behavioral sequence in order to|
obtain better object recognition accuracy. It is, howewver
immediately clear which behaviors a robot should utilizlisT
paper explores the usefulness of five exploratory behadowrs
proprioceptive recognition.

B. Robotics

Object recognition is not a novel problem — it has been
studied heavily in the visual domain and moderately in the &
auditory domain. There has been very little previous work
dealing exclusively with proprioceptive object recogoiiti
One such example is the work by Nataeal. [9] in which
proprioceptive data captured from the robot's hand was used
to recognize objects. One of seven objects was placed in the

robot's hand, whereupon the hand would close until it redch@ poher an object would make noise when picked up after only
a preset torque limit. The resulting joint angles on the hango\ing at it). They found a much higher correlation between

were then reqd -and.fed to a self-or_ganizing map. Th? mk\%ual and proprioceptive information than between viarad
was able to distinguish between objects of different sizes E‘uditory information.

well as between objects of similar size but different rigidi Proprioception was used in a study by Metgal. [17]

In other related work, Kgbust al_. [10.’ 11] have demon-. to bootstrap a robot’s ability to work with objects. While
strated_a methqd for the direct estimation of seyeral_ plat}'su:[he robot primarily relied on vision to complete its task
properties of objects (e.g., mass and moment of Iner-“af)S@hédetermining the principal axis of an object and its relatio

properties were then used to recognize objects as being O%how the object rolls), the use of proprioception also dide

of three known objects [10]. It is important to note tha{he robot in locating the obiect. This shows that prooridi
objects rigidly grasped by the robot behave like additionﬁlan be arl1 effect:vcg tool foJr us.e b;/ a ro\tl)Vot proprdicep
links. Thus, methods for estimating dynamic models of the X

robot’s body (see [12, 13, 14, 15] for a representative sa)npt
can also be applicable when estimating an object’s mass
moment of inertia. In contrast, this paper explores how

general sequential representation for high-dimensiomabary et al. [19] have demonstrated how basic interactions can be

data, coupled with standard machine Iearnipg aIgorithrgs, Cused by a robot to learn how objects would move after a certain
be U.SEd by the robot to learn to recognize the objects IEhavior was performed on them. Also, Takamwtaal [20]
mar:_lpgl?test.hThus, the metgoﬂ_ described gi're an also ngd a robotic arm to shake nine different objects, andzatli
applied to other sensory modalities (e.g., audition [S]). the sounds generated by this shaking behavior to group the

. Nakamura_et aI_. [16] descnb(_a a robot th_at used proprioce objects into three categories (rigid objects, paper, antemwa
tion along with video and audio information when mteragtlnbotﬂes)

with objects. They investigated whether a robot could infer
object properties grounded in one modality from anotheg.(e.

(. k.
Fig. 2. The 50 objects used in this study (not shown to scale).

e

There has also been some work in active robot object
ecognition. Fitzpatriclet al. [18] studied a robot that actively
308med about objects by initiating interactions with them
iflstead of passively observing and reacting. Similarlytaha



B. Objects

Before After The robot interacted with a set of object®, which consists

of 50 common household objects, including: cups, bottles,
boxes, toys, etc. (see Fig. 2). The objects were made ofusrio
substances such as metal, plastic, paper, foam, and wood.
Objects were selected using three criteria: 1) they must be
graspable by the robot; 2) they must not break or permanently
deform when the robot interacts with them; and 3) they must
not damage the robot.

Lift

C. Behaviors

Shake

The set of behaviorsB, consists of five exploratory be-
haviors that the robot performs on each objddt, shake
drop, crush andpush Behaviors were selected based on their
expected ability to produce unique and useful information.
For example, thdift and crush behaviors were expected to
yield information related to the weight and compliance & th
objects, respectively. The behaviors were implementedh wit
the Barrett WAM API. Fig. 3 showseforeand after images
for each of the five exploratory behaviors. The raw proprmce
tive data (joint torques) was recorded for the duration afhea
interaction (start to end). Each object was placed in (rb)gh
the same configuration (i.e., position and orientationdmptd
behavior execution. Due to human error, however, there was
still variation of the grasp contact points, as well as thetaot
points with the object during theush and crush behaviors
across multiple trials with the same object.

Drop

Crush

Push

IV. LEARNING METHODOLOGY
A. Feature Extraction

During the execution of each behavior, the robot records
Fig. 3. Beforeandafter snapshots of the five behaviors used by the robothe joint torque values for all 7 joints of the left arm oveeth
time of the interaction. The first step in the feature extoarct
routine is to noise filter the raw joint torque values recarde
This paper describes a method for interactive object recoddring each interaction. The dotted line in Figure 4 shows
nition using only proprioceptive data. The method is testdtie joint torque values for J2 (shoulder joint) as the robot
using a large-scale experimental study with 50 househdlfis the dumbbell object. As can be seen from the figure, the
objects. We build upon our previous work on acoustic objecaw values are somewhat noisy and contain spike readings.
recognition [5, 6] by showing that the model utilized for théfo reduce this noise, the raw data is filtered using a filter
representation of acoustic information is also very effect of width 10 which checks for data points that lie more than
for proprioceptive information. Furthermore, we improveet 3 standard deviations away from the window median. Any
object recognition model developed in [5] by allowing theuch values are thrown out and replaced with the window
robot to combine predictions from multiple behaviors on theedian. The time series is then smoothed using a moving-

test object in an intelligent manner. average filter of size 10. The solid line in Figure 4 shows the
resulting smoothed joint-torque values after the noigerfilg
I1l. EXPERIMENTAL SETUP procedure is performed.

The proprioceptive feedbacl;, from thei*" interaction is
represented as a sequence of states on a Self-Organizing Map
(SOM) [21], which is one of several ways to quantize data

An upper-torso humanoid robot which has two 7-d.o.fectors into discrete tokens or clusters. This represemntés
Barrett WAMs for arms and two 3-finger Barrett hands wasbtained as follows: lefl; = [t},t5,...,¢},] be the noise-
used to perform this study. The robot is controlled in remlei filtered joint torque values for some given interactionvhere
from a Linux PC at 500 Hz over a CAN bus interface. Theacht;ﬁ € R” denotes the torque values for all 7 joints at time
raw torque data was captured and recorded at 500Hz using $tep;. Given a collection of joint torque records = {T;}X .,
robot’s low-level API. a set of individual joint torque vectors is sampled and used

A. Robot
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Fig. 4. Joint torque values for the shoulder joidk) as the robot lifts the Fig. 6.  Processing the proprioception data stream: a) Theerdtered
dumbbell object. The blue line shows the raw joint torquemed using torque data for all 7 joints recorded while the robot lifte ttiumbbell object.
the robot's low-level API. The red line shows the filterednjptorques. See The horizontal axis denotes time while the color in each balicates the
the text for filter details. torque values for each particular joint (white indicates Malues while black
indicates high values); b) The sequence of states in the S@Msponding to
the torques recorded during this interaction, obtainedragichR” column
vector of torque data is mapped to a node in the SOM. The lengtheo
sequenceP; is I¢, which is the same as the length of the horizontal time
dimension of the torque data shown in a). Each sequence tpj(eea A,
where A is the set of SOM nodes. ’

Joint Torque for J (in Nm)

-18

Set of Joint-Torque records

Sampled Vectors:

] ﬁ E T function is defined M(t}) — p}, wheret’ € R” is the input
torque vector ang is the node in thelSOM with the highest
activation value given the current inptit Hence, ea;:h torque

record T; is represented as a sequendg, = pip5...p,

wherep;. € A, A is the set of SOM nodes, and is the

temporal length of the torque recofy, as shown in Fig. 6.

Thus, eachP; consists of a discrete sequence over a finite

alphabet. This representation reduces the dimensionafity

the proprioceptive feedback, thus affording the use ofdsieh

GHSOM machine learning algorithms designed to work on sequential

Toolbox data.

B. Data Collection

Let B = {lift, shake drop, crush push} be the set of
Fig. 5. lllustration of the procedure used to train the S2ifanizing Map | B é havi ¢ i Fi)l hh P E = h ef th
(SOM). Given a set of joint torques recorded at 500 Hz durindtipia exploratory behaviors available to the robot. For each ef t

interactions with different objects, a set of column vectiwssampled at five interactions, the robot performed ten trials with all 50
random and used as a dataset for training the SOM. Each &f teesors is in objects for a total 0b x 10 x 50 = 2500 recorded interactions.
R7 and denotes the values of the 7 joint torques at a particalat n time. . th g .
Once trained, the SOM can map any particular joint torque gardition to Du“ng the:"" trial, the rObqt recorded a data t”ple. of the form
one of the SOM's states (i.e., the most highly activated state (B;,0;, P;), whereB; € B is the executed behaviof); € O

is the object in the current interaction, aftl = pp} ... p},

is the sequence of most highly activated SOM nodes as the
as an input training dataset for a SOM. In other words, theteraction with the object unfolds.
SOM is trained with input datapoint§ € R” where each data  Given this data, the task of the robot is to learn a model such
point denotes some particular recorded joint torque valaes that given a proprioceptive sequené®, the robot can estimate
all 7 joints. The Growing Hierarchical SOM toolbox was usethe object(;, that generated the sequence. Put in another way,
to train a 6 by 6 SOM (i.e., 36 total states) using the defawdiven a proprioceptive sequené, for each behavioB; € B,
parameters for a non-growing 2-D single layer map [22]. Duée robot should be able to estimdte 5 (O; = o|P;) for each
to memory constraints, only/5 of the available input data objecto € . The next section describes the two learning
pointst;'- € R” were sampled at random and used for traininglgorithms used to solve this task.
Figure 5 gives a visual overview of the training procedure.

After training the SOM, each torque record; = C. Learning Algorithms

[t},t5,...,t},] is mapped to a sequence of SOM states, by Two learning algorithms were used to solve the task of
mapping each vectd@- € R7 to a state on the map. A mappingobject recognition: Multinomial Nae Bayes (a Bayesian



TABLE |
OBJECTRECOGNITION ACCURACY USINGPROPRIOCEPTIVEFEEDBACK

probabilistic model) and k-Nearest Neighbors (a lazy dista
based learning algorithm).

1) Multinomial Nave Bayes:The first learning algorithm [Behavior | kNN | Multinomial Nave Bayes
used in this study was the Multinomial Na Bayes (MNB) al- Lift 648 % 36.8 %
gorithm, which falls under the family of probabilistic mdde Shake || 15.2 % 17.0 %

MNB is commonly used for sequence classification tasks and Drop 45.6 % 21.8 %
has found wide applicability in natural language procegsin Crush | 84.6 % 65.2 %
bioinformatics, and more [23]. Push 15.4 % 10.4 %

Under the MNB model, each sequenkgis represented as Average || 45.1 % 30.2 %
avectord; = (z},... ,xivl) of counts wherd/ is the vocabu-

lary and each:! € {0,1,2,...}. Eachz! indicates the number
of times WOI’dwt occurs in the Sequen(ﬁ_ For exampie’ if tion, while the k-NN model utilizes this temporal informaxhi

the sub-sequenab appears 50 times in the sequence, thgh exclusively. The ultimate effect is that the MNB model em-
= 50. Given this representation, the task of the MNB mod@hasizes the attributes of each proprioceptive sequertuée w
is to assign the correct obiect labe} given a proprioceptive the k-NN model emphasizes the relationship of events within
sequenceP;. Given model parameter®r(w;|O;) and object that sequence.
prior probabilities Pr(O;), MNB computes the most likely

label for a data point/; in the following way:

O*(dz) = argmax Pr(O])Pr(dliOJ)
J

V]

V. RESULTS
A. Object Recognition Results

In the first experiment, the robot is tested on how well it can
n(we.ds) estimate the object in the interactiof;, given the recorded
= argmax Pr(0;) HPT(“’”OJ') o proprioceptive informatior®;, i.e., the robot predicts the class
! t=1 of a novel data point(B;, O;, P;), given only the torque
where n(wy, d;) is the number of occurrences of word;  data sequenc#; € A!'. Given a test data point, the robot
in sequenceP; as specified in the feature vectd;. The predicts the object class, that maximizesPr(O; = o|P).
probabilities Pr(w|O;) and Pr(0;) are estimated from the The performance is estimated using 10-fold cross-validati
available training data using maximum likelihood with 3ae_ the set of data pointsB;, O;, )N |, where N = 2500, is
Laplacian prior (see [23] for details). To compute the featu split into ten folds. During each of the ten iterations, nisfe
vectord; for each sequencg;, we used k-gram features withthese folds are used for training the k-NN and Bayesian nsodel
k = 2. Hence, the vocabulafly consisted of all possible single and the remaining fold is used for evaluation. The perforcean
and double letter combinations. With 36 states in the SOMf the model is reported in terms of the percentage of correct
this corresponds to a feature vector of lengéh-362 = 1332. predictions (the accuracy) where:
2) k-Nearest NeighborsK-Nearest Neighbors (k-NN) is
a distance-based algorithm which does not build an explicit % Accuracy = —
model of the training data [24, 25]. Instead, given a tesadat # total predictions
point, it simply finds thek closest neighbors and outputs a Table | shows the performance of the k-NN and Bayesian
prediction, which is a smoothed average over those neighbonodels on this task when evaluated with 10-fold cross-
In this studyk was set to 3. validation. The accuracies for each individual behavieralso
The k-NN algorithm requires a distance measure, whicthown. As a reference, a chance predictor would be expected
can be used to compare the test data point to the trainitegachieve(1/|O]) x 100 = 2.00% accuracy (for|O| = 50
data points. Since each data point in this study is repredendifferent objects).
as a sequence over a finite alphabet, the Needleman-WunscBoth the k-NN and Bayesian models perform substantially
global alignment algorithm [26, 27] was used, which cahetter than chance. Table | also shows that performance
estimate how similar two sequences are. While normally usedries depending on the behavior performed on the object.
for comparing biological or text sequences, the algoritem Recognition is most accurate with tli# andcrushbehaviors,
applicable to other situations that require a distance measwhile the shakeand pushbehaviors are much less successful.
between two strings. The algorithm requires a substitutiorhe k-NN model generally outperforms the Bayesian model,
cost to be defined over each pair of possible sequence tokewigh the exception of theshakebehavior, for which the two
e.g., the cost of substituting ‘a’ with ‘b’. Since each tokemodels were not significantly different. This difference in
represents a state on a Self-Organizing Map, the cost fdr egerformance implies that the overall structure of the sagae
pair of tokens was set to the Euclidean distance between thisigenerally more important than the distribution of SOMesa
corresponding SOM states in the 2-D plane. throughout the sequence.
The primary reason the performance varied so dramatically
These two learning algorithms were selected because thmtween the five interactions is that each interaction icitpfi
utilize the sequence information in dramatically differencaptured different object properties, some of which may be
ways. The MNB model discards nearly all temporal informadetter suited for the task object recognition than othews. F

# correct predictions

x 100




example, thdift behavior implicitly captures the mass of the 100
object. Thecrushbehavior, on the other hand, indirectly cap- e ———————

tures some geometric properties as well as some informatior %[ - g 1
regarding the compliance of the object (e.g., the nerf falbtb sol
object can be compressed, while the wooden block cannot).
The way in which these behaviors capture different properti
of the objects implies that combining the predictions ofesal/
behaviors performed on a test object could improve the febot
recognition accuracy.
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B. Recognition using Multiple Behaviors 4or

The robot is also evaluated on its ability to recognize digjec 3of
based on data from multiple interactions. The predictiohs o
each interaction are combined in two different fashions — ez —E—Unwerighéed Cobmbif?ation’
one which weighs the predictions of each behavior equally, L. ‘ —©— Weighted combination
and another which weighs the predictions of eacjfcj behavior " Number of Behaviors with Test Object
accordlng to th_e behawors overall accuracy. I{GRL i=1 be Fig. 7. Object recognition performance using propriocepinformation with
a set of proprioceptive sequences generated from the satmearest Neighbor as the number of interactioWis with the test objects
object but each coming from a different interaction (e_gi_§ varied from 1 (the default, used to generate Table 1) to ipl§ang all
P be th . ti h th bi tfive behaviors on the object). The blue line shows the perfooeeof the
Py may .e e proprioceptive sequence when the 0_ jec j.{&lligently weighted algorithm, while the red line showsetperformance
lifted, while P, may be the sequence when the object i the unweighted algorithm. The four dotted lines indicate performance
subsequently dropped). In the first scenario, the robot will egCh of thef g"";] a'9°fit?m5 gi‘;]e“ ?ithe&thg best or tlhe Wr?m*Sib'_e

. I . P combination of behaviors for each value . FOr example, wnen using
asi/'[gn the prediction to the object Cla%'thfit m_aX|m|zes ~only 2 behaviors, performing thift and crush behaviors achieves accuracy
> =1 Pr(O; = o|P;). In the second scenario, given previof around92%, while performingshakeandpushachieves only arounti5%.
ously estimated per-behavior accuracigs. . ., as, the robot Overall, with all five behaviors, the robot's object recagm accuracy is

. . L . . 93.6%.
will assign the prediction to the object class that maximize” """

Zi]‘il a;Pr(O; = o|P;). The robot is evaluated by varying the

value for M from 1 (the default case, in which informationyith the object and combine the resulting predictions in an
from only one behavior is used for prediction) to 5 (when thgytelligent manner. As described in Section II, severatis
information from all five exploratory behaviors is utilized  pave found that infants and animals also use stereotyped

Figure 7 shows the recognition accuracy of the k-NN modekploratory behaviors when faced with a new object [7].
as the robot uses multiple proprioceptive sequences. Tiagrthermore, some animals use almost their entire betalvior
results show that when data from multiple interactions afgpertoire to explore a previously unseen object [8]. These

used, the recognition performance improves significamiiih  observations lend further credence to our approach.
both weighted and unweighted combination of behaviors.

Figure 7 also plots the accuracies of the best and the worst VI. CONCLUSION AND FUTURE WORK
combinations of behaviors, shown as the dotted lines. For ex This paper presented a method for proprioceptive-based
ample, when only 2 behaviors are performed, the combinatiobject recognition. The robot in this study interacted with
of the lift and crush behaviors achieves accuracy of aroun80 different objects by applying five different behaviors on
92%, while performingshakeand pushachieves only around them:lift, shake drop, crush andpush The robot represented
15%. This is to be expected given the results in Table | singhe proprioceptive feedback as a sequence of the most highly
some behaviors are far more informative about the identiactivated nodes in a Self-Organizing Map. Using machine
of the object than others. For example, thleakebehavior learning algorithms designed to work on sequential dat, th
is extremely unreliable in recognizing the object. Therefo robot was able to recognize the object in the interactionifig
when using all 5 behaviors, and combining their predictiorisantly better than chance. Furthermore, as multiple biehsv
with equal weights, the recognition accuracy is still loweare performed on the objects, the robot was able to combine
than the best possible combination of 2, 3, and 4 behaviomsultiple predictions, which resulted in recognition acy of
The intelligently weighted combination of the predictipnsover90%. The robot was also able to estimate the reliability of
however, improves upon the unweighted combination in geagach behavior for the given task and, thus, weigh predistion
every case. Most notably, combining the predictions of all fsom different behaviors accordingly, achieving an eveghler
behaviors and weighing them based on the performancere€tognition rate.
each behavior results in an accuracyddf6%, which is better ~ These results indicate that traditional vision-based aibje
than any other possible combination of behaviors. recognition systems for robots can be further improved by

These results indicate that interactive object recogmitian using proprioceptive feedback as an additional modality. |
provide highly accurate classification for a large set okotg, particular, incorporating other modalities is importardr f
as long as the robot is allowed to perform several interastiorobots because their visual system suffers from the same

% Recognition Accuracy




limitations as the human visual system. For example, usifig] J. Hollerbach and C. Wampler, “The calibration index aaslonomy
vision alone, one cannot tell the difference between a woode
ball and a plastic ball that look identical (e.g., paintedhe
same color). Hence, interactive object recognition (asospp
to passive object recognition) can be used by the robot inyman
situations to resolve perceptual ambiguities about object
There are several promising directions for future work.
First, other methods for dimensionality reduction (e.@¢tor
quantization, or Spatio-Temporal Isomap, as used in [2§]k;
can be applied in order to find meaningful patterns in the
robot’s proprioceptive sensory stream. Another direce Ifar

future work is to combine proprioception with information

from other modalities (e.g., audio, visual movement, efithe
representation used in this work has already shown promise
when applied to audio sensory data for the tasks of object
recognition [5] and object categorization [29]. Althoughlyp

proprioceptive information was used in this paper, bottppro

oceptive and auditory sensory feedback were recorded glur
the data collection process. The predictions from an andito

and a proprioceptive model could be combined in order
achieve potentially greater recognition accuracy and tgrea

robustness to environmental changes. Some preliminanjtses
indicate that integration of audio and proprioception iede
results in an even better object recognition accuracy.
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