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Android based Object Detection and Classification:
Modeling a Child’s learning of what’s Hot/Cold
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Abstract—As part of a young child’s learning process, there
are specific items that are discovered through the embodied
experience. It’s been shown that an infant is going to using
their hands and feet to touch things and characterize how they
experienced the objects. The goal of this project is to model that
learning, by organizing the characteristics of learned objects,
allowing a prediction of what new similar objects might be like.
Success would be the software/robot determining if a object is
going to be hot or code based on previous experience.

Index Terms—Self Organizing Map, SOM, OpenCYV, Android,
Developmental Robotics, AI

I. INTRODUCTION

HE concept is to attempt to model a child’s learning

process, when related to predicting what new objects are
like based on previously learned objects. A object is defined
for this project as something like a ice cream cone or a pizza.
It’s something that consists of color and a specific set of
environmental traits (hot/cold, luminous, etc). This experiment
takes in those traits via imagery and environment sensor data
to define what an object is like. That data is then used to form
a model of relationships of similar objects that can be later
compared to a new object. When a new object is discovered,
the prediction process would try to fit it to an already learned
object. Even if the new object isn’t predicted correctly, there
is still a valid path in it’s process to learn that new objects
characteristics. If that path is taken, the algorithm performs a
confirmation step where a correction could be made to then
correctly learn that new object’s characteristics. This concept
is relying on using multiple sensor data sources to decrease
error in the learning/predicting algorithm, but may still run
into cases where the noise is to high to get an understanding
of what is being analyzed. Understanding this noise is going to
be part of the experimentation process and may limit the initial
project inputs to controlled background colors and images that
appeal to the available image detection algorithms.

This concept also strives to provide the user, without an
embodied robot, a method for doing sudo embodiment through
the use of hand sensors and eye camera. Even though only a
subset of sensors are being used, the design allows for further
enabling of more sensors as needed to enhance/supplement the
existing sensory data. Sensors like a camera could be adjusted
to also enable video input instead of the initial still shots
currently planned. The flexibility in this concept is rooted
in the open standards based communication protocols and
libraries used to leverage well abstracted hardware.

This project is targeted to students who have simple tech-
nology like their cell phone and micro-controller kits available
to run experiments on. With the end goal of providing a

framework that allows object and sensory input learning to be
organized with relationships. This framework could be then
used to take a Android based device and make it a brain for a
robot. There have been some attempts to use a Android device
in a cellbot[6] as shown in Figure 1, but the cellbots seem to
rely on preprogrammed functionality. By using the concepts
in this project, the cellbot would become a powerful platform
for prototyping autonomous movement.

Fig. 1.

An example of a Android based robot.[6]

Based on initial research this looks like the first attempt
at utilizing the computer vision and neural networks on
a Android platform. The new application would processes
inbound sensory data and create the necessary predictions
for learning of new objects. Since this is an resource intense
process it should have some interesting results and opportunity
for further study (discussed below).

II. CHANGES FROM PROPOSAL

One of the first complications while creating the data
processing algorithms was the embodiment principle and the
assumptions required to “work around” not having a robot
that is self aware. For example, if the sensors take in input
by using a simulated arm that is manually moved to touch
an object, the visual image is going to have the arm in the
picture. Without actively removing that arm from the picture
it’s going to bias the image processing results at varying levels
based on the amount and color of the arm in the picture. So to
resolve this for this experiment, the sensor data was gathered
separately from the image to allow a clean image to be fed
into the processing algorithm.

Anther issue was related to the amount of test data and the size
of the SOM. When a large SOM lattice(matrix) is allocated,
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the amount of time required to calculate the weighted distances
and find the best matching unit (BMU) grows exponentially.
The BMU is calculated by looking at surrounding nodes and
figuring out the best match for the input vector being located
(The concept is discussed in more detail later on). This wasn’t
an issue until loading the application onto a phone and not
having any optimization for the floating point matrix math. To
work around this issue small data sets were used and calculated
with shorter training intervals. This provides a reasonable
set of match results and shows that the algorithms work
correctly. However the PC based test applications (developed
to verify the algorithms) can run at full speed and have been
demonstrated with long training intervals and large data sets.
Those results will be discussed below and some concepts are
discussed describing the optimizations that could be performed
on the mobile embedded platform by relocating some of the
math code to gain a performance improvement.

The last item relates to some really good feedback in the
proposal review noting something overlooked. It related to
objects that were pictured in the proposal as the test cases.
Most of those objects are containers with the contents having
specific properties. So there was a unintended assumption that
all those objects would inherit all the properties. So if a picture
is taken of a bowl of soup, the learned concept is that a bowl
of soup can be hot or cold, not that soup could be hot or
cold. To work around this issue a new set of objects (mostly
non-food based) and a process to test them is explained in the
experiment section. It looks at individual items with limited
noise in the image background and combines that with other
sensor inputs. Since this experiment is centered around the
processing and identification of similar objects, it’s assuming
a simple case of image inputs. Obviously there are much more
complicated scenarios where the end goal would be to extract
specific objects out of a noisy picture and then relate those
to similar or exact learned property that’s recalled based on
inputting the object into the learning algorithm.

III. EXISTING RESEARCH

A few papers/projects have approached learning using Self-
Organizing Maps (SOM). This project is modeled partly after
”A System for Learning Basic Object Affordances using a
Self-Organizing Map” [4], “Bringing up robot: Fundamen-
tal mechanisms for creating a self-motivated, self-organizing
architecture”[8], and ”Sense of Touch in Robots With Self-
Organizing Maps”[13]. Those papers looks at the effectiveness
of the SOM and how it performs learning. It also evaluated
the effectiveness of the different training sets. To deviate
slightly from what that paper was investigating, this project
eliminates the predefined training set and focuses on the fact
that over time the robot would develop it’s own training set
that would evolve to be effective at making object affordances.
This paper’s experiments are partially verification that a larger
scale learning using the suggested approach is practical.

The best examples for understanding the SOM concepts
were found on a SOM resource website[1] and the original
paper[18] [11]. The SOM sudo code was also leveraged from
the SOM resource website [12]. One of the key limitations of

the SOM design was the matrix size and the processing power
required as more items are added to the input vectors of the
SOM. Since it seemed that a system that is constantly learning
and adding more input vectors would need to dynamically
grow the matrix that holds each of the relationship nodes.
New concepts for optimizing this and segmenting parts of the
SOM into processable pieces, quickly becomes a major issue.
Another relevant experiment, found that SOMs were efficient
in forming relationships in images when presented with the
applicable image properties [5]. The research followed the
Kohonen engineering applications paper[16] that suggests the
application of a SOM to the Computer Vision area. That
Kohonen paper specifically covered the ways to approach dis-
tilling the correct data out of imagery in order to organize and
learn using a SOM. The example implementations provided
an overview into the usage of a SOM based on the concepts
presented in the original Kohonen paper [18] and applied
them to a couple different test scenarios with lots of data.
This project leveraged the image processing concepts in that
research and extracted the relevant texture and uniqueness that
could be distilled into a format that the SOM could process.
Since that research only provided a review of how the concept
was verified, this project had to take a example SOM and
implement the concepts needed to do the image processing it
discussed. So the first step was to extend the concept of SOM
input vectors beyond a single variable (just an image or just
sensor, etc), and instead generalize a data set that consisted of
normalized image and sensor data.

A similar experiment, to this paper, was done with a robot
using sound to recognize objects and a SOM to organize and
predict the current object based on the previously learned
sound representations when the object is dropped[19]. Extend-
ing on this concept, an attempt is made in this paper show the
same concept, but take in multiple different sources of sensory
input and utilize a single SOM to produce a best fit for object
similarities.

IV. APPROACH

As mentioned above in the “Changes from Proposal” sec-
tion, some challenges were found with having multiple objects
in a image. It’s fine if the goal is to learn a scene, but it
complicates the concept of having a 2-year-old child grasping
the concept of separating multiple objects within a picture and
being able to specifically select the objects. So the concept for
this experiment has been adjusted to interact with one object at
a time, in order to have a chance at recognizing new objects
based on previous experience. However during some initial
testing, it was found that the multi-object scenes should work
with this algorithm, but the relationships they form are much
more complex because of the large amount of detail being
captured.

This software application is designed to not contain any re-
lational knowledge when initially invoked. If the user chooses,
they can load a “memory” from a previous run that would
allow the robot to accelerated relearn what it had previously
experienced. This keeps the learning process closely mim-
icking that of a child. Allowing the robot to interact with
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each individual object and acquire knowledge about that object
through a set of a sensors and imagery input.

Equipment

Because of logistics related to taking the class via distances
education, this project is using simulation combined with some
sensing hardware. The main component is an Android phone
that collects sensor data and images. The sensor data comes
from an external Arduino sensor package that would normally
be attached to a robot’s hand. The sensors being used are a
one-wire temperature sensor and a resistive photo sensor. For
the experiment, the sensors would be manually placed close to
the object under study. In Figure 2, the high-level connectivity
is shown between components.

1) Design: For a project with new concepts and complexity,
there either needs to be large quantities of time or a good basis
of existing resources (source code, conceptual dialog, etc).
This project is designed around a few concepts that leverage
existing work and combine a few proposed approaches to the
problem area.

The first resource is the OpenCV library. It was ported
last year to the Android platform and provides a set of
image/video manipulation libraries that aid in doing the
calculations required. A couple core demos using a good
modular approach, allowed fast prototyping of a new concept.
Since this library is an active Open Source project and used
across multiple processing architectures, the resources for
understanding how it works were plentiful. The concepts this
project implemented were a camera preview engine to plug
into OpenCV that provided greyscale histogram and a pixel
texture processing. The end result is a general classification of
the picture using a histogram and a texturization that captures
more locational pixel density. The texture area calculation
attempts to remove light level issues and also provides more
content detail by breaking the image into nine sections and
performing the calculation in each. A histogram is a graph
of the amplitude of the number of pixels (read left(black)
to right (white)). Shown in Figure 3 is a example image w/
it’s respective histogram. For this project the histogram data
would be stored as part of each input vector that represents an
objects set of traits. The pixel texture calculation is performed
on an image as shown in Figure 4. Each section of the image
has it’s 3 channels of color broken out and each channel has
a average density calculated. This results in 27 values that
represent the color intensity/density of each section.

The second is the Self Organizing Map (SOM). A SOM is
an unsupervised self organizing multidimensional structure
of data that can be used to organize vectors of input data.

Fig. 3. Example of a image and it’s histogram[17]
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Fig. 4. When calculating the average pixel area, the image is broken into 9
sections.

During learning, a vector is presented to the SOM and has
it’s data points (weights) compared to another target node’s
weights. The calculation performed is the Euclidean distance
between a SOM node and the input data points. Depending
on the delta/error of the weights, the nodes and input vector
readjust to better alight and reduce the delta. This results in a
topology of nodes that are organized with every input vector
connection optimized for minimal distance. Shown in Figure
5 the SOM lattice (matrix) is made up of the red nodes. Each
of the green nodes are input vectors that have a relationship
to every lattice node.

There were a number of good websites and papers that
described the concept for using SOMs and as an added
benefit, there were also base utility classes written in Java
that could be adapted/ported to this application. So it seemed
like a good fit for this project. Another feature SOMs
presented was the capability to self organize as data points
are added. This seemed like the best approach for “on the
fly* decision making. Although there still is a challenge in
coming up with large data sets to aid in that initial training,
especially if accelerated learning is a requirement. Those data
sets would present a fine line between a robot’s experience
creating the data set or if it’s man made. For this project it
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Fig. 2. Highlevel connectivity between hardware components.
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Fig. 5. An example of a SOM showing the lattice nodes and input vectors[1]

is possible to start with nothing and train as items are added,
but it will take much longer. Obviously that learning process
would closer model the human learning process, but instead
of taking that path, this project tries to accelerate that learning
by using some prelearned data sets. It takes in each item from
those data sets and organizing the data to form relationships.
So it definitely isn’t doing a data search and lookup process,
it is still learning from this data, just at an accelerated rate.
Long term, having a repository for learned data could also be
valuable to deployed to new robots. Just like how this project
is accelerating the experiences of the robot. So building on
that prelearned data, the actively acquired new data can be
organized into the SOM and resulting relationships can be
shown. These relationships are the key to allowing the robot
to understand what something is similar to.

The third were concepts for gathering normalized data that
could be fed in as part of a SOM input vector organization.
These broke down into a couple areas (sensors and imagery).
These areas were selected to create a minimal/controlled
example of how the approach could work. Long term many
sources of data input should be used, since further input
options create more permutations of relationships that could
form. For this project the interpretation of the sensor data was
done by decomposing it into categories. i.e. for a temperature
sensor it didn’t really matter to get the exact temperature.
So as part of the classification of the data, it’s separated into
categories of what was cold, hot, warm, really cold and really
hot. This is then normalized and fed as an input to the SOM
when organizing around a new input vector. For the image
data it was done slightly different, there were sets of values
that were normalized based on the maximum value in the
data set.

Use Cases

The following UseCases help define the top level functionality
of the application and how the user would expect to interact
with the system.

UseCase

User button press on GUI (Figure 6)

Description

User finds new object to analyze, to predict
if we can find a match.

Preconditions

Sensor data is valid and camera is focused
on new object.

Postconditions

New object is either stored in the SOM or
a object was displayed that matched what
was analyzed.

: User

: Image Processing
: Press Check Btn

: Sensor

: capture camera img of obj

: Retrieve current sensor info (temp, lum)

: Update GUI img !

- GUI

Analyze img

i

: Search neural net for similar learned objs

L]

: using similar objs, do img comparison

L

: If obj found, show obj prediction

: Store varient of obj with sensor data

L

Fig. 6. UseCase for User button press on GUIL

UseCase

Sensor data provider (Figure 7)

Description

Micro-controller pushes data out via Ether-
net for application use

Preconditions

Ethernet connectivity. Sensors initialized.

Postconditions

Repeat in endless loop pushing data.

| : mainTask |

| : temp 5en50r|

: retrieveTemp

: build UDP packet

]

: sendUDP_Msg

Fig. 7.

UseCase for Sensor data provider.
UseCase Image processing (Figure 8)
Description Convert images into a hash or simplified
value that can be compared.
Preconditions Image is png formatted
Postconditions | Image has been converted into a mathemat-
ical representation.

| : light sen50r| | : Ethernet stack
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: OpenCV

: External

: new image histogram
o

: convert to 256bit color

]

: create grayscale copy

]

: generate histogram(s) on color and grayscale imgs

]

: use histogram comparison class to find match

[

: new image pixel area

: break into sections and color channels

: calculate texture

Fig. 8. UseCase for Image processing.

UseCase SOM processing (Figure 9)

Description Organizes data by normalized values unique
to each node

Preconditions Data is normalized for insertion to map.
New node was added to map and needs to
be placed.

Postconditions | Map is organized with correct relationships
formed.

: External _SOM

i new image search

: find similar images in map

by narrowing in on similar
normalized values

opt

: new value, so create node

: organize

: best fit object node found

Fig. 9. UseCase for SOM processing.

Data Structures

The Arduino micro-controller communication packets were
defined as a UDP packet of data size 10bytes to port 20001
with the format shown in Table 1.

2 byte(s) 1 byte(s) 2 byte(s) 2 byte(s) 3 byte(s)
NA Temperature NA Light level NA
TABLE I

ARDUINO SENSOR DATA FORMAT.

Object data storage is based on the neural net configuration,

and ends up as a vector of float values. In the early data
processing, the object data is formatted as a comma separated
string that contains normalized values for the following.

¢ 59 values for Image features (Histogram/Edge Point data)

(Array of normalized floats)

o 1 value for Temperature (normalized float)

o 1 value for Light level (normalized float)
A nice feature of this SOM algorithm is how the input vectors
are stored. It’s easy to export them and reload at a later point
and reuse the previous input data. In the future research section
there is some discussion on the issue of how these input
vector values are weighted. For example how the image values
in this case completely out weigh the individual sensor values.

Libraries

The baseline software for doing the image analysis is the
OpenCV port to the Android platform[15]. It’s libraries seem
to support all the operations needed to distilling down a image
into comparable characteristics. It currently directly interfaces
with the Android application allowing direct control of the
camera feed into OpenCV for analysis.

The Arduino micro-controller software[3] is provided with
the kit. A few examples for the sensor implementation were
provided by the manufacture. It has built in sensor and UDP
Ethernet libraries that can be directly reused to relay all the
sensor information.

The Android application software is created using the freely
available Android Software Development Kit(SDK) and
Native Development Kit (NDK)[9]. The NDK is required to
build the OpenCV framework for Android use. There ends up
being a special version of the NDK required for the current
version of OpenCV[7] because the current Google release
does not support c++ concepts fully like Run-Time Type
Information (RTTI), exceptions, and most of the Standard
Template Library (STL).

2) Integration: Just like in an embedded software project,
doing application development on a smart phone is going to
require cross-compiling the code. Things may go a step further
and also require language wrappers between the native code
and run time code. It really pays as a first step to figure out the
complete algorithm design using simple test applications that
run natively on a development PC. And as a positive side effect
the test applications turn into a nice suite of regression tests to
verify data when the phone cant give the same visibility or the
data is getting mangled somewhere in the language wrappers.

This project takes the development effort and breaks it into
three distinct phases. The first, development of PC based test
applications that model the algorithms. The second, porting
the test applications into a real smart phone application. The
third, using the test applications to verify the resulting sets of
data generated by the algorithm(s) running on the smart phone.

Phase 1

To verify the concepts required to do the image processing
and SOM learning, two PC based test applications were
developed. The first was a C based application that integrated
with the OpenCV library to perform a grey scale histogram
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and produce a 32 bin representation of the object image. Also
as part of that application, it calculates the average pixel area
(equivalently the texture) of the image. This was represented
by 27 values. The resulting values for both were normalized
into a string of floats that could be used as input to the SOM.
The basic process within this application is as follows.

o Images are gathered from either from the web or taken
with a camera and added into the processing folder.

o The application is invoked and indexes the folder.

e Records are created for each of the images for later
bookkeeping.

o The application opens the image and converts the 3
(RGB) color streams to a single greyscale.

 The histogram is calculated for a range of {0-255} over
32 bins.

o The histogram is searched for min and max values.

o The histogram is normalize relative to the max values.

o The resulting 32 normalized histogram values are written
with the images filename to a CSV formatted file.

o The image is reopened for the pixel area calculation.

o The image is broken into the 9 sections

o Each section is broken into 3 (RGB) channels.

o Each channel is averaged for the pixels within that
section.

o Each sections values are normalized between 1 & -1.

e The resulting 27 normalized histogram values are ap-
pended to the CSV formatted file.

The second is a Java application that first implemented a basic
algorithm to show an example of how it could organize a set
of color inputs vectors[1]. This was modified to take in a set
of picture inputs using the input vectors produced by the C
application above. In addition the application was retrofitted
to produce a visualization of the organization and show the
resulting set after organizing. This provided a good simulation
environment for tweaking of the amount of learning iterations
required and allowed easy adjusting of SOM matrix size and
number of test images. The one limit with this application is
that it is a manual process that interprets a preset data set of
values produced by the C based image processing app. To add
a new picture, it had to be ran through the image processing
app and then the input vector added to the list to be loaded in
the java application for analysis.

To verify the algorithms were working correctly, it needed
a dissimilar data set. The resulting image set contained a
combination of random art, football, and outdoor pictures.
Having a visualization of the data lead so a few conclusions.
The art pictures provided some vivid color checks on what
color and image details things organized around. Each of the
football images contained a set of colors that were similar
and in each image were slightly moved around. For example
a bunch of images of players from the same team (same
jersey) are very similar in the grand scheme of all the images.
Lastly the outdoors pictures were all over the place for texture
and usually had the upper half as blue sky, but they still
organized differently relative to other texture/features in the
image. Each picture was processed in a way to work around
known issues with specific hashing or other methods for

capturing image uniqueness. For example, if only a histogram
was performed, the visualization would show different light
levels affecting images to be treated as containing different
colors. This leads to images being disorganized because of
incorrect color similarity. Adding pixel area texture helped to
fix the light level issues and optimize the results to group
better. This application helps to visualize the effectiveness of
this implementation’s algorithms that focus on capturing the
busyness and colors of each image. The basic internal process
of this application is as follows.
o Sets number of iterations and dimensions of SOM lattice
o Loads in the set of input vectors from the CSV file output
by the image processing application.
o Begins the training process that iterates through learning
cycles
o Each learning cycle takes each of the input vectors and
calculates the Best Matching Unit (BMU), organizing
around that best fit node within the SOM.
o Application redraws the screen and gives a visual repre-
sentation of the movement of the images as they organize.
e Once learning is complete the resulting SOM can be
visually viewed or exported to CSV file for later analysis.
Here’s an example (Figure 10), of a high-level view of a SOM
that has been loaded with 300 images input vectors and ran
through one iteration of learning. It can be seen that the images
have organized a little bit, but for the most part are fairly
spread out and mixed up. However in Figure 11, which has
iterated through 100 learning cycles, there is a definite trend
of organization. The images with a lot of green are mostly
football players and in the 100 learning cycle image there is
even a separation between players of different teams (red and
white jersey vs those with yellow and green). These resulting

©.© SoMDemo

Retrain Map
Stop Training
Dump to File

Load Vectors

Fig. 10. SOM java application before learning.

findings lead to some confidence to continue to the next phase
and port the software over to the Android platform. It’s also
been a invaluable tool in verifying concepts with more debug
visibility then the phone.



IOWA STATE UNIVERSITY - CPRES585X, SPRING 2011

Fig. 11. SOM java application after 100 iterations of learning.

The last part of Phase 1 was configuring the Arduino
platform. It was integrated with a basic set of sensors and
an adaptable UDP socket push protocol. The one huge benefit
of the Arduino IDE and it’s built in development libraries, is
their ease of use. Specifically for the temperature sensor, it
was developed using the Dallas Temperature Control Library
which made using a 1-Wire interface[10] transparent. For the
light sensor, the design used an analog interface [2] instead of
digital like the temperature sensor. This resulted in a simple
interface and the data was gather by reading an ADC value
from a basic analog photo resistor circuit. Each the results
from these sensors was relayed periodically over Ethernet/Wifi
to the Android phone. The Android application implemented a
UDP server and listened for updates to refresh it’s local status
for the current temperature and light level at the location of
the sensors. This is where the embodiment became tricky. As
shown in Figure 12, the sensors are not attached to anything
but a breadboard (simulated arm) that could be manually
relocated to the object being investigated.

Fig. 12. Light and Temperature sensors attached to the Arduino platform.

The hardware configuration as shown in Figure 13 provides
a USB connection for power, Ethernet for communicating
with the Android phone over Wifi, and connectivity to the
sensors breadboarded on the left side of the figure. This micro
controller configuration was verified using Wireshark and
associated serial test output. After verifying the data stream
was valid and the all boundary signed/unsigned data issues

Fig. 13. Ardunio sensor and connectivity configuration.

were resolved this component was completed and ready for
integration with the Android application.

Phase 2

The Android user interface is based off of the OpenCV
CameraCV project. As shown in Figure 14 & 15, it
implements a constant camera preview mode on the left that’s
coupled with sensor data overlaid on a bar at the bottom
of the screen. The sensor data does some conditional color
changes, like for temperature it switches between red and blue
for hot and cold. All depending on whatever value the sensor
has just reported. Located on the top is a camera button used
capture images for processing. After an image is captured, it
appears just to the right of the “Focus® button. On the upper
right side of the screen there’s a space to show the neighbors
of the image that was just taken. These neighbors are the
images that are the “most” similar to the new object just
learned. To get those neighbor results, the application does
a process just like in the test application where it calculates
the input vector data from the new object, adds that to the
input vector set that the SOM is processing and starts the
learning process. Since the display is relatively small and the
processing power is limited, the same visual output wasn’t
implemented for the phone, but it can be monitored via debug
output over the Android Debug Bus (ADB). Once the SOM
has completed learning, a node is identified that is linked to
the new input vector. Using that node’s position all images
local to that node or surrounding it are presented as neighbor
images that should have a best fit and should be closely
similar to the new image. Another part of the UI is the menu

ﬂ - n

emp-1 Lum 400

Fig. 14. Basic Android Application User Interface(UI) with sensor registering
as cold and dark.

used to transition the different application states. As shown
in Figure 16 the application has the following states:
o Init - Initializes/resets the SOM lattice and allocates
objects for the training process.
o Learn - Opens an existing dump file (if exists) from SD
Card and loads in the previously learned input vectors.
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o Focus

Lum 843

[Temp 74

Fig. 15. Basic Android Application User Interface(UI) with sensor registering
as hot and bright.

o Capture - Enables the camera to take pictures, the algo-
rithm to do the image processing and the server to collect
sensor data.

e Run/Train - Forces a manual rerun of the SOM learn-
ing/training algorithm. This is the same process that
automatically follows a capture of a new camera image.

o Dump - Dumps a file to the SD Card that contains all the
input vectors for either post processing or to be loaded
during the learning state when the application is restarted.
Also on the SD Card are all the images that had been
captured.

The expected sequence of execution would be running init,
learn, capture, and lastly dump before closing the application.
After enabling capture, the sensor status bar will light up and
the camera button will activate. Any images that are captured
are automatically ran against the SOM and the neighbor
results shown to the right. The process of capturing images
and analyzing them isn’t limited, so many images can be
captured and analyzed. If the data needs to be saved though,
the dump menu option should be selected before exiting. The
data that’s dumped, contains a textual matrix of the image
names organized with how the SOM last arranged them and
a second file that has the raw export of the input vectors that
could be fed back into the Android application or into the PC
SOM application for simulation and analysis of any behaviors
that maybe didn’t seem correct.

n - n

Init Learn Capture Run Dump Train

Fig. 16. Basic UI with menu for select mode of operation.

To enable the Android application to have the capabilities it
needed, there where a couple modules that had to be integrated
into the application. The first was the C implementation of
the OpenCV image processing code from Phase 1. That code
had to be ported into the Java native library that contained
modules allowing active processing of the camera preview
stream. The new code basically ended up like a decoder for

the image stream. With the algorithm capturing the camera
button push, grabbing a single frame from the preview stream,
and doing the histogram/pixel algorithms. On completion it
would pass the resulting input vector data for that image up to
the Java layer of the application. The second part was porting
the SOM code over to the Android Java layer. It required
some adapting because of classes that leveraged inheritance
to pieces of the Java Ul framework. Once the SOM code was
cleaned up, a middleware was created to bridge the native
C algorithms and the SOM. It took the values generated
from the image processing and added them to the input
vector set; in addition to providing utilities to export and
import input vector sets for dumping and loading respectively.
Next the control points for this code were hooked into the
menu options to activate the specific processing and learning
processes.

Phase 3

To verify the new Android application, the software was again
split into two halves. The image processing and the SOM.
The verification of the image processing consisted of taking a
known image and running it through the PC test application
to generate the input vector. Followed by rerunning the same
image manually through the Android image processing code.
The resulting image input vectors were compared and it
was found that small rounding errors in the 3&4 decimal
places had occurred. That seemed acceptable being the code
was ported between architectures (PC to ARM). Next a set
of example image input vectors were loaded into both the
PC test application and the Android application. Both were
configured to use the same lattice matrix size and number
of learning iteration. The resulting SOMs were compared
by dumping the Android applications to a file and manually
comparing to the PC test application’s visualization of the
organization. It was found that both applications organized
the images differently, which is what was expected, but
they correctly grouped the images. So for the most part this
verifies the algorithms were correctly ported over. Although
one issue did come up related to processing resource issues
with how Java does floating point (mentioned in the future
research section). The processing time for the SOMs learning
was reasonable as long as the data sets were small. However
over time the duration would grow when the number of input
vectors increase. So far this issue has only come up while
attempting to use the debugger, which on it’s own is slow,
but amplifies this issue.

V. EXPERIMENTS

The original statement for the experiment was as follows.
“A setup consisting of a set of images to use in the test
cases. The set of images would contain a variety of black and
white and also color images. Each set would be independently
tested to see the impacts of color on determining if a object
is going to be cold/hot. There were example images shown
that would be used to initially train the SOM. Once the
algorithms were worked out, some test would be performed
on new pictures that would be taken with a camera. Those
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pictures would include sensor data as an extra trait to be
analyzed. Success would be to have these samples grouped by
common specific shapes and colors.” The resulting outcome,
from studying how the learning algorithms work, has lead to
the experiment being more focused on reproducing the image
learning algorithms done by other papers. It uses an image set
to initial verify the learning algorithm. Followed by manually
taking some pictures and documenting the learning process
is within bounds for how those pictures are related to other
images. The sensor data is included as extra traits for each of
the objects, but here is a weighting problem that affects how
that extra data is being used in the decision process. (Many
input vector values for image representation, but only two for
the sensors)

The first part of the experiment tests how adjustments of the
SOM parameters affect it’s performance when learning. The
parameters being adjusted are the number of learning iterations
ranging from 10 to 100 and the number of input vectors 10 to
300 (directly affects lattice size). This test will utilize a test
app on a PC because of the processing resources required to
produce the result sets.

The second part of the experiment tests how the Android
phone application behaves with taking pictures and learning
how they fit into things it’s previously learned. A couple
different scenarios will be tested, ranging from having no
history of objects, a history of similar objects, a history of
dissimilar objects, and a history of a mix of objects. Each
test case would take place in a controlled environment where
most of the image would be white and the details of the object
being learned would be obvious from it’s basic shape, size,
color, and texture. The objects would be identified, have their
pictures taken, and temperature/light eminence measured. Post
analysis would look at specific points of the SOM organization
to make sure the learning process is organizing correctly.

The evaluation of the results will look at the sets of inputs
and output data to verify that a reasonable match has been
made that fits the expected results (Similar in color and sensor
hot/cold properties). If the result isn’t what is expected, the
post analysis of the SOM data and whatever the results did end
up as, should suggest future research or ideas for the deviation.

VI. RESULTS

The test results breakdown into two sections, the first
studying the outputs of the PC based SOM test application
and the second looking at some actual test data using example
objects and recording the resulting SOM neighbors.

Test Application

The SOM test application was setup with each of the
configurations show in Table II. Each of the test configurations
was executed by randomly assigning input vectors to nodes
and organizing around them. When complete, an image was
captured of the results. After all tests completed the resulting
distribution of images was analyzed for level of organization.
Using the best and worst test images as the bounds for
calculating the percent organized.

The first test (Figure 17) is configured with a lattice that’s

Iterations | Input Vectors | Lattice Size | Resulting % Organization
5 100 10x10 50
10 100 10x10 60
50 100 10x10 80
100 100 10x10 100
5 100 20x20 20
100 100 20x20 80
TABLE I

LEVEL OF APPROXIMATE ORGANIZATION BASED ON SOM INPUTS.

matching the number of input vectors. It however only gets
5 learning iterations. During the learning process there are
radiuses defined, so that only a small area is organized around
a node at a time. This causes some limits on the amount of
area an input vector (object/image) could move in a single
learning iteration. For example, if many similar objects started
out in opposite corners, (depending on the lattice size) they’d
need multiple iterations to migrate together. This is shown in
the figure, as the outdoor scenes are still scattered around the
SOM and need more iterations to come together. A smaller
learning count did reduce the objects ability to completely
move towards similar objects.

()

o

= Oa e

Fig. 17. 5 learning iterations, Input Vector of 100, and 10x10 lattice.

Fig. 18. 10 learning iterations, Input Vector of 100, and 10x10 lattice.

Between Figure 18 and Figure 19, there is some improvement
shown with the objects organizing into the corners, but they
still don’t come together in a single grouping. Figure 20
shows the organizing case that’s as close to 100 percent as can
be achieve with it’s configuration. There is a definite separate
between the colors and many of the outdoors pictures are
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Fig. 19. 50 learning iterations, Input Vector of 100, and 10x10 lattice.

Fig. 20. 100 learning iterations, Input Vector of 100, and 10x10 lattice.

stacked up with multiple to a node. This is the configuration
that the Android application has been setup to use.

The next two test cases enlarge the lattice size to cause more
empty nodes. This should negatively impact the learning
convergence rate because of the learning radius used to
find similar objects. Figure 21 is showing a pretty random
organization of images, so learning hasn’t really had a chance
to do any reorganization. Figure 22 however does have some
better color separation, but exhibits the issues found in Figure
19 where there are groupings of similar objects in opposite
corners. Additional learning or a smaller lattice should bring
the clusters of similar objects together.

Fig. 21. 5 learning iterations, Input Vector of 100, and 20x20 lattice.

Based on testing results with lattice sizing, one key aspect
sticks out. The lattice and the input vectors should roughly

Fig. 22. 100 learning iterations, Input Vector of 100, and 20x20 lattice.

match in size. With no more then 5 percent more lattice
nodes then input vectors. Otherwise the required number of
learning iterations has to increase to give the input vectors
more attempts to organize with similar items. This seeks
to prevent one aspect of the localization(random separated
grouping) issue, by preventing excess unconnected nodes.
It doesn’t however solve the issue of localization when the
lattice grows much larger in size. Sometimes in that case,
increasing the number of learning iterations or resizing the
lattice doesn’t necessarily solve the problem. There were
some interesting papers on multilevel SOMs and how it might
approach fixing that issue[14].

Android Application

Provided in the Appendix are each of the objects used in in
the trial runs for this test. With each test result below it notes
the previous learning conditions, since in some cases it was
the first object learned and others a few valid neighbor(s)
already existed. A neighbor(s) are the nodes in the lattice that
surround and include the node that contains the input vector
understudy (aka the new image/object). The result images
shown in the figures below, consist of 4 images, the first is the
new image that was just taken. The second/third/fourth are
the neighbor images that the SOM found as surrounding the
first image after learning. If the first image was completely
new (with no previous similar images), neighbors would still
be suggested, but may not be of any match. If none of the
objects are even close to the color or texture of the first
image, then there’s a change that the image is orphaned to
a part of the SOM that doesn’t yet have any other images.
Like in Figure 23, it is a new object and the SOM, during the
learning process doesn’t find any similar images around it.
This is ok, because the new object has now had it’s properties
learned and next time it will be recognized. However, there
still is a slight chance that you could also have a similar
problem when there are some neighbors, but not enough
similar items have been learned so they don’t really match.
This occurs when having a small data set of similar objects.
Figure 24 is an example of this issue, with the new object
being a battery and the SOM locates it next to another battery,
but also an eraser. As more objects are learned this problem
occurs less because there is a larger selection to be organized
around, resulting in a better fit for new images.



IOWA STATE UNIVERSITY - CPRES585X, SPRING 2011

Fig. 23. Learning a new object: A whistle.

Fig. 24. Learning a new object: A battery.

Here’s an example of a progression. It’s assumed that at least
one similar image was learned before processing the first
image in Figure 25. Figure 25 shows a new image captured
of an eraser with a slightly different orientation then the one
the SOM retrieved as it’s new neighbor.

Fig. 25. Android App presenting one option for the eraser.

Figure 26 shows another new image captured of a slightly
larger eraser. The SOM manages to find two neighbors for
this image, one the previous image and the other the original
eraser. If the same new image was captured again, it would
more then likely be added as the third image in the resulting
neighbors.

Fig. 26. Android App building on the last run and presenting two options
for the eraser.

Figure 27 shows another new image captured of a slightly
larger eraser at a different angle. The SOM manages to find
three neighbors for this image. Each one being one of the
previous learned similar images.

e |

Fig. 27. Android App building on the last two runs for more eraser neighbors.

This test case has shown the grouping that occurs when
objects are learned by the SOM and organized so the
neighbors can be selected when a similar new image is
captured.

This next test case looks at the ability for the algorithm
to pick out similar objects and shapes. It also looks at the
possible issue with a slight color blindness that might occur
depending on the percent of the object that changes color.
Figure 28 shows a picture taken of a grey and blue capped
pen. The new image was captured as the 28th image to be
stored in the SOM (See appendix for table of images). Prior
to it there were a handful of images that should be similar.
The SOM picked out two and they happened to be image 21

Fig. 28. Finding a similar pen.

& 26. These turned out to be a solid set of neighbors. The
image processing also was able to mask the issue of light
level and looks to have successfully organized around more
of the texture or object content of the image. However if the
pen was to drastically move toward a corner there might be a
chance it would not organize as well, since the position may
come into more play if the light level has a larger difference
between images. (Histogram is doing color matching & Pixel
texture provides segmented texture matching)

Fig. 29. Finding a sort of similar pen.

The color blindness comes into play with objects that are very
similar(few color differences) and have the same backgrounds.
Figure 29 is a good example. One resolution to this issue is
to learn more objects that clarify the differences. The other
resolution would be to enhance the image analysis to generate
additional details that could be compared to eliminate the
issue. Depending on the situation this might not be a bad issue.
For example when you’re trying to find a medicine bottle or
possibly the floss (Figure 30), the only requirement could be
to find something similar in nature, not necessarily color.

Fig. 30. Finding the floss.

A test was performed to understand how the sensor weighting
values affect the decision made during the SOM learning.
The test consisted of an inspection of the algorithm utilizing
the data and the assumptions surrounding how the data could
come into play. The algorithm that determines placement of
objects within the SOM looks at the raw input vector data set
and performs a Euclidean distance calculation between that
set and every node in the lattice (trying to find the optimal
placement). So the two sensor values end up in a summation of
the differences between all 61 input vector data points between
two input vectors. This results in the images determining the
positioning in the SOM unless the image is more neutral
between the two input vectors. If that happens then the senor
values data points would come into play, but primarily the
image would steer the organization. This might actually be
OK depending on the assumptions. Specifically if it’s assumed
that the image carries the weight in the input vector values.
Making the visual image of the object more important to the
decision process when later recalling the object. This wouldn’t
rule out the sensors, but a combination of sensory data should
be represented in the input vector since it’s a characteristic
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of the object. Possibly though a multi-dimension input vector
feeding multiple SOMs there could be a better solution, so
as to organize around each characteristic/sensory input and
tie the results together with the individual object. So for this
test, it was concluded that the current algorithm works, it just
doesn’t favor the sensor input, although still incorporating it
when learning.

A test was attempted with embodiment, but issues arose
with the sensor breadboard being part of the image (Figure
31. It weighed in to heavily in the learning process and
caused skew in the resulting data. The solution for this
would be to incorporate the intelligence for the robot to
remove the parts of it’s body present in the images before the
images are processed. This is an area for future research and
improvement.

Fig. 31. Attempting to place sensors by object.

Here’s the last test case. It analyzes the organization of the
SOM based on provided new inputs of captured images. In
Table III there’s an example text representation of the SOM
used to generate the results in Figure 32. The table shows
the lattice nodes of the SOM and represents each node as an
entry in the table. Inside each node is the image number(s)
of the particular input vectors that are mapped to the node. A
node can have multiple images stacked up (making the matrix
3D). In this table, only the last image number (input vector)
to be added to the node is shown. The new image for Figure
32 is image number 62. The images displayed as neighbors
are 21 and 28. It just happens that those two neighbor images
were located in the same node as 62 so they’re not visible
in the table. Since the GUI only draws out the first three
neighbors (This number was arbitrary picked) there might
be other close matches. So looking around number 62, there
seems another close fit with number 27. Since 27 didn’t make
the cut for being added to the node that 62 is part of, there
might be some slight differences in the image. There’s a
chance it could have been displayed if the local node (for 62)
didn’t contain any input vectors that would be closer matches
to 62.

62 | 27 | 30 13 | 05 01

61 11

44 14 4

41 | 35 39 2 6 20

40 | 45 | 57 | 42

3 58 | 17

60 | 59 16 | 15 | 10 | 18
55 50

53 56 48

54 32 | 38 | 34 49

TABLE III
EXAMPLE TEXT DUMP OF SOM. (SEE APPENDIX A FOR MATCHING SOM
IMAGES)

Fig. 32.
above.

Learning of a new image, prior to dump of SOM into the table

The earlier eraser example is centered around number
3/35/40/41/57 which all correlate to various images of
erasers. It’d be interesting to redo this test with a hexagonal
or other dimension node layout in the lattice. It was mentioned
in the existing research that it may lead to better relationships
through the use of more edges connecting to other nodes.

To conclude the test results, a few tests ran into issues that
will require further study to understand how they could be
resolved. Overall though, the application has successfully been
able to organize and suggest predictions based on weighted
organization of a new object with previously learned objects.
Also if objects are cold/hot and are always one or the other,
then this set of algorithms will find the object based on it’s
image and sensor weighting. However if the object is both
recorded as being hot and cold, no real resolution can be made
unless the object is touched to find out. The SOM would more
likely then not give suggest both objects as results.

VII. FUTURE RESEARCH / LESSONS LEARNED

A couple areas of SOM neural networks that were not
issues for this small scale experiment were the limitations
with scalability and storage capabilities. Specifically with this
implementation of a SOM it’s designed as a 2D matrix of
nodes that are interconnected, each with a connection to each
input node. So as more input vectors are added to the SOM
the input vector permutations that have to be checked grows.
Eventually the matrix could get sized to large creating a
scaling issue where either there is not enough processing
resources or the time involved in doing that processing isn’t
acceptable.

To further mature this application, algorithms could be
added to aid in creating knowledge of embodiment and han-
dling of complex images to extracting relevant objects for
recognition. It would be an interesting application of parallel
computing using a GPU. If the SOM was optimized to use a
GPU engine for all learning activities the size of the input
vectors could grow larger allowing for more details to be
gathered during image or other sensor analysis. That combined
with adding the robot’s ability to control the motion of arm
movement would be an interesting addition to studying how
it effectively processes and stores the learned data. Since
by adding the ability for a robot to interact with the object
being learned, it would effectively simplify the existing manual
process that was pretty much scripted and required human
interaction. This isn’t assuming that it would simplify the
algorithms required, since new processing would have to
provide the ability for the robot to first learn that it has an
arm that it can use to interact with objects.

A possible improvement to the SOM localization learning
issue could be to implement the bias discussed in this paper.
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It was an area that had only been briefly looked at during this
project[20]. A single SOM input vector is the set of data points
that represent the characteristics of an object. The one issue
with the SOM input vector data is how each vector element is
incorporated into the calculations. For example in this project
the image characteristics consisted of around 59 data points
that were normalized and added to the vector. Then additional
temperature and light sensor data was added. So you have
a overwhelming bias (59 verse 2 data points) towards the
imagery data steering the direction of where that input vector
is organized into the SOM lattice. To be more fair, each sensor
should possibly have an equal number of data points in the
vector to make sure a single sensor has some weight steering
towards the correct node(s).

One opportunity for future research could be processing
optimizations. Specifically to optimize the SOM math cal-
culations through using Android native code. Or it could be
possible to use OpenCL APIs or another graphics engine APIs
to get some matrix math speed ups. Another optimization area
is streamlining the memory allocations to prevent excessive
garbage collection. Either of these ideas could definitely
improve the performance of the learning activities that require
larger amounts of processing as each new input vector is
added.

One area of improvement and not necessarily research
would be to streamline the graphical user interface for easier
use. It could possibly be in conjunction with creating a less
interactive version of this concept with the robot actively
engaged in finding objects. Leaving the display as more of
a feedback interface.

An item to add to the list of lessons learned would be
adequate debug visibility between all stages of the appli-
cation development, including on the Android phone. Out
of necessity during this integration a UDP based stdio was
implemented with a client/server concept. Allowing clients
written both in C and Java to put out debug within the
Android Application Java and native C layer. This aided
to get some time tagged breadcrumbs out of the system to
tell how long processing was taking and the different stages
the processing was at. It definitely didn’t replace the GNU
Debugger (GDB) interface provided by the Android SDK, but
instead supplemented it’s functionality.

VIII. CONCLUSION

The original goal of this project was to model a child’s
learning process to associate images and sensory feedback to
previous experience. At completion, this project has created an
application that has the ability to find similar objects based on
new objects presented. Within some limitations this project
has met the original goal. The areas where there are some
complications were the processing resources needed for doing
the neural network on a Android phone, bias adjustments to
give the sensor data more play in the learning process, and
the changes needed to the original set of test objects to better
define success.

Secondarily there was another goal of create a open source
framework that would allow further experiments using self-
organizing maps (SOMs) within Android. (Possibly with

computer vision applications for other self learning through
sensory input.) i.e. Using this project as a basis, many other
applications came to mind. From simple things like selecting
the perfect bottle of wine by pointing your phone at the
store shelf and letting it pick-out the correct bottle based
on previously learned characteristics. That example could be
taken even more extreme with it fine tuning the bottle selected
based on food pairing and atmosphere/event. This goal was
successfully met, the source code has been made available
on http://code.google.com/p/mlw-proj/source/browse/. (Parts
of the code have different licensing so that’s still being sorted
out.)

A positive outcome from this effort was the creation of
a framework that resulted in proving (at least to me) that
some sort of embodiment is a definite requirement for artificial
intelligence. Without that it’s extremely difficult to manually
anticipate different scenarios where the robot might be inter-
acting with something and really needs to understand that what
it’s observing is partially its own arm/leg/etc and an object that
the appendage is interacting with.
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APPENDIX A
ANDROID APP TEST OBJECTS

These images are referenced in the test results section above.
For most of the Android Application examples where a new
image is captured, it uses this set of images as a base set to
generate the SOM learning results.
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Fig. 33. Android App test objects (lof4).

L

mage_16.jpg

mage_17.jpg

!

mage_19.jpg

mage_20.jpg

(=]

image 23.jpg

mage_26.jpg

3 3 3 3
[+7] 1] =1 [+7] g
w0 w0 [i=] w0
Im Im Im Im
[2%] MJ %] =
/ ~ + = o
— = i =2
=] = =] =]

mage_29.jpg

image_30,j

=
[l

3 3 3
a1} ) a1}
o s 5 5
| | |
Fd Pd .‘\ Pd
o =N ™
8 i B
= = =
w

b

image 31.jpg

image 32.jpg

Fig. 34.  Android App test objects (20f4).
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