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Abstract

This paper reviews past attempts to systematize in-

struction set design and offers an alternative approach.

Our technique is based on compaction of microopera-

tions to form instructions. The compaction is done in

such a way as to optimize a metric which is a function of

cycle count, code size, and instruction set size. To illus-

trate our technique, optimal instruction sets are derived

for data structure creation in Prolog.

1 Introduction

Instruction sets are a necessary and convenient encod-

ing of the operations required to execute application

programs. If there were no concern about limiting band-

width between instruction store and data path, then the

best instruction set would be the fully decoded control

signals required by the data path. This would allow

an uninhibited use of all available hardware in the mi-

croarchitecture, In spite of advances in technology for

packaging and memory (allowing wider buses and bigger

instruction stores), there will always be a point at which

the application program size becomes large enough to

warrant some kind of encoding of the microinstruction.

Compaction of program instructions, however, comes at

a cost in performance—limited use of the inherent par-

allelism of the data path and possible extension of the

cycle time due to complex instruction decode. The key
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to good instruction set design is a balance between per-

formance and instruction encoding.

Methods used for instruction set design have evolved

over the years. The initial design for the IBM System

360 instruction set relied heavily on kernels—common

instruction sequences of 4 to 40 instructions derived

from application and system code [6]. These kernels

allowed the benefit of an instruction to be measured ac-

curately. The problem with kernels, however, is that

they need to be weighted in importance and can be

coded in many different ways. One also tends to for-

get about other sequences that occur in programs. The

Stanford MIPS project [9] took a different approach.

They noted that most programming is now done using

high level languages. Each instruction, therefore, should

be useful to the compiler. In the MIPS project, the per-

son who proposed a new instruction had to modify the

compiler to use the new instruction and collect statis-

tics on performance and instruction use. This design

approach was later refined by the MIPS company into

the l% rule [13, (page 1-18)]: “any instruction added

for performance reasons had to provide a verifiable 1%

performance gain over a range of applications or else the

instruction was rejected.”

The 1% rule tells the designer how to jilter his trial

instructions—allowing only the important instructions

to remain. There has, however, been little study of

where trial instruct ions come from. In most design

projects, trial instructions come from the designer’s ex-

perience with previous designs or from the designer’s

ingenuity. This brings up the question of whether or

not there is a systematic way to invent new instructions

useful for the application domain of interest.

In this paper we shall review past attempts at system-

atic instruction set design and present our approach to

this problem. In Section 2 we review several approaches

taken by other researchers in the past, Then we outline

our approach to systematic instruction set design (Sec-

tion 3) and apply the process to the problem domain of

data structure creation in Prolog (Section 4). The final

section concludes with an outline for future work.
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2 Previous Work

There have been many empirical studies on instruction

set usage (see for example [17] ), but here we will only

review some of the more interesting attempts at au-

t omating or systematizing instruction set design.

One of the first studies on automatic instruction set

design was by Haney [7, 8]. He attacked the problem by

creating a model of an instruction set, the generalized

instruction set (GIS), which is capable of representing

a broad range of the computer instruction sets in use

in 1968. Instructions in GIS consist of several fields,

some of which have implicit values and are not in the

instruction. The user assigns a cost and benefit to each

instruction field and a constraint on the total cost. A

search program then adds fields one at a time to the

instruction format, the one with the maximal benefit

first (always remaining within the total cost constraint),

until the instruction word is full. By assigning different

cost/benefit pairs to the instruction fields, Haney was

able to generate instruction sets similar to most in use

at the time.

In the 1970’s there was an interest in dynamic micro-

programming and vertical migration [1, 16, 22]. The ba-

sic idea is to move often-used program loops or instruc-

tion sequences to writable microcode memory. Each

program has its own specialized instructions. Higher

performance is obtained by eliminating instruction fetch

and decode, by moving heavily used operands into fast

registers, and by greater use of data path parallelism.

The met hod we propose is similar, but there are some

import ant differences. The microarchitectures that we

consider already eliminate instruction fetch and decode

overhead and operand fetch delays through effective use

of pipelining and large register files. Our approach de-

rives the entire instruction set, rather than adding new

instructions to an existing one. Our instruction deriva-

tion takes into account details of the microoperations

over all sections of the benchmarks used. Both ap-

proaches are similar, however, in that they seek to fully

exploit data path parallelism.

A widely held belief during the 1970’s was that com-

puter architectures should be customized for high level

languages (HLLs). Several studies focused on deriving

HLL instruction sets. Bose [4] tackled this problem by

specifyin~ a l~rge *et of transferm~tionti that can be

used in various combinations to convert a HLL program

into an instruction set. The transformations include

aspects of compilation, lexical and semantic analysis,

along with transformations on program data represen-

tation, storage allocation, and instruction format.

A less ambitious, but very practical study involved

revising the Mesa instruction set to better match actual

use on a large set of production codes [24]. The goal

of the refinement was to improve code density. The

instruction set was byte encoded, each instruction con-

sisted of a byte opcode and a set of byte operands (zero,

one, or two). A large set of programs were analyzed by

first converting their instructions into a canonical form

(all instruction arguments were made explicit with a

uniform size). Statistics were collected on instruction

frequency, instruction pair frequency, and operand value

distributions. These statistics suggested new instruc-

tions to the designers. New instructions were formed

using one of thlee transformations: (1) make an operand

value implicit in the opcode, (2) reduce the size of an

operand, or (3) combine a pair of instructions into a sin-

gle instruction. The new instructions were then tested

using peephole transformations of the program code,

and the process was repeated using statistics from the

modified instruction set. The final instruction set gave

an overall 12% reduction in code size for the programs

studied.

The Mesa instruction set study was done by hand.

Bennett [2, 3] automated this process and applied it

to generate an instruction set for BCPL. The initial

instruction set was derived by hand from a semantic

analysis of the necessary operations needed to support

BCPL. A new instruction set was generated using the

three transformations of the Mesa study. All transfor-

mations were tried on all instructions, and the one in-

stance with the greatest predicted code reduction was

used. Sometimes the predicted reduction was not cor-

rect, resulting in some instructions not being as useful

as expected. Overall, however, the process was very

effective in reducing the size of the programs studied.

A related area of research is high level synthesis. High

level synthesis programs take an algorithm written in a

high level language and convert it to a microarchitec-

ture and microcode that satisfies the user’s constraints

on speed, power, and manufacturing cost. An example

of such a system is the JRS IDAS tool set [23] which can

handle a wide range of algorithms and target microar-

chitectures. It is also possible to restrict the microarchi-

tectural framework within which the solution is found.

Although this may limit the application domain, it does

simplify the design search and potentially allows for bet-

ter solutions to be found (within the restricted design

space). Examples of this approach include ASP [5] and

the SCARCE architecture framework [18].

The induction set design methodology that is p.+

sented in this paper is the converse of high level synthe-

sis. Rather than deriving a data path from a specified

algorithm or instruction set, our technique starts with a

data path model and a set of benchmark pro~rams and

then determines the best instruction set for running the

benchmarks on the specified data path.

The instruction set design techniques that we have

reviewed have several points in common. Each has a

model of the instruction set or a set of transformations

that move from one instruction set to another. Both, in
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effect, define the space of all instruction sets reachable

by the design process. Each technique also defines met-

rics with which to judge one instruction set against an-

other. Several techniques have used static code size and

few have concentrated on execution speed .1 This may

be due to code size being a more easily measured value

than execution speed. Execution speed requires detailed

knowledge of the microarchitecture and detailed simu-

lation of benchmark execution, whereas code size does

not. In addition, each technique searches the instruc-

tion set space by building instructions piece-by-piece

(Haney) or by application of transformation rules. Most

have used a greedy search strategy—always picking the

alternative which gives the greatest immediate improve-

ment in the design metric.

3 Instruction Set Design as an

Optimization Problem

As we observed in the previous section, instruction

set design, when viewed as an optimization problem,

is characterized by: (1) a space of all possible solu-

tions and (2) an objective function or metric measuring

“goodness” of a trial solution. Finding the best solution

is then a matter of searching through the space of possi-

ble solutions and finding the one with the best value of

the objective function. In most cases of interest, finding

the best solution is not computationally feasible and one

must settle for a good (but possibly not best) solution.

Because the space of all possible instruction sets is so

large as to be difficult to even conceptualize, we will in-

tentionally limit the scope of this solution space. First

we will require that the data path be specified. This

will define the microoperations that can be supported

by the hardware and will give the time (in cycle counts)

required for performing various operations. In addi-

tion, we will restrict the data path control circuitry to

conform to the opcode control model described below.

Specifying both the data path and control will allow the

exact enumeration of all possible instructions along with

their execution cycle count and interaction with other

instructions. In addition, the cycle time can be factored

out of the performance equation, because the instruc-

tion set is defined by the contents of opcode ROMs and

decode PLAs in the control circuitry. The details of this

cent rol model will be presented below.

A basic concept behind our search strategy is to cast

instruction set design as a variation on microcode com-

paction. Primitive operations supported by the data

path are combined together into instructions given con-

straints on data dependencies, number of instruction

1Here we are referring to only the attempts at automation.

Many hand-derived instruction sets have used execution speed as

a major criterion.

bits available to specify the operations, and the num-

ber of distinct instruction opcodes available. There are

many ways of combining microoperations into instruc-

tions, so we use a set of benchmark programs and per-

formance metrics to judge whether one instruction set

is better than another.

In the following subsections we will present our in-

struction set metrics and pipeline control model. We

will then give a general overview of our search strategy.

3.1 Instruction Set Metrics

Casting instruction set design as an optimization prob-

lem depends on finding a good metric for measuring

the quality of one instruction set against another. Cer-

tainly the ultimate metric would involve implementing

the instruction set (and data path and control) in hard-

ware and measuring the performance, power consump-

tion, manufacturing cost, and any other factor impor-

tant for its intended application. This process is quite

unreasonable given that the search through the space

of instruction sets may require looking at millions of al-

ternatives. Practicality y diet ates that our metric be an

easily computed approximation to “building and mea-

suring.” The exact metric will depend on the require-

ments of the application. In our work, we will be biased

toward cycle count, since this is the typical emphasis in

computer design. Our metric is a function of

cycle count (C) The total number of clock cycles re-

quired to execute the benchmark set. This repre-

sents the performance of the processor.

static code size (S) The total number of words re-

quired to store the instructions used to represent

the benchmark set. This represents the instruc-

tion set architecture efficiency. It has an indirect

effect on the performance by affecting the instruc-

tion cache performance.

instruction set size (1) The total number of distinct

instructions required to represent the benchmark

set. It is also the same w the number of distinct

instruction opcode values. This represents the com-

plexity of the instruction set architecture. It has an

indirect effect on the control hardware cost and the

design verification complexity.

One of the simplest metrics would just be cycle count.

The best instruction set would give the minimal cycle

count for the benchmark programs. There are many

solutions using this metric, however, since one can add

any new instruction to the best instruction set and the

cycle count would remain the same. This limit at ion can

be overcome by specifying that the best instruction set

is the smallest instruction set with minimal cycle count.
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Instruction sets deemed “best” by the minimal cycle

count metric still have a major flaw. Some of the in-

structions in the instruction set may be used only once

or twice in order to reduce the cycle count by a few cy-

cles in obscure cases. The l% rule avoids this difficulty

and eliminates those instructions which are used only

for seldomly occurring optimizations.

If we assume a constant cycle time, then the 1% rule

can be expressed more concisely as

100 AC/C+ AI <0. (1)

The addition of an instruction to the instruction set

(A1 = 1) must be counterbalanced by more than 1%

drop in cycle count (AC/C< –1/100).

The above equation is a difference equation, and is

not satisfactory as an objective function in the search for

an optimal global solution. To motivate the form of the

appropriate function, we can consider the differences to

be infinitesimals and take the definite integral. The best

instruction set would then be the one that minimizes

100 In C’ + 1. (2)

This function has the desirable property of being invari-

ant (to within a constant factor) to scaling of C’.

Modifications to the 1% rule are possible. If one

wishes to constrain static code size, then a term could

be added for code size. For example, if our rule states

that a new instruction will be accepted if it causes a 570

static code size reduction with no change in cycle count,

then the analogous equation to Equation 2 is

1001n C+201n S+1. (3)

The metrics presented here are just some of the pos=

sibilities. Other metrics have been given by Bose [4]. In

our example in the next section we will use the minimal

cycle count and 1’%0 metrics.

3.2 Pipeline Control Model

There is a whole range of possible microarchitectures

that could be used to implement an instruction set.

The pipeline control models that we will consider are

variations of data stationary control [14, (pages 118–

119)]. In data stationary control, the instruction word

(or opcode) passes through the pipeline in parallel with

the data that it operates on and i. decoded at each

stage into control signals.2 Some versions of data sta-

tionary control allow the instruction (or instruction op-

code) to be modified as it passes through the pipeline.

The simplest data stationary control model, single- cycie

ptpelined, allows only single-cycle instructions and is

comparable to the RISC I architecture [19]. Our exam-

ple in the next section will also make use of the single-

cycle pipelined model.

2This is logically what happens—the implementation is opti-

mized for circuit area and speed.
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Figure 1: Opcode Pipeline Control Model

If one desires more flexibility in instruction set design,

however, a more sophisticated pipeline control model is

necessary. Greater flexibility can be obtained by dy-

namically injecting “internal” opcodes into the standard

data stationary control pipeline. The use of internal op-

codes is illustrated in Figure 1. On the left side of the

diagram is a data path with pipeline latches between

four stages: register read, arithmetic operation, mem-

ory operation, and register write. The register file at the

top and bottom of the pipe are the same multi-ported

register file--the loop has been unrolled to make it more

readable. The diagram is also simplified in terms of

the number of pipeline stages. A real implementation

might have pipeline latches for each clock phase with

two phases per cycle. Also not shown are details like

the bypassing logic needed to forward results of one in-

struction to the instructions behind it in the pipeline.

On the right side of the diagram, the control pipeline is

partially shown. Besides the opcode pipeline, there are

pipelines for the register specifiers and other instruction

fields. The process of injecting internal opcodes into the

normal flow of external opcodes is accomplished using

the multiplexors and ROMs at each stage of the opcode

pipeline. Note that the internal opcodes are not avail-

able to the programmer as individual instructions.

The internal opcodes can be injected in one of two

basic ways: insertion or replacement. During opcode

insertion no external opcodes are lost. As internal op-

codes are inserted into the stream of external opcodes,
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theopcodes behind the insertion point are stalled. Op-

code replacement, however, involves the replacement of

an external opcode by an internal opcode. There is no

stalling of the following opcodes. In general, multicycle

instructions are implemented by inserting opcodes at

the first pipeline state, whereas conditional instructions

(conditional branches, conditional loads, etc.) are im-

plemented by replacing opcodes at the second or third

stage of the pipeline. The internal opcode control model

is actually used in several special and general purpose

microprocessors [12, 20, 21].

Restricted versions of the internal opcode model are

possible. For example, if only insertion of opcodes at the

first stage of the pipeline is supported, then we have the

Clipper’s macro instructions [10]. If we can only insert

instructions that are available to the programmer into

the first stage of the pipeline, then we have the Atlas’

extracodes [15].

3.3 Searching the Space of Instructions

Although we are making several simplying assumptions

in the process of instruction set design, there is still a

large gap to span from the benchmark programs and

data path to the final instruction set.

One possible search technique is to enumerate all pos-

sible instructions that the data path and control can

support.3 Any instruction set is a subset of this enu-

merated set of possible instructions, so the search for a

good instruction set can proceed by moving instructions

into or out of the current instruction set, revising the

benchmark code using peephole rules, and computing

the change in the instruction metric. We will refer to

this process of searching the instruction set space the

enumeration method.

In the example given below the instruction set is “dis-

covered” by the process of assembling microoperations

into single-cycle instructions. There was no attempt

at pre-computing all single-cycle instructions possible

with a given data path. We will call this technique of

assembling instructions from microoperations the com-

paction method, because of its strong relationship with

microcode compaction techniques.

The example given below can be solved using branch-

and-bound search because the benchmarks are small

and the problem domain limited. For more typical ap-

plications a more flexible process is needed, at the ex-

pense, however, of not being able to determine optimal

results. Figure 2 gives an outline of the compaction

method of instruction set formation. The benchmark

programs are first compiled into a graph of primitive

(or rnicr~) operaticms. These micr~operations are de

termined by the data path specification. The graph

3 In practice, some type of limiting factor on each instruction

must be used, such as cycle count or flow graph size.

Benchmark Progtarns

I compilation

Graph of
Primitive Operations

I compaction

Optimized Graph of
Primitive Operations

grouping

$
Instruction Set

Figure 2: Compaction Technique

struction Set Space

of Searching the In-

of operations is then rearranged and compacted in or-

der to improve the performance metric (cycle count,

graph size, etc.). Techniques for rearrangement and

compaction are well know in the field of microcode

compaction, some of which are branch-and-bound, list,

trace, and percolation scheduling. Microoperations in

the optimized graph are then grouped into instructions.

Both the compaction and the grouping must be done

with consideration given to instruction formation. A

potential worst case is that each part of the optimized

graph gives rise to a distinct instruction, yielding an un-

manageable instruction set size. The compaction pro-

cess must be constrained by the needs to limit instruc-

tion set size. This can be achieved with the appropriate

metric, the l~o rule, for example, which balances in-

struction set size against performance.

4 Example: Data Structure

Creation in Prolog

To illustrate our method for instruction set design, we

will use an example that actually came up in the de-

sign of the VLSI-BAM, a general purpose microproces-

sor with extensions for the support of high performance

execution of Prolog [12]. During the instruction set de-

sign of the VLSI-B AM, our research group had proposed

several instructions for the support of data structure

creation in Prolog’s execution model (also called write-

mode unification). Initial versions of the results given

in this section helped us decide on the final instruction
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set support.

4.1 Benchmark Programs

The hypothetical example in Figure

Prolog creates data structures. The

3 illustrates how

Prolog execution

model maintains several stacks in memory. We are con-

cerned with only two: the heap (also called the global

stack) and the environment (the procedure activation

record). Data structures are created on the heap; how-

ever, pointers to the data may also be placed in the

environment or the register file. Prolog is a dynami-

cally typed language, so data is tagged with its type. In

this paper, we will assume that the tags are placed in

the mod-significant four bits of the 32-bit word. Data

structures consist of two or more tagged data words.

The tagged data can be any of the following: a constant

(functor/4), a tagged variable pointer (shown with a V

tag), a word from the registers (reg (O ) ), a word from

the environment (env (O ) ), or a tagged list or structure

pointer (not shown). As the structure is created, the

top-of-heap pointer, H, is incremented.

Initial Stats

Elem’(o)

❑
(m o

reg(0)

Final St*e

environment

H

heap

.?)
m 5

v

%(o)

B

v

v

env(o)

l’%(o)

fmctOr/4

Figure 3: Example of Data Structure Creation in Prolog

Our goal is to find an instruction set that is good

for creating these kinds of data structures. Note that

this data structure creation requires no decisions to be

made in the computation, so the programs will consist of

straight-line code and the resulting instruction sets will

have no branch or jump instructions. Recall that the

inputs to our instruction set design procedure are a data

path and a set of benchmark programs. The data path

will be given below, and our benchmarks will be a set of
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data structures specified as initial and final state pairs.

For the examples in this paper we used 43 different two

word structures and 43 three word structures. This set

of data structures represents a nearly exhaustive set of

all two and three word structures. Ideally we would

weight each benchmark proportionally to the frequency

with which it occurs in actual Prolog programs, but for

illustration we employ unweighed benchmarks.

4.2 Model of Data Path

The model for the data path that we will use is based

on the VLSI-BAM [12]. Instead of using the full inter-

nal opcode control model employed there, however, we

will restrict ourselves to the single-cycle pipe lined con-

trol model. The optimal instruction set will change as a

function of the parameters of the data path. These pa-

rameters include the number of ports to the register file

or memory. Figure 4 shows the model with the parame-

ters most similar to the VLSI-BAM. The two word port

to and from memory supports the load or store of two

consecutive memory locations. Note that several details

of a real data path have been abstracted away.4 For ex-

ample, we will assume that the interconnect boxes allow

all possible interconnections of buses. In a real design,

only some of the connections would be present.

4.3 Details of the Instruction Set

Derivation

Figure 2 illustrates the general outline of instruction

set derivation. In this particular example we did both

the compilation and compaction by branch-and-bound

search, and the grouping was into single-cycle instruc-

tions.

For each benchmark data structure, branch-and-

bound search is used to find the sequence of microopera-

tions requiring the fewest cycles that will take the initial

state of registers and memory to the final state. Because

we are assuming a single-cycle pipeline control model,

instructions are formed by making each cycle’s set of

microoperations be an instruction. A pattern mat th-

ing is done on the microoperation list to generalize each

instruction field value. For example, if the microop era-

tions for a cycle reference register 1 and register 2, these

references are generalized to register i and register j. If

the microoperations reference register 1 multiple times,

all of these references become register i.

The search is constrained by data dependencies and

data path resource limits. There is a single cycle de-

lay between loading data from memory into a register

and using that data in a computation. This restriction

4Removal of details is not necessary, but is done here to pi-event

unnecessary complication of the example.
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Figure 4: Model of Data Path for the VLSI-BAM [12]

is typical of pipelined RISC processors. For our exam-

ples, we will also limit the number of register writes,

not originating from memory, to be one per cycle (this

corresponds to the path labelled with “A” in Figure 4).5

Another important constraint is the number of instruc-

tion bits available for encoding the operations to be per-

formed. Instructions will be fetched over a dedicated

instruction bus, and one 32-bit instruction word can be

fetched each cycle. In this example, no implicit values

of the instruction operands will be allowed. The num-

ber of bits for each instruction field is given in Table 1.

These values were picked to match those used by the

VLSI-BAM [12]. Each instruction has one opcode field,

but the use of the other fields is constrained only by the

total number of bits needed by all of the operations in

the instruction.

The final instruction set is the “union” of the instruc-

tion sets derived from each benchmark. The merging of

instruction sets takes into account the case in which one

instruction is a more general case of another instruction.

In this case the less general instruction is discarded and

the more general instruction is retained.

Most benchmarks have multiple solutions with mini-

5This constraint can be relaxed, but at the cost of incensing

the number of forwarding paths necessary.

Table 1: Number of Bits Required by Each

Field

instruction field # bits

opcode I 6 I
register 5

tag 5

displacement 5

immediate 16

Instruction
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“’’7-7=3..,...,..,3

Benchmuk 3

(solution 1)

Figure 5: Example of Instruction Set Formation

mal cycle count. In this case each minimal solution is

tried separately in the union process. The union with

the fewest instructions is the final instruction set. To

illustrate, Figure 5 shows the solutions for three bench-

marks. Benchmarks 1 and 2 have a single optimal so-

lution but benchmark 3 has two optimal solutions. So-

lution 2 is picked since it will give the smallest set of
instructions.

The result of the search and union is an instruction

set which is optimal over all benchmarks for the mini-

mal cycle count metric. To derive the solution for the

1% metric, an additional step is required. This step in-

volves removing one or more benchmarks from the union

process in an attempt to reduce the size of the final in-

struction set. The resulting instruction set is then used

to compile all of the benchmarks to determine the total

cycle count. More details can be found in [11].



Table 2: Optimal Instruction Set for Simple RISC Data – -- - - “ “ - “ - – -‘l’able 3: Uptlmal instruction Set using Extra Ports to

Path

Ri a mem(Rj) 146 ~ push I
Rj+disp ~ Rj

tagll(Ri+disp) -+ Rj 90 tag address

imm ~ mem(Ri) 69 push immediate

Ri+disp 4 Ri

mem(Ri+disp) ~ Rj 30 load

Ri + mem(Rj+disp) 26 store

These results are for the minimal cycle count and

l% metrics. The second column gives the number

of times the instruction is usedin the benchmarks.

The parameters in the data path model are: 2

register read ports, 1 register write port, l-word

data port width, and 1 ALU. To execute all 86

benchmarks atotalof 363cycles is required.

4.4 Results

Using the benchmarks and data path model described

above, we have derived optimal instruction sets for both

the minimal cycle count and l% metrics. For the sim-

plest instance of the data path model (fewest number

of resources) the resulting instruction set for both the

minimal cycle and l% metrics has 5 instructions and

is shown in Table 2. The instruction set has no real

surprises. Data is moved to and from memory using

load, store, and push. The push instruction allows a

5-bit increment value and some benchmarks use a non-

unit increment. Tagged pointers are created using the

tag address instruction (the register transfer notation

tag II exp represents the insertion of tag into the most

significant bits of ezp). Constants are obtained using

the push immediate instruction. We should note that

the solution is not a trivial result—it is unique and was

chosen from 20 instructions considered by the search

out of a total of 124 possible instructions. Note that

these instruction sets are not sufficient for general pur-

pose calculations. This is due to our constrained data

path model and benchmark domain.

If we allow more bandwidth to the register file and

memory, then the optimal instruction set becomes more

complex. The optimal solution for the minimal cycle

count metric is shown in Table 3. The data path param-

eters for this example closely match those of the VLSI-

BAM processor. Part of the instruction set is identical

to the instruction set for the simple data path, and the

additional instructions are double word versions of load,

store, and push. The push instruction is dropped and

compensated by heavier use of store. The load immedi-

ate instruction is also included and is used for loading a

constant into the register file in preparation for a double

word push of the constant and another value. This re-

sult guided the instruction selection for the VLSI-BAM.

Register File and Memory

Ri ~ mem(Rj+disp) 101 store

tag II (Ri+disp) + Rj 90 tag address

imm - mem(ili) 64 oush immediate

Ri+disp --+ Ri ‘ ‘

Ri/Rj ~ mem(Rk) 36 I push double

Rk+disp x Rk

mem(Ri+disp) ~ Rj 26 load

imm +- Rj 5 load immediate

mem(Ri+disD) ~ Ri /Rk 2 toad double.--/
Ri/Rj ~ m;m(Rk+disp)

I I
2 ] store double I

These results are for the minimal cycle count met-

ric. The second column gives the number of times

the instruction is used in the benchmarks. The

parameters for the data path model are: 3 register

read ports, 2 register write ports, 2-word data port

width, and 1 ALU. To execute all 86 benchmarks

a total of 33o cycles is required.

The VLSI-BAM instruction set includes all of the in-

structions in Table 3 except push immediate which is

replaced with add immediate and store immediate. The

optimal instruction set for the 170 metric simply elimi-

nates the load double and store double at a cost of four

additional cycles. The search considered 40 instructions

out of a total of 799 possible instructions.

If we add a second arithmetic unit to the data path,

then the instruction set becomes even more complex.

Table 4 lists the optimal instruction set using the 1%

metric for a data path with two arithmetic units along

with extra bandwidth to the register file and memory.

Several of the instructions do two logically independent

operations (for example, load with increment). Other

instructions do a sequence of operations which require

multiple cycles in the previous data paths. For exam-

ple, two instructions create a tagged pointer and store

it with other data (push double register/tagged address

and push double tagged register/register). Two instruc-

tions store a tagged pointer in both the register file and

memory (store aad remember tagged address and store

and remember tagged register). Note that the two store

and remember instructions cannot be subsumed by a

single more general instruction because this more gen-

eral instruction would not fit in the 32-bit instruction

word.

6 tag II (Ri+displ) -i mem(Rj+disp2)

tag II (Ri+displ) ~ Rk
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Table 4: Optimal Instruction Set using Extra Ports and Two ALUS

imm ~ mem(Ri) 66 push immediate

Ri+disp ~ RI

tag II (Ri+displ) ~ mem(Rj+dlsp2) 60 store tagged address

Ri + mem(Rj+displ) 45 store with add immediate

Rj+disp2 +- Rk

mem(ll.i+d~pl) ~ Rj 30 load with increment

Rk+disp2 -+ Rk

tag II (Ri+dBp) ~ Rj 16 tag address

Ri/(tag II (Rj+dlspl)) ~ mem(Rj) 16 push double register/tagged address

Rj+disp2 ~ Rj

tag II (Ri+disp) 4 mem(Ri+disp) 14 store and remember tagged address

tag II (Ri+disp) -+ Rj

(tag II Ri)/Rj ~ mem(Ri) 7 push double tagged register/regkter

Rl+disp ~ RI

tag II Ri ~ mem(Rj+dkp) 4 store and remember tagged register

tag II Ri ~ Rk

imm/Ri e mem(Rj) 3 store double immediate/register

These results are for the 1% metric. The second column gives the number of times the instruction is used in the

benchmarks. The parameters for the data path model are: 3 register read ports, 2 register write ports, 2-word data

port width, and 2 AL Us. To execute all 86 benchmarks a total of 261 cycles is required.

5 Conclusions and Future Work

In this paper we have presented an overview of a new

systematic technique for instruction set design. This

technique generates an instruction set when given a data

path, a control model, and a benchmark set. The op-

timization metrics are based on simple combinations of

cycle count, static code size, and instruction set size.

When we applied this technique to the design of an in-

st ruct ion set for data structure crest ion in Prolog, we

were able to use branch-and-bound search to derive op-

timal results for each metric and data path.

The example given in this paper brings up the ques-

tion of whether the derived instruction set can be ef-

fectively used by a compiler. In a sense, using branch-

and-bound search provides us with a “perfect” compiler.

In the past, most problems with instruction set design

have been due to using poor compilers. An instruction

set designed using a poor compiler will often inhibit the

success of a new optimizing compiler. If a “perfect”

compiler is used, then the instruction set will become a

better mat ch for the production compiler as the com-

piler is improved.

Future work with our technique will include its ap-

plication to complete Prolog programs. The derived in-

struction sets will include arithmetic, branch, and jump

instructions. Using the full internal opcode control

model will allow conditional instructions which can pos-

sibly replace instruction idioms containing conditional

branches (for example, unif~ immediate in [12]). Com-

mon instruction idioms can be captured using multi-

cycle instructions when using the modified l% rule

(Equation 3). Using the data path of the VLSI-BAM,

the automatically derived instruction set for complete

Prolog will be directly compared to the VLSI-BAM in-

struction set.
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