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ABSTRACT in most large dimensional systems, at any given time, “most of the
likelihoods using a particle filter (PF). Under certain assumptionssis”) while the change in the rest of the state space (“residual space”)
that imply narrowness of the state transition prior, many efficiengs “small” [10, 11]. If the variance of residual state change is “small
importance sampling techniques have been proposed in literaturgnoygh” so that Theorem 1 is applicable, Assumption 1 will hold. In
For large dimensional state spaces (LDSS), these assumptions maydition, if it is even “smaller” to ensure that Theorem 2 holds with
not always hold. But, it is usually true that at a given time, stateg gma|| enougl, the importance sampling of; .. can be replaced
change in all except a few dimensions is small. We use this faghy Mode Tracking (MT). We call this idea PF-MT (Algorithm 2).
to design a simple modification (PF-EIS) of an existing importance = MT reduces the importance sampling dimension frdim (X )
sampling technique. Also, importance sampling on an LDSS is exto dim(X, ,) (huge reduction for large dimensional problems). Of
pensive (requires large number of particléé) even with the best  coyrse, the error in the estimate &% . will also increase. But for
technique. But if the “residual space” variance is small enough, we00-250 dim problems such as contour tracking [12, 13], this error is
can replace importance sampling in residual space by Mode Tracknore than offset by the reduction in error due to improved effective
ing (PF-MT). This drastically reduces the importance sampling diparticle size. Note that PF-MT is a generalization of the contour

mension for LDSS, hence greatly reducing the requived tracking idea of [13] which was first generalized in [10, 11] and used

Index Terms: particle filter, mode tracking, importance sam- in [12]. It can also be understood as an approximate RB-PF [9, 7].
pling, Monte Carlo methods, sensor networks. Some example applications are as follows. (i) When there are
1. INTRODUCTION two different types of sensors tracking temperature at one location,

Tracking is the problem of causally estimating a hidden state seach with some probability of failure, OL will be bimodal if one

quence{ X, }, from a sequence of observatiof¥; } that satisfy the of them fails (Example 1). When tracking temperature at a large
Hidden Markov Model assumption, i.&; — Y; is a Markov chain number of nodes in a sensor network, the state space dimension can

for eacht, with observation likelihood (OL)(Y;| X, ); andX,_; — be very large an_d aIsp the_ number _of possible OL modes can be very
X is also Markov with state transition pdf (STRY,X¢| X:_1). The Ia_rge. For the situation gﬂscgssed in Example 2, Th_eorem 1 a_tpplles
posteriorp(X;|Y1.t) £ m:(X:). For nonlinear and/or nonGaussian V.V't.h A Lo In other situations, Theorem 1 may still apply with a
state space models; can be efficiently approximated using a par- _f'n'te A if temperatu_re char_lge "?I.t a su_bsampled .SEt of sensor nodes
ticle filter (PF) [1, 2, 3]. One of two main issues in PF design is the'S used as the effective bas_ls. (if) In visual tracklng pr_obler_ns .SUCh
choice of importance sampling density that reduces the variance deforming c_ontour_ tracking [12, _13' 8] or tracking |IIum|na’F|on
importance weights (improves effective particle size)[2]. change of moving objects [14], OL is m“'t'mo"?" (du? to_mu|t|ple

The most commonly used importance sampling density is thé)bjects, occlusions or clutter) anq state space dlmensmn.ls large.
STP, p(X:|X/_,) [1](assumes nothing). But since this does not Note PF-EISo_r PF-MT will still work |fThec_>rerr_1 1appI|es_most
use knowledge ot, the weight variance can be large. For situ- O_f th'_s time. Also, if system model chgnges with time, effective ba-_
ations where the OL is multimodal, but the STP is unimodal and®'S dimension can be changed over time. Also, note that PF.-EIS IS
Famow ehough @ ereure th;at(Xt)’ 5 p(X,[Xi,. V) is uni also applicable to smaller dimensional problems and PF-MT is also
modal, [4] proposes to approximagé by a Gaussian at its mode useful in situations wherg* is actually unimodal.

; ; ; Organization: In Sec. 2, we explain PF-EIS, give sufficient
and importance sample from it. Other solutions that also assume )
* P P conditions for Assumption 1 to hold for an LDSS model and show

p* is unimodal are [2, 5, 6]. In many situations; may be mul- ) . . . .
timodal but conditioned on a small part of the state space, denot oW to.ve.'rlfy these. PE-MT is ?Xp'a“f‘ed n S‘?C- 3 Comparisons
with existing PF methods and discussion are given in Sec. 4.

X, itis unimodal (Assumption 1). When this holds, we propose

to modify Doucet [4]'s method as follows. Let; = [X; s, Xi.r]. 2. PF-EIS: PF-EFFICIENT IMPORTANCE SAMPLING

SampleX:,s from its STP but compute a Gaussian approximationThe “optimal” importance sampling density, i.e. one that minimizes

to p*(X¢|X¢ ) = p"(X:,r|X¢,s) about its mode and importance the conditional variance of weights is 4] X | X{_1, Y2) 2 p*(X,).

sampleX; , from it. We refer to this idea as PF-EIS (Algorithm 1). In most cases, this cannot be computed analytically. [4] suggests ap-
For large dimensional state spaces (LDSS), which have dimerproximatingp* by a Gaussian about its modehenp* is unimodal

sion more than 10 or 12, the number of particles required for reasomBut when OL is multimodalp* will be unimodal only if the STP is

able accuracy is very large [1, 7] and this makes PF an impracticalarrow enough in at least some dimensions. Wieis multimodal,

algorithm. One class of techniques for LDSS is [3, Ch 13],[8] whichwe propose the following modification. Split the state vectgras

resample more than once within a time interval. Alternatively, if X, = [X; ., X; ,] so that variance oK .. is small enough s.t.

conditioned on a small part of the stat¥(;, ), the rest { ..) has Assumption 1 Conditioned onX,.,, p* is unimodal, i.e.

a linear Gaussian state space model, Rao Blackwellization (RB-PF) ‘ ’ ‘ ‘

[9, 7] can be used. Now, this assumption may not always hold. Buty™*(X,,,) £ p*(X:| Xt s) = p(Xe,r| Xi-1, Xt s, Y2) is unimodal



Algorithm 1 PF-EIS. Going from =¥, to =¥ (X;) = o, wi?6(X: — X)), X{ = [X{., Xi,]

1. Importance Samplé, .: Vi, sampleX; , ~ p(X{ | X/ 1).

A

2. Importance Samplé; .. Vi, sampleX;, ~ N(X{,;mi, Sig). Heremi(X{_ 1, X{,,Y:) = argminx, , L'(X:,) andXig £
(V2L (m}))~ " whereL'(X;,,) £ —log[p***(X¢,r)] = — log[p(Xe,r| X{_1, X} o, Y2)].

PV Xp(XY o I1XE_1,X] )
N(X{ 05 my, )

3. Weight & Resample:Computew; = ZNLD; — wherew; = wi_; & resamplet < ¢t + 1 & go to step 1.
j=1%t

Algorithm 2 PF-MT. Going from 7Y, to =¥ (X)) = SN wi”6(X, — X{), Xi = [X{.., Xi,]

1. Importance Samplé(; ,: Vi, sampleX; , ~ p(X/ .| X/ _1).
2. Mode TrackX, ,: Vi, setX;, = mj.
@y

N 5
j=1 %%

3. Weight & Resample:Computew; =

wherew] = wi_1p(Y:| X))p(X{ .| X{_1, X! ,) &resamplet « ¢t + 1, goto step 1.

When this holds for each particle and for each time, we can use the Forithe ab?ve TOdel' we ha\lﬁ*’j(Xwa P () =
Gaussian approximation idea of [4] to approximgité* and sample P(”tﬂ”tflm Cﬁ,l,_ Vt,s Yt_) = p("’tﬂ“,|”tzlwt7_ct’ ).
from it. In practice, even if it holds for most particles at most times,Let fr(vi—1 ) = fr andC;_, + Bsv; s = C}. Then,
our proposed algorithm will work. Thus we propose to importance Ty i i g
sample (IS) as follows. Seledf; . as the minimum number of di- P () ocexp[=E(Ct + Brver)] N (vi,rs fr, Zr) )

mensions ofX required to ensure that Assumption 1 holds. SampleThus L' (v,,,.) = — log[p***(v¢,,)] + const is

X¢ s from its STP (to sample the possibly multiple modegpby. MoK _

SampleX;, from a Gaussian approximation[4] §** about its Liwin) = B(C + Byowy) + Z ([ve,r — fD]p)? 3)
,r) — t T \T

mode, i.e. sampl&(; . from N(m}, X}¢) where 20,1 K

p=1

mi=mi(Xi_1, Xi,,Y:) 2 min L'(X,,), and where.], denotes the'" coordinate of a vector. Nowy™* will
’ Xt,r ’

be unimodal iff L has a unique minimizer. The second term in
Yig2[(VPLY)(mi)] ™Y, LY(Xer) & —log[p™*(X,.,)] + const (3) is strongly convex with a unique minimizer at,, = f.. But
v _ E(C}) (and henceF as a function of;,,.) can have multiple min-
V2L* denotes the Hessian @F. We refer to the above algorithm imizers since OL can be multimodal. If we can ensure tHhatis
as PF with Efficient IS or PF-EIS. It is summarized in Algorithm 1. small enough so thdi’ has a single minimizer that lies in the neigh-
For X, = X, Algorithm 1 reduces to Doucet's algorithm [4] and borhood off} = f,(v{_; ,.), we will be done. This idea leads to:
if X¢s = X, Algorithm 1 reduces to the original PF [1]. Theorem 1 (Unimodality) DenOIef'r(’U;::—l,r) 2 flandCi_; +

2.1. Unimodality of p***( X, ,) for LDSS Models By s = Cf. For the model of (1) (vt,) will be unimodal if
For the LDSS examples of the introduction, the state dynamics can 1. F is twice differentiable almost everywhere.

be written in the form of equations (1)-(4) of [10]. Itisagenericform > i1 B, fiis close enough to a minimizer &fso thatE (C')
of the second order motion model for nonEuclidean state spaces. is strongly convex in its neighborhood.

The quantityC; (e.g. contour or temperature) has “velocity” (time - _ .

derivative), v, split asv, = Bsvi,s + Brvi,» Where B denotes 3 Aprrc,p=1,2,... M — K satisfy

the effective basis directions a8} denotes a basis for the residual inf max  (yp(ve,r) — Apyr) > 0,
spacew s, vt are the corresponding coefficients. For e, .can vt,r€G p=l,. M-K
be the dominant eigenvectors of the covariance:adr it can be an G2 MM (Akp U Zkp) 4
interpolation basisAlso, effective basis dimensiatim(v,s) = K. (v DI, |
If in the LDSS model of [10]C; belongs to a vector space, we Yp(ver) 24 TVELD Ve,r € Axp (5)
haveg(Ci—1,v:) = v anddim(Ct) = M. Then it simplifies to: ’ 0, Vir € ZKp
Ct:Ct—l + stt,s + Br'Ut,'m VEé B,TVCE(CYZ + Brvt,'r)
A 1
Ut,s:fs(vtfl,s) + Vt,s, l/t,sNN(O, 25)7 Es:dl‘a‘g{AP}{f:l VD:Uty"‘ - f?“ (6)
Ut,r:fr(vtfl,r) + Vt,r, Vt,rNN(O7 Zr), E'r:diag{Ap}éyw:K—o—l AK,Pé{vtﬂ“ € RII:(,LC : [VD]P[VE}P < 0}’
p(Y:|X:) = p(Yi|Ct) 2 aexp[—Ey, (Cy)) 1) Zrp2{vi,r € Ri.1c : [VE], =0& [VD], = 0},

A M-K ~i
Here X, . = v, and X, = [v:,Ci]. For the purpose of sam- Ricpe={v.r €R $Cit Brogr €Rect (0)
pling, X; , = v, sinceC; is a deterministic function of’;_1, v¢ s, whereRrc C S = ]_RM is the largest contiguous region in
anduvy,,. Also, for the above modeb( X¢,s| X¢—1) = p(X¢,s| Xt—1,5) the neighborhood of’y + B, f; which contains a minimizer
andm! = mi(xti—l,ng,th)- We obtain sufficient conditions for of E and whereE(C) is convex. Also|.| denotes absolute
Assumption 1 for this model and extend them to the model of [10]. value and[.], denote®'” coordinate of a vector.
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Fig. 1. ComputingA’% for Example 1 (4 = 3,K = 1). We useda; = 0.1, s = 04, a = 10, 02, = 1, Ay = 5.4, B, =
[0.64 — 0.56 0.53]', B, = [0.73 0.66 — 0.18; —0.25 0.5 0.83]’ (we use MATLAB notation). AlsoC; ; = [00 0], vi_;, = [00],
vi_1,=0,Y; = [6.43 1.68 —3.59 — 2.5 1.59 1.49]" andv; , = 2.9 (simulated from\/(0, A1)). Col. 1: mesh plot o as a function
of v,,. Col. 2: Rk, .o, note that the poinf; = vi_, ,. lies inside it. Col. 3,4,5: the 3 regions constitutiigAx 1 N Ak 2, Zx,1 N Ak,
Zk,1 N Ak, 2 along with the computed value d&* in the 3 regions (4.84, 745.24, 226.12). The final valig is the minimum of these 3
values, i.e. we havAj = 4.84. Col. 6: contours of VL]; = 0 and[V L], = 0 for L computed withA, = A3 = 0.9A%. The contours
have only one point of intersection (only one point wh&t& = 0). Col. 7: contours of of VL]; = 0,5 = 1,2 for A, = Az = 1.1A%.
There are 3 intersection points (3 points whete = 0).

An easy to verify sufficient condition to ensure (4) holds is Now (10) and (11) can be combined and compactly written as:
] A s maxp[yp(ve,r) — Apyx] > 0forall v, € G or that
p=ti b K Apri < Utl,l;‘lgg pzlf?%s%_}(’)/p(vt,'r) =48k @) infy, .eg maxp[yp(ve,r) — Apyx] > 0 wherew, is defined (5).

This is the same as (4).

Proof: We need a set of conditions that ensure tiahas a unique Condition (8) is sufficient for (4) becauseax; g1 (p) —g2(p)] >
minimizer.The second term in (3) is strongly convex everywhere™aXp 91(p) — max; g2(p)-

Consider the regiofRc. Condition 2 ensures th& ¢ exists.

By its definition, E(C) as a function ofC is convex inRrc. BY  Remark 1 If £(C) is Lipschitz, we will always getj > 0 and
condition 1, this implies that the Hessi&r& E > 0 in Ry,Lc, hence we can always find,. > 0 for whichp™* is unimodal.

inh i imnli 2 T o2 ;
WhICh_m turn |mpl|?s thalV.UmE =B, [VCE]B’” 2 0In R,z Corollary 1 For the LDSS model of [10], Theorem 1 applies with
Thus inRy.zc, L'(ve,r) is strongly convex, i.e. it has a unique e following modifications: (a) Repladg, f; by g(B. f:) every-
minimizer. We need to show that outsifle .o, i-€. INRi .oy L' yhere, (b) Redefite E £ BEV,g(B,vr.,)VeE(Ci+9(Byor.))
has no minimizersA sufficient condition for this is that ,,, ,. L # 0, . s Og; . 0 e
Yo, € Ri.pc with (Vvg)i; = 5,2 (c) Directly defineRx Lo g R a~s.the
Let T» denotes the second term of (3). NOWI. = VE + VT, largest contiguous region in the neighborhoodfpfwhere E(C} +
can be zero only in regions ®§ - where, for allp, [VE], and  g(Brvt,r)) is convex as a function af,...

[VTs], = [AVT; either have different signs or are both zero. ThusNote, the above result is more general than that of [10].
P

in R% o, VL can be zero only i§ = N5 % (Ax p U Zic p). 2.2. Numerical Verification of Unimodality
We need a condition on, ;  that ensures that When trying to verify (3) using numerical (finite difference) compu-
tations of gradients and Hessiafsieeds to be replaced by a small
[VL], # 0, for somep, Vv, € G 9) numberey > 0, i.e. we need conditions to ensyf® L],| > ¢ for

somep for all v, € R, c- To ensurg[VL],| > € for somep

Now 7> only has a minimizer insid& x,.c and none outside it. oy gl v, . € RS, ., the following two modifications are needed:
Thus if we can find a condition o, k- that ensures thqV L], > redefinezy , and-y, (ve., ) as follows

0 where[VTz], > 0 and[VL], < 0 where[VT:], < 0 for at

least onep for all points inG, we will be done. Thus, at any point Zrp2{vir € Ri.ro : |[VElp| < €0, &[VE],.[VD], > 0}

v, € G, we needVL],.[VT3], > 0 for at least one. VDI, |
Insideg, v¢ can either belong to))"7 " Ak ,, or it can belong o (ver) 2 T ELT Vi € A p

t0 Zxpy N+ Zx,p; N [Nprpy.ps...n; Axc.p) fOr SOME) > 0. First pATLT SR, v € Ziy

consider av; » € N Ak ,,. For a giverp, it is easy to see that !

. [V D], Example 1 (ComputingA%) Consider tracking temperature (de-

VL [VT2]p > O1f A”+KM<K“VE1P‘ ' Thus. for (9) to hold, we notedC,) at M locations. Temperature at each location is measured
need that for each;,, € N,_;" Ak p, there is at least ong for  ysing two types of sensors that have failure probabiliiesindas.
whichA, 1k < 'l[[zg]]’)“ . This is equivalent to requiring that If the sensor fails it outputs a random number distributed according

? to a pdfps(y). We assume here thak(y) = Unif(y; —a,a). If
the sensor is working, the measured temperature is the actual tem-
perature plus Gaussian noise. The noise is independent of the noise
at other sensors. Failure of all tB@/ sensors are also independent.

Now considew: » € Zx p;N. .. 2K p; N[Nppy pa...p; Axp] = B.  Thus we have the following observation likelihood (OL):

[V Dly|
p:17~r-r~l(aﬁ*f<)[ [[VE]|

— Agip] > 0, Yo, € N0 A, (10)

Here[VL],, =0,Vk =1,2,..5. Sointhis case, for (9) to hold, we M Lo . ,
need p(Yi|Co) =[] (¥ Y% ICup) = p(Yiip|Cop)p (Y| Cip)
=1
[V Dly| '

- | o - |
per2X gy, ~ Al > 0o €8 A pv7 10, )= (1 - o )N (Vi Cop, 02, ”) + apr (YY) (12)
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The state dynamics follows (1), i.e. change in temperature over
(v¢) at the different sensor locations is assumed to be zero r
and spatially correlated. The eigenvectors of the covarianag «
are[B, B,| and the eigenvalues afe\,}. The coefficients alon £
B, B;, denotedv; s, v, are assumed to follow a random wg
model with f, (vs) = vs and fr-(vr) = vy, g
ConsiderM = 3 and K = 1 so thatv,, € R2. We need §
to find a condition oMz, Az that ensures that assumption 1 hol
Hereg is a subset of the 2D plane and consists of 3 types of regi
Ari N Ak, Zxk1 N Ak2 and Ak 1 N Zk2. Since the secon
term of (3) is convex with minimizef; which belongs Rk, Lc,
there is no point iR % ;- where botHV D], = 0 and[V D]z = 0.

ThusZk,1N Zk 2 will always be an empty set. We show an example

compuation ofA % in Fig. 1 for which we gotA}, = 4.84.
3. PF-MT: PF WITH MODE TRACKER

0|

—B— Pr-kom

B PF-K dim
sol | ——pem 0 —prr
—A—pres A-rres

—O— pr-0rignal O PF-Original

0 s 10 55 F)
tne,t

(a) Examp 2N=45

time, t

(c) Examp 3y=20

(b) Examp 3V=40

Fig. 2. RMSE (root mean square error) of the tracked temperatures
from true values. RMSE is computed as square root of mean of
squared norm of the error over 10 random simulations of the state

LDSS problems very often have a small dimensional effective basigy, ;e model. (a): Comparing RMSE of PF-EIS with that of original
X5, in which most of the state change occurs and a large dlmeq;,F[l] and of PF-Doucet[4] for Example 2. (b) and (c): Comparing

sional residual space; -, in which the variance of the state change
is small, i.e. trac€:,) is small. Thus tradg5) < tracgX,.) will

also be small. When this is true, a valid approximation is to replac

importance sampling of; . from N (m}, %}) (step 2 in Algo-
rithm 1) by deterministically setting(; ,, = mj. We call this the
Mode Tracking (MT) approximation sino@! is the mode op**t.
Another valid approximation, whexi, is small, is to seb; g = %,
This and the fact thak’; . = m; makes the denominator af; con-

RMSE of PF-MT with that of PEK dim, PF-EIS and original PF

éM dim) for Example 3. (b)N=40 patrticles, (c)N=20 particles.

Thus, for everye > 0, we can find &. = €*/(M — K) s.t. if
Ak, tot < 0c, thenPr(||v;,. — my|| > €) < €. This holds for any
given values ob;_, ., Ci_,,v} ., Y;. Thus the theorem follows.

stant (and hence it can be removed). The above modifications, called e mT approximation introduces some error in the estimate of

PF-MT, are summarized in Algorithm 2.
Consider the model of (1). We show below that when ttag

is small, with high probability, there is little error in replacing a ran-
dom sample frorV'(m}, $%5), by mi, which is the mode of**-*.
Theorem 2 (IS-MT) For (1), assume that conditions of Theorem
1 are satisfied. Lev;, ~ N(m},Zis). Then,v;, converges
to mj in probability as trac¢s,) — 0, for almost all values of
szl,r7 C)",Lfb Uz,m th
Proof: From (1) and (3), we have

(Srs) ™' = (V3 L

Vt,r

)(mi) = (Vs, . E)(Cy + Brmy) + 3,

_ ‘ (13)

By Theorem 1 is the unique minimizer of*. Also, as explained

in the proof of Theorem 1! lies insideR k. .c and insideR k1.,

E is convex, i.e.(V2,  E)(Ci + Bymi) > 0. Thus(Xig) ™' >

%! or equivalently=ts < 3,.. This implies that
tracgX}g) < tracgX,) (14)

Note thatm; is a function ofv;_; ,.,Ci_1,v} ., Y;. For any given
values ofv;_, ., Ci_1,v; s, Yi, Wwe have that

M-K 2
i < P g2
Pr(||v,, —my]| > €) < ; Pr(lv;,» — mi], > % 7K)
M-K i i
<y (Xis)pp _ _traceXis)
= /(M -K) €/(M-K)
< trac€X, ) (M — K) o Ak ot(M — K)
- €2 B €2

The first inequality follows sincdv; . : ||vi . — mi||* > €*} C

X (error decreases with decreasing spread of). But it reduces

the PF dimension fromim(X;) to dim(X; ) (huge reduction for
large dimensional problems), thus greatly improving the effective
particle size. For carefully chosen dimensionX¥f s, this results

in much smaller total error when the available number of particles,
N, is small. Note also, that for best performance, one may choose a
smaller dimensionak, , (larger dimensionak, ;) for PF-MT than

that for PF-EIS, i.e. spli; . for PF-EIS intoX; . s and X; . » and

use the MT approximation only oN . .

4. SIMULATION RESULTS AND DISCUSSION

Example 2 Consider Example 1 witi/ = 5 sensor nodes and
K = K.m = 1. But now assume that the sensors at locations
K + 1 to M have zero failure probability (new sensors) and that
[Bs Br] = I. Thus OL is multimodal only as a function 6%, 1.k .
Because of the choice ¢B; B,], C¢,1.x depends only om; , and
hence OL is multimodal only as a functionaf s (and notv, ). In
fact £ will be a convex function ob; . and henceéRy ;o will be
empty. Thus Theorem 1 holds féf = K;,,, with AT = oo and so
PF-EIS can be applied for any valuesf. Simulation parameters
weres,, = 5, ps(y) = Unif(—100,100), &5 = 10,5, = 214.

RMSEs of the tracked temperatures from their true value for this
system, obtained using using PF-EIS with= K, = 1, K =0
(PF-Doucet[4]), andS = M (original-PF[1]) is shown in Fig. 2(a).
As can be seen, RMSE is smallest for PF-EIS.

Example 3 Consider Example 1 witd/ = 10 sensor nodes. All
sensors have nonzero failure probabilify;= 3 and[B; B,] was a
randomly choserd/ x M orthonormal matrix (not identity). Also,
o2 =5,ps(y) = Unif(y; —10,10), B, = 2513, B, = 2.5I7.

To track this system, a regular PF (PF-original or PF-EIS) will
have to sample oM = 10 dimensions. But PF-MT utilizes the fact

{vi, - there exists at least one p for whip . f_mili > €’ /(M — KXhat the variance in residual spacg,, is much smaller thai.. It
and applying the union bound on the probability of this event. Theapproximates; ,. by its posterior mode at ea¢h(instead of impor-

second inequality follows by applying Markov’s inequality{tg ,. —
mi],)?. The third inequality holds because of (14).

tance sampling for it). This way the importance sampling dimension
is only K = 3, but because of the MT step, the performance is much



better than just running a K-dim original PF (run the PF only on the [8] J.P. MacCormick and A. Blake, “A probabilistic contour dis-

first K dimensions and treat . = 0 for all t). Also, for small num-
ber of particlesV, its effective particle size is much better than that
for either PF-EIS or PF-Original/ dim) and hence error is much
smaller. As can be seen from Fig. 2(c), both RFdim and either of
PF-EIS or PF-Original (PB4 dim) perform much worse than PF-
MT for N = 20 particles. IfN is allowed to increase to 40, PF-EIS [10]
(exact algorithm but lower effective particle size than PF-original)
has the best performance (Fig. 2(b)).Nfis increased further, say
N =100, all PFs have similar performance.

Note thatM = 10 is a large enough dimensional state space if
reasonable accuracy is desired with as lowNas= 20 particles. In [12]
other practical scenarios (which are difficult to run multiple Monte
Carlo runs of) such as contour tracking [13, 12] or tracking tempera-
ture in a wide area with large number of sensors, the state dimension
can be as large as 200 or 250 while one cannot use more than 50 or
100 particles (for computational reasons). [13]

There are still some un-addressed issues for PF-MT. If all or
most particleéfvi’s, vi,r] stick to a wrong region somehow (because
of the strong prior term, this will happen only if there are a sequence
of bad observations), future particlesm@fs may get back because [14]
of random sampling, but;',,« will take very long (again because of
strong prior term and no random sampling). This will resultin loss of
track. This problem will be much lesser if the dynamicegf is ei-
ther temporally independent or at least temporally stationary. Under
this assumption, one should be able to show convergence of PF-MT
ase (used in Theorem 2) goes to zero. Temporal independence is a
valid model for problems where the state vector can be interpreted as
a “spatial signal” (e.g. temperature in space or contour tracking) and
the effective basis is velocity at a subsampled set of points. For such
problems, the state change (temperature change or contour deforma-
tion) is usually approximately bandlimited (spatially) at a frequency
much smaller than the sampling frequency of the sensors or the im-
age and so the value & (computed using Nyquist criterion for the
approximate bandwidth) is much smaller thah[12].

9]

(11]
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