Modified-CS: modifying Compressive Sensing for problems with partially known support

Namrata Vaswani and Wei Lu (ISU)

Department of Electrical and Computer Engineering lowa State University Web: http://www.ece.iastate.edu/~namrata/research/SequentialCS.html

Namrata Vaswani and Wei Lu (ISU) Modified-CS: modifying Compressive Sensing for problems with

イロト イポト イヨト イヨト

The Problem

- Reconstruct an *m*-length sparse vector, *x*, from an *n*-length measurement vector, *y* := *Ax*, when *n* < *m*
 - use partial knowledge of the support of x to reduce the n required for exact reconstruction
- Support of x is $N = T \cup \Delta \setminus \Delta_e$
 - ► *T*: "known" part of the support
 - Δ : "unknown" part of the support, Δ is disjoint with T
 - $\Delta_e \subseteq T$: error in the known part
- Measurement matrix, A, satisfies the S-RIP, $S = |T| + 2|\Delta|$

Application - 1: single signal/image

- T known from prior knowledge,
- e.g. in a natural image (often wavelet-sparse) with a small black background, most approximation (lowest subband) coeff's will be nonzero
- Set $T = \{$ indices of all approximation coeff's $\}$, then
 - Δ_e = {indices of approximation coeff's which are zero}
 - Δ = {indices of scaling coeff's which are nonzero}

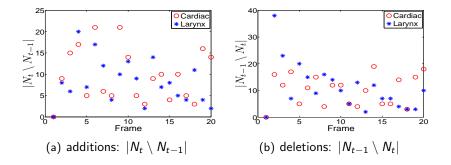
Application - 2: time sequence of signals/images

- ► Recursively reconstruct a time sequence of sparse vectors, x_t , with support, N_t , from measurement vectors, $y_t := Ax_t$
 - "recursively": use only \hat{x}_{t-1} and y_t to reconstruct x_t
- Applications: real-time dynamic MRI, single-pixel video, ...
 - use: the sparsity pattern of the signal sequence changes slowly
- Set $T = \hat{N}_{t-1}$ (support estimate from t-1)

Application - 2: time sequence of signals/images

- ► Recursively reconstruct a time sequence of sparse vectors, x_t , with support, N_t , from measurement vectors, $y_t := Ax_t$
 - "recursively": use only \hat{x}_{t-1} and y_t to reconstruct x_t
- Applications: real-time dynamic MRI, single-pixel video, ...
 - use: the sparsity pattern of the signal sequence changes slowly
- Set $T = \hat{N}_{t-1}$ (support estimate from t-1)
 - ▶ if $\hat{N}_{t-1} = N_{t-1}$ (exact recon), $\Delta = N_t \setminus N_{t-1}$, $\Delta_e = N_{t-1} \setminus N_t$
 - ▶ slow changes in sparsity pattern $\iff |\Delta|$, $|\Delta_e| << |N_t| \approx |T|$

Example: slow support change of medical image seq's



- ▶ *N_t*: 99%-energy support of 2D-DWT of image
- Maximum size of addition or deletion less than $|N_t|/50$ for both
 - heart: $|N_t| \approx 1400 1500$, m = 4096
 - ► larynx: $|N_t| \approx 4400 4600, m = 65536$

Outline

Background and the proposed solution (modified-CS)

Exact reconstruction result

Simulation results

Summary, Related work and Future work

・ロン ・回 と ・ ヨン ・ ヨン

Notation, Recap of Compressive Sensing [Donoho'05, Candes, Romberg, Tao'05]

- Notation:
 - A_T : sub-matrix containing columns of A with indices in set T
 - β_T : sub-vector containing elements of β with indices in set T
 - $T^c = [1:m] \setminus T$: complement of set T
 - ||A||: spectral matrix norm (induced 2-norm)
 - A': denotes the transpose of matrix A
- Compressive Sensing: Reconstructs a sparse signal, x, with support, N, from y := Ax by solving

$$\min_{\beta} ||\beta||_1 \ s.t. \ y = A\beta$$

• Exact reconstruction will occur if $\delta_{2|N|} + \theta_{|N|,2|N|} < 1$

イロト イポト イヨト

Define δ_{S} , $\theta_{S,S'}$ [Candes,Romberg,Tao'05]

• Restricted isometry constant, δ_S : smallest real number s.t.

$$(1-\delta_{\mathcal{S}})||c||_{2}^{2} \leq ||A_{\mathcal{T}}c||_{2}^{2} \leq (1+\delta_{\mathcal{S}})||c||_{2}^{2}$$

 \forall subsets T with $|T| \leq S$ and for all c

• easy to see:
$$||(A_T ' A_T)^{-1}|| \le 1/(1 - \delta_{|T|})$$

▶ Restricted orthogonality constant, $\theta_{S,S'}$: smallest real no. s.t.

$$|c_1'A_{T_1}'A_{T_2}c_2| \le \theta_{S,S'} ||c_1||_2 ||c_2||_2$$

 \forall disjoint sets T_1, T_2 with $|T_1| \leq S, |T_2| \leq S'$ and $\forall c_1, c_2$

• easy to see:
$$||A_{T_1}'A_{T_2}|| \le \theta_{|T_1|,|T_2|}$$

Modified-CS [Vaswani,Lu, ISIT'09]

- Our problem: reconstruct x with support N = T ∪ Δ \ Δ_e from y := Ax when T is known
- First consider the case: $|\Delta_e| = 0$, i.e. $N = T \cup \Delta$
 - among all solutions of y = Aβ, find the β whose support contains the smallest number of new additions to T

Modified-CS [Vaswani,Lu, ISIT'09]

- Our problem: reconstruct x with support N = T ∪ Δ \ Δ_e from y := Ax when T is known
- ▶ First consider the case: $|\Delta_e| = 0$, i.e. $N = T \cup \Delta$
 - among all solutions of y = Aβ, find the β whose support contains the smallest number of new additions to T

$$\min_{\beta} ||(\beta)_{T^c}||_0 \ s.t. \ y = A\beta$$

• x is its unique solution if $\delta_S < 1$ for $S = |T| + 2|\Delta|$ (S-RIP)

イロト イポト イヨト

Modified-CS [Vaswani,Lu, ISIT'09]

- Our problem: reconstruct x with support N = T ∪ Δ \ Δ_e from y := Ax when T is known
- ▶ First consider the case: $|\Delta_e| = 0$, i.e. $N = T \cup \Delta$
 - among all solutions of y = Aβ, find the β whose support contains the smallest number of new additions to T

 $\min_{\beta} ||(\beta)_{T^c}||_0 \ s.t. \ y = A\beta$

• x is its unique solution if $\delta_S < 1$ for $S = |T| + 2|\Delta|$ (S-RIP)

• The above also holds when $|\Delta_e| \neq 0$, i.e. $N = T \cup \Delta \setminus \Delta_e$

Modified-CS [Vaswani,Lu, ISIT'09]

- Our problem: reconstruct x with support N = T ∪ Δ \ Δ_e from y := Ax when T is known
- First consider the case: $|\Delta_e| = 0$, i.e. $N = T \cup \Delta$
 - among all solutions of y = Aβ, find the β whose support contains the smallest number of new additions to T

$$\min_{\beta} ||(\beta)_{T^c}||_0 \ s.t. \ y = A\beta$$

• x is its unique solution if $\delta_S < 1$ for $S = |T| + 2|\Delta|$ (S-RIP)

- The above also holds when $|\Delta_e| \neq 0$, i.e. $N = T \cup \Delta \setminus \Delta_e$
- ▶ Replace ℓ_0 norm by ℓ_1 norm: get a convex problem

$$\min_{\beta} ||(\beta)_{T^c}||_1 \ s.t. \ y = A\beta \ (\text{modified-CS})$$

Exact reconstruction using ℓ_0 modified-CS [Vaswani,Lu, ISIT'09]

$$\min_{\beta} ||\beta_{\mathcal{T}^c}||_0 \ s.t. \ y = A\beta \quad (\ell_0 \text{ mod-CS})$$

• (ℓ_0 mod-CS) achieves exact reconstruction if

$$\bullet \ \delta_{|\mathcal{T}|+2|\Delta|} = \delta_{|\mathcal{N}|+|\Delta_e|+|\Delta|} < 1$$

▶ if $|\Delta| = |\Delta_e| = |N|/50$, this becomes $\delta_{1.04|N|} < 1$

- Compare with CS
 - (ℓ_0 CS) needs $\delta_{2|N|} < 1$

recall: $T = N \cup \Delta_e \setminus \Delta$, T: known part of support, Δ : unknown part, Δ_e : error in known part

Exact reconstruction using modified-CS [Vaswani,Lu, ISIT'09]

$$\min_{\beta} ||\beta_{\mathcal{T}^c}||_1 \ s.t. \ y = A\beta \pmod{\mathsf{CS}}$$

Theorem

x is the unique minimizer of (mod-CS) if $\delta_{|\mathcal{T}|+|\Delta|} < 1$ and

$$\theta_{|\Delta|,|\Delta|} + \delta_{2|\Delta|} + \theta_{|\Delta|,2|\Delta|} + \delta_{|\mathcal{T}|} + \theta_{|\Delta|,|\mathcal{T}|}^2 + 2\theta_{2|\Delta|,|\mathcal{T}|}^2 < 1$$

Corollary (simplified condition) x is the unique minimizer of (mod-CS) if $|\Delta| \le |T|$ and

$$\delta_{|\mathcal{T}|+2|\Delta|} < 1/5$$

recall: $T = N \cup \Delta_e \setminus \Delta$, T: known part of support, Δ : unknown part, Δ_e : error in known part

イロト イポト イヨト

Comparing modified-CS with CS

Compare sufficient conditions for exact recon.

• Modified-CS: $\delta_{|\mathcal{T}|+|\Delta|} < 1$ and

 $\textit{Mcond} = (\delta_{2|\Delta|} + \theta_{|\Delta|,|\Delta|} + \theta_{|\Delta|,2|\Delta|}) + (\delta_{|\mathcal{T}|} + \theta_{|\Delta|,|\mathcal{T}|}^2 + 2\theta_{2|\Delta|,|\mathcal{T}|}^2) < 1$

CS [Decoding by LP, Candes, Tao'05]:

 $\textit{Ccond} = \delta_{2|\textit{N}|} + \theta_{|\textit{N}|,|\textit{N}|} + \theta_{|\textit{N}|,2|\textit{N}|} < 1$

• If $|\Delta| \approx |\Delta_e| << |N|$ (typical for medical image seq's), Mcond << Ccond

recall: n is the number of measurements, T: known part of support, Δ : unknown part, Δ_e : error in known part $\Xi = 2200$

Comparing modified-CS with CS

Compare sufficient conditions for exact recon.

• Modified-CS: $\delta_{|\mathcal{T}|+|\Delta|} < 1$ and

 $\textit{Mcond} = (\delta_{2|\Delta|} + \theta_{|\Delta|,|\Delta|} + \theta_{|\Delta|,2|\Delta|}) + (\delta_{|\mathcal{T}|} + \theta_{|\Delta|,|\mathcal{T}|}^2 + 2\theta_{2|\Delta|,|\mathcal{T}|}^2) < 1$

CS [Decoding by LP, Candes, Tao'05]:

$$\textit{Ccond} = \delta_{2|\textit{N}|} + \theta_{|\textit{N}|,|\textit{N}|} + \theta_{|\textit{N}|,2|\textit{N}|} < 1$$

• If $|\Delta| \approx |\Delta_e| << |N|$ (typical for medical image seq's),

Mcond << Ccond

- *Mcond* < 1 can hold even with n < 2|N|
- In simulations with n = 1.6|N|:
 - Modified-CS worked w.p. 0.99 if $|\Delta| = |\Delta_e| = |N|/50$
 - ► CS worked w.p. 0

recall: n is the number of measurements, T: known part of support, Δ : unknown part, Δ_e : error in known part = -20

Proof Idea: Lemma 1

The idea of the proof is motivated by the proof of the exact reconstruction result for CS [Decoding by LP, Candes, Tao'05]

Lemma

x is the unique minimizer of (mod-CS) if $\delta_{|T|+|\Delta|} < 1$ and if we can find a vector w satisfying

$$\blacktriangleright A_T'w = 0$$

•
$$A_{\Delta}'w = sgn(x_{\Delta})$$

$$\blacktriangleright ||A_{(T\cup\Delta)^c}'w||_{\infty} < 1$$

イロト イポト イヨト イヨト

Proof Idea: Lemma 2

Lemma

Let c be a vector supported on a set T_d , that is disjoint with T, of size $|T_d| \leq S$, and let $\delta_S + \delta_{|T|} + \theta_{|T|,S}^2 < 1$. Then there exists a vector \tilde{w} and an exceptional set, E, disjoint with $T \cup T_d$, of size |E| < S' s.t. $||\tilde{w}||_2 \leq K_{|T|}(S)||c||_2$,

$$\begin{array}{rcl} A_{T}'\tilde{w} &=& 0, \\ A_{T_{d}}'\tilde{w} &=& c, \\ ||A_{E}'\tilde{w}||_{2} &\leq& a_{|T|}(S,S')||c||_{2}, \\ ||A_{(T\cup T_{d}\cup E)^{c}}'\tilde{w}||_{\infty} &\leq& \displaystyle \frac{a_{|T|}(S,S')}{\sqrt{S'}}||c||_{2}, \ \text{where} \\ a_{|T|}(S,S') &:=& \displaystyle \frac{\theta_{S',S}+\frac{\theta_{S',|T|}}{1-\delta_{|T|}}}{1-\delta_{S}-\frac{\theta_{S,|T|}^{2}}{1-\delta_{|T|}}} \\ \end{array}$$

Modified-CS: modifying Compressive Sensing for problems with

Proof idea: Proving the result

- Apply Lemma 2 iteratively to find a w needed by Lemma 1
 - ▶ at iteration k = 0, apply it with $S = S' = |\Delta|$: get \tilde{w}_1
 - at iteration k > 0, apply it with $S = 2|\Delta|$, $S' = |\Delta|$: get \tilde{w}_{k+1}

• define
$$w = \sum_k (-1)^{k-1} \tilde{w}_k$$

• can show that w satisfies $A_T'w = 0$, $A_{\Delta}'w = \operatorname{sgn}(x_{\Delta})$, and

$$||A_{(\mathcal{T}\cup\Delta)^c}'w||_{\infty} < a_{|\mathcal{T}|}(2|\Delta|,|\Delta|) + a_{|\mathcal{T}|}(|\Delta|,|\Delta|)$$

▶ Thus if $a_{|\mathcal{T}|}(2|\Delta|, |\Delta|) + a_{|\mathcal{T}|}(|\Delta|, |\Delta|) < 1$, Lemma 1 applies

Simulation results: Probability of exact reconstruction

- ▶ fixed m = 256, |N| = 0.1m (typical 99%-support size)
- used a random Gaussian A
- ▶ varied *n* (number of measurements), $|\Delta|$ and $|\Delta_e|$
 - for each choice, averaged over N, $(x)_N$, Δ , Δ_e

Simulation results: Probability of exact reconstruction

- ▶ fixed m = 256, |N| = 0.1m (typical 99%-support size)
- used a random Gaussian A
- ▶ varied *n* (number of measurements), $|\Delta|$ and $|\Delta_e|$
 - for each choice, averaged over N, $(x)_N$, Δ , Δ_e
- For n = 1.6|N|,
 - CS works 0% times
 - Mod-CS works \geq 99% times if $|\Delta| \leq$ 0.04|N|, $|\Delta_e| \leq$ 0.08|N|

Simulation results: Probability of exact reconstruction

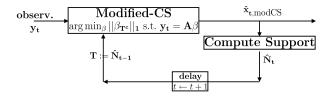
- ▶ fixed m = 256, |N| = 0.1m (typical 99%-support size)
- used a random Gaussian A
- ▶ varied *n* (number of measurements), $|\Delta|$ and $|\Delta_e|$
 - for each choice, averaged over N, $(x)_N$, Δ , Δ_e
- For n = 1.6|N|,
 - CS works 0% times
 - Mod-CS works \geq 99% times if $|\Delta| \leq$ 0.04|N|, $|\Delta_e| \leq$ 0.08|N|
- For n = 2.5|N|
 - CS works 0.2% times
 - Mod-CS works \geq 99% times if $|\Delta| \leq$ 0.20|N|, $|\Delta_e| \leq$ 0.24|N|

Simulation results: Probability of exact reconstruction

- ▶ fixed m = 256, |N| = 0.1m (typical 99%-support size)
- used a random Gaussian A
- ▶ varied *n* (number of measurements), $|\Delta|$ and $|\Delta_e|$
 - for each choice, averaged over N, $(x)_N$, Δ , Δ_e
- For n = 1.6|N|,
 - CS works 0% times
 - Mod-CS works \geq 99% times if $|\Delta| \leq$ 0.04|N|, $|\Delta_e| \leq$ 0.08|N|
- For n = 2.5|N|
 - CS works 0.2% times
 - Mod-CS works \geq 99% times if $|\Delta| \leq 0.20 |N|$, $|\Delta_e| \leq 0.24 |N|$

▶
$$n = 4|N|$$
: CS works 98% of times

Modified-CS for a time sequence of signals

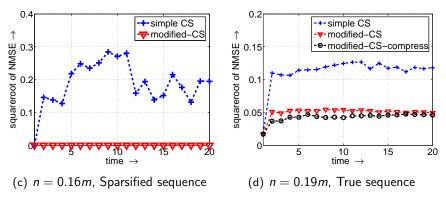


• Support computed as $\hat{N}_t = \{i \in [1 : m] : (\hat{x}_t)_i^2 > \alpha\}$

Namrata Vaswani and Wei Lu (ISU) Modified-CS: modifying Compressive Sensing for problems with

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Simulated MRI: Reconstructing a cardiac image sequence



- sparsity basis: 2-level 2D-DWT, Daubechies-4 wavelet
- m = 1024 (32x32 image), $|N_t| \approx 107 \approx 0.1 m$

recall: n is number of measurements

Namrata Vaswani and Wei Lu (ISU)

< □ ▷ < (□ ▷ < (□ ▷ < (⊇ ▷ < (⊇ ▷ < (⊇ ▷) < (⊇ ▷) < (○))
Modified-CS: modifying Compressive Sensing for problems with

Simulated MRI: Reconstructing a larynx image sequence

Original sequence

CS-reconstructed sequence

Modified CS reconstructed sequence

99%-energy support $|N_t| \approx 0.07m$, $|\Delta| \approx 0.001m$, m = 65536, used n = 0.16m (for t > 0), n = 0.5m (for t = 0) and the set of the s

Namrata Vaswani and Wei Lu (ISU)

Modified-CS: modifying Compressive Sensing for problems with

Summary

- Introduced modified-CS for sparse reconstruction problems with partially known support (known part may have error)
- Modified-CS solves

$$\min_{\beta} ||(\beta)_{\mathcal{T}^c}||_1 \text{ s.t. } y = A\beta$$

where T is the known part of the support

- Exact reconstruction if $|\Delta| \le |T|$ and $\delta_{|T|+2|\Delta|} < 1/5$
- Key app: recursive reconstruction of sparse signal sequences, e.g. real-time dynamic MRI, single-pixel video imaging,...

Related work

- Similar problem to ours, do not study exact reconstruction
 - Least squares and Kalman filtered CS [Vaswani, ICIP'08, ICASSP'09]
 - Recursive lasso [Angelosante, Giannakis'09]
- Different problem than ours
 - ► Warm start and homotopy methods [Rozell et al'07, Asif,Romberg'09]
 - use previous recon. and/or homotopy methods to speed up the current optimization
 - do not use the past to help reduce the number of measurements required for reconstructing the current signal
 - Reconstruct a single signal from sequentially arriving measurements [Malioutov et al'08, Ghaoui NIPS'08, Asif,Romberg'09]
- Batch or Offline CS: [Wakin et al (video), Gamper et al (MRI), Jung et al (MRI)]

イロト イポト イヨト イヨト

Ongoing and Future Work

 Modified-CS for noisy measurements (sparse KF) or compressible sequences and connections with KF

$$\min_{\beta} \gamma ||(\beta)_{\mathcal{T}^c}||_1 + \tilde{\gamma} ||(\beta)_{\mathcal{T}} - (\hat{x}_{t-1})_{\mathcal{T}}||_2^2 + ||y_t - A\beta||_2^2$$

- Stability for signal sequence recon from noisy measurements
 - for a given max. no. of additions per unit time, how slowly should they occur s.t. the error remains bounded at all times?

Open-ended issues

- handling deletions from support: currently only using heuristics
- tight high probability bounds on n needed for modified-CS