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HMM Model & Tracking

« Hidden State sequence X, Observations Y,
— {X;} Is a Markov chain
— X2Y, Is a Markov chain at each t
— p(X{X.,) : state transition prior (STP) : known
— p(Y{| X, : observation likelihood (OL) : known

* Tracking (Optimal filtering): Get the “optimal”
estimate of X, based on observations Y. (causally)
— Compute/approx the posterior, m,(X,) = p(X{]Y 1.,
— Use r,to compute any “optimal” state estimate
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LDSS Tracking Problems

 Image Sequences
— Boundary contour of a moving/deforming object
— Rigid motion & lllumination variation (over space & time)
— Optical flow (motion of each pixel)

e Sensor Networks
— Spatially varying physical quantities, e.g. temperature
— Boundary of a chemical spill or target emissions

e Time-varying system transfer functions

— Time-varying STRF: repr. for neuronal transfer functions
— Time varying AR model for speech (e.g STV-PARCOR)
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Problem Setup

e Observation Likelihood (OL) Is often multimodal
— e.g. clutter, occlusions, low contrast images
— e.g. some sensors fail or nonlinear sensors
— If STP narrow, posterior unimodal: can adapt KF, EKF

— If STP broad (fast changing sequence): require
a Particle Filter (PF)

e Large dimensional state space (LDSS)
— e.g. deformable contour tracking
— e.g. tracking temperature in a large area

— PF expensive: requires impractically large N
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Temperature tracking: bimodal OL

 Nonlinear sensor (measures square of temp.)
Y, = X2+ W, w, ~ N(0,5?)

» Whenever Y>>0, p(Y,|X,) is bimodal as a function
of X, with modes at X, = Y2 & X, = -Y /2
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Temperature tracking: bimodal OL

Temperature measured with 2 sensors, each with some
probability of failure. Bimodal OL if one of them fails.
Bimodal posterior when STP broad
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Contour tracking: multimodal OL

Low contrast images (tumor region in brain MRI)

Overlapping background clutter
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Particle Filter cssos;

e Sequential Monte Carlo technique to approx
Bayes’ recursion for computing the posterior
71:t(xl:t) = p(xl:tlYl:t)

— Approx approaches true posterior as the # of M.C.

samples (“particles”)—> oo, for a large class of
nonlinear/non-Gaussian problems

* Does this sequentially at each t using Sequential
Importance Sampling along with a Resampling
step (to throw away particles with very small
Importance weights)
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Monte Carlo, Importance Sampling

 Goal: compute E, [y(X)] = [, v(x) p(x) dx
(compute expected value of any function of X)

e Monte Carlo:

Ep v(X)] = Jx v(X) p(x) dX
~ (UN) Ziy(X), X'~p

* Imp Sampling: If cannot sample from p,

E, [100] = B, 1) polge)]
~ (UN) 2, y(X) p(X) / q(X) , X'~ @
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Bayesian Importance Sampling

« Goal: compute E [ y(X)|Y | = Ejyy [ V(X) ]
(compute posterior expectation of any function of X)

 Choose Imp Samp. density gy & rewrite above as

Ep(X|Y) [y(X)] = N/D
N =Eq [ v(X) p(Y[X) p(X) / ay(X) ]
D = Eq [ PCY[X) p(X) / ay(X) ]
— Imp Sample: X'~ qy
— Weight: w' oc p(Y[X) p(X) / gy (X’)
— Posterior, p(X|Y) = 2 w' (X - X)
Epoqy [7(X) ] ~ 25 v(X) w!

10

EJWA ST;?]TE UNIVERSITY

Tracking on LDSS — N. Vaswani




Particle Filter: Seq. Imp Sampling

e Sequential Imp Sampling for HMM model
— Replace Y by Y,.,, Replace X by X,
— Choose Imp Sampling density s.t. it factorizes as

iy, (K1) = Oeryy, (Xaea) Ax v (XD
— Allows for recursive computation of weights

e Sed Imp Sampling: At each t, for each |,
— Importance Sample: X, ~ g x; 41y, (X9)
— Weight: wi' oc wy ;" p(Y{[X{) p(X{X¢.4) / g ORIAZ (X{)
— Posterior, m(Xy.) & TN(X1.) = 25 Wy 8(Xy - Xy

11
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Particle Filter: Resampling step

e Se( IS: gives a weighted delta function estimate
of posterior: mN(Xy.) = 2 W' 8(Xy.- Xy.f)
— With just Seq IS, as t increases, most weights
become very small (particles “wasted”)

» “Resample”: Sample N times from nN to get an
equally weighted delta function estimate of
posterior: TN:"eW(X) = > (1/N) 3(X- X/ :new)

— Effect: High weight particles repeated multiple times,
very low weight ones thrown away

12
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Outline

o Goal, Existing Work & Key ldeas

* Proposed algorithms: PF-EIS, PF-EIS-MT
 Open Issues

« Applications

e Ongoing Work (System Id)
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Goal, Existing Work & Key ldeas
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Our Goal

* Design efficient importance sampling
techniques for PF, when
— OL Is multimodal & STP is broad
and/or
— Large dimensional state space (LDSS)
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OL multimodal & STP broad

* “OL multimodal”: p(YX,) has multiple local
maxima as a function of X,

e |f OL multimodal but STP narrow, posterior given
previous state (p*) iIs unimodal

— If the posterior is also unimodal: can adapt KF or
Posterior Mode Trackers

— Efficient importance sampling methods for PF exist

e |f OL multimodal & STP broad: p* multimodal

— Original PF (sample from STP): but inefficient
- 7?
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Narrow STP: Broad STP:
Unimodal p* Multimodal p*
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Temperature measured with 2 types of sensors, each with some failure prob
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Existing Work

 NoO assumptions reqd, but inefficient
— PF-Original: Imp Sample from STP [GSs'93]

e Optimal Imp Sampling density: p*= p(X|X..1,Yy)
— Cannot be computed in closed form most cases [D'9g]

 When p* is unimodal

— KF/EKF/UKF, PMT: Use OL mode nearest to predicted
state as new observation [BIR,CDC'94][TZ'92][JYS, CDC’04]

— PF-D: Imp Sample from Gaussian approx to p* [p9s]
— PF-EKF/UPF: UKF/EKF to approx to p* [vDDW,NIPS'01]

e Number of OL modes small & known
— MHT, IMM, Gaussian Sum PF, ...

18
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Large Dim State Space (LDSS)

e As dimension increases, N required for accurate

tracking also increases (effective particle size
reduces)

 Regular PF impractical for > 10-12 dims

— Resample multiple times within a time interval
[MB,ICCV'98][OM, MCIP, Ch 13]: Increases particle degeneracy

— If large part of state space conditionally Linear Gaussian

or can be vector quantized into a few discrete centroids:
RB-PF [CL,JASA'00], [SGN,TSP'05]

— If not, ?

- 19
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Key Idea 1: “LDSS property”

e State space dim may be large, but in most cases,

— At any given time, most of the state change
occurs in a small # of dims (effective basis)
while the state change in the rest of the dims
(residual space) is small

— Different from dimension reduction, which is
useful only if state sequence is stationary

— Effective basis dimension can change with time

20
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Key Idea 2: “Unimodality”

 |If residual state change small (residual STP
narrow) enough compared to distance b/w OL
modes: “residual posterior” (p**) is unimodal

— p** = posterior of residual state conditioned on previous
state & effective basis states

— p** = p* conditioned on effective basis states

e If p** is unimodal, modify PF-D:
— Imp Sample effective basis states from STP

— Imp Sample residual states from Gaussian approx to p**
about its unigue mode

21
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Key Idea 3: “IS-MT”

 |If residual state change still smaller (residual
STP still narrower), the residual posterior Is
unimodal & also narrow
— Above usually true for a subset of residual space

 If an Imp sampling (I1S) density is unimodal &
narrow, any sample from it is close to its mode
with high probability
— A valid approx: just use its mode as the sample:
Mode Tracking (MT) approx of IS or IS-MT

22

[OWA STATE UNIVERSITY Tracking on LDSS — N. Vaswani

Becoming the best.




PF with Efficient Imp Sampling
(PF-EIS)
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PF-Efficient IS (PF-EIS)

[Vaswani, ICASSP’07, 06]

e LDSS problems with multimodal OL
— # of OL modes large: MHT, GSPF impractical
— STP broad in at least some dims: p* multimodal
— Can Imp Sample from STP: inefficient

o But, LDSS property (residual STP narrow)

— Choose X, (effective basis states) & X, (residual states)
s.t. p** (p* conditioned on X; ) Is unimodal

* Imp Sample X, from its STP
* Imp Sample X, from Gaussian approx of p**

24
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Sufficient Conditions for PF-EIS
(Unimodality of p**) [vaswani, IcCASSP'07]

* STP(X;,) log-concave
and
 Predicted X, close enough to a mode of
OL(X; ¢\ X, r) S.t. its —log is locally convex around it.
Denote this mode: X.*
and
* STP(X,,) narrow “enough”, I.e. its maximum
variance smaller than an upper bound, A*

— A* Increases as distance of X.* to next nearest OL mode
Increases or as strength of that mode decreases

— A* = o if OL(X;d,X;,) is log-concave

t,s?
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Expression for A* vaswani, icasspo7]
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Temperature tracking

* Track temperature at a set of nodes in a large
area using a network of sensors

« STP: state, X, =[C,, v{]

— Temp change, v,, spatially correlated & follows a
Gauss-Markov model. Temp, C,=C_; + v,

* OL: observation, Y, = sensor measurements
— Diff. sensor meas. independent given actual temp (C,))
— Working sensor: meas. C, corrupted by Gaussian noise
— With some small probability, any sensor can fall
— OL multimodal w.r.t. temp at a node, If its sensor fails

27
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Applying PF-EIS: Choosing X, ¢
Choose X s.t. p** most likely to be unimodal

e Get eigen-decomp” of covariance of temp change

 |f a node has older sensors (higher failure prob) than

other nodes: choose temp change along eigen-directions
most strongly correlated to temp at this node as X ¢

 |f all sensors have equal failure prob: choose coeff.
along the K eigen-directions with highest eigenvalues as X ¢

28
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Simulation Results: sensor failure
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Tracking temp at M=3
sensor nodes, each
with 2 sensors. Node
1 has much higher
failure prob than rest.

PF-EIS uses K=1 dim
effective basis

PF-EIS (K=1)
outperforms PF-D
(K=0), PF-Original
(K=3) & GSPF
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Simulation Results: Nonlinear sensor

RMSE from ground truth. N=50 partu:les

e Tracking temp at M=3
nodes, each with 1
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: i ? ----- o PF'EIS (K:]-)

woowooEo outperforms all others
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PF-EIS with Mode Tracker
(PF-EIS-MT)
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PF-EIS Mode Tracking (PF-EIS-MT)

 If for part of the residual state, the residual posterior
IS unimodal & narrow enough,
— It can be approx by a Dirac delta function at its mode
— Happens if residual STP narrow enough (LDSS property)

 Above: MT approx of Imp Sampling (IS) or IS-MT
— MT Is an approx to IS: introduces some error

— But MT reduces IS dim by a large amount (improves
effective particle size). much lower error for a given N

— Net effect if chosen carefully: lower error when N is small
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PF-EIS-MT algorithm

Choose X, X;, =[ X;;s X, ]. For each t, for each i, do

 Imp Sample X,/ from STP

« Compute (p**)s(X;,): Gaussian approx to p**(X,,) which
is the posterior of X, given X', X,

e Efficient Imp Sample X, ~ (p**)g
« Compute mode of p**(X;, )
 Set X, equal to this mode

e Weight & Resample
th o \Nt-lI OL(XtI) STP(Xt,rI) / (p**)G(Xt,rl)
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PF-MT

 PF-MT: computationally simpler version of
PF-EIS-MT

— Combine X & X;, s & Imp Sample from STP
for both. Mode Track X, ,

34
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Simulation Results: sensor failure
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Simulation Results: Nonlinear sensor

RMSE from ground truth. N=50 particles * Tracking on M=10

ad .. __  |f—————r———— r
e PE- dim 0 (00O 00 CA0onEA 0o 0 oo oo Eon ot oon Fano R R oh o

—E— PE-MT 0 0 A A 0 0 O A sensor nodes,

O mglleme PE-EIS e e G e o

ISR I o each with one
—&—PF-Onginal [T v bl

sfl —#—PFDouet  [rdninanie g Sensor per node.

IR TR R N AR TR L RN, NP - RN INE TN Ay TR R T PRY INT ]

lllllllllllllll
5000A00 D] D0 G000 B0 CEREE 6 BEm GO0 e 000 GRI0 Sofman DEREonemaT & 3¢ fr-Aonoenene B, Hooren oo mann G oo

T EEE AR AN S NP R AN Node 1 has a

DL [onded bt b _.::ff:f:ffi::;ffféfffféfff::fiii..::ff squared sensor.

lllllll
||||||||||||||||||||||||||||

........

[RRILINRRLETIRLINENL AT ]| h g nfnndn

Lot g aeinn o PEMT (blue) has

||||||||||||||||||||||||||||||||||||||||||||||

L 2 i R e S least RMSE
2 4 & 8 10 12 14 16 13 20 : _— :
fime. — Using K=1 dl_m
effective basis

- 36
Egﬁiﬂf}ligﬁswmmw Tracking on LDSS — N. Vaswani




Summary
Efficient IS techniques for LDSS w/ multimodal OL

» Generalized existing work that assumed
unimodality of posterior given previous state (p*)

* Derived sufficient conditions to test for unimodality
of residual posterior, p** & used these to guide
the choice of X, X;, for PF-EIS

 If STP of X;, narrow enough, p** will be unimodal
& also very narrow: approx by Dirac delta function
at its mode: IS-MT

— Some extra error, but improves effective particle size
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Open Issues

 PF-EIS much more expensive than original PF
— Make mode computation faster

— Choose effective basis dimension to min computation
complexity (not N) for given error

« Compute A* (bound on residual STP) efficiently &
use It to choose X ; on-the-fly

— Or derive sufficient conditions to choose X, to max
probability that p** will be unimodal offline

* Analyze IS-MT: systematic way to choose
“narrowness” bound, when Is net error lower?

o Extensions to PF-Smoothing (for offline problems)
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Applications

OWA STATE UNIVERSITY
Becoming the best.

Tracking on LDSS — N. Vaswani

39



Applications

 Deformable contour tracking
— Affine PF-MT [Rathi et al, CVPR'05, PAMI (to appear)]
— Deform PF-MT [vaswani et al, CDC’'06]

 Tracking spatially varying illumination change of
moving objects

— Moving into lighted room, face tracking [Kale et al,
ICASSP'07]

e Tracking change in spatially varying physical
guantities using sensor networks
— Tracking temperature change [vaswani,ICASSP'07]

- 40
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lllumination Tracking: PF-MT

[Kale et al, ICASSP’07]

e State =

e [S0On

Motion (3 dim) + lllumination (7dim)

motion (3 dim) & MT on illumination

— lllumination changes very slowly
— OL usually unimodal as a function of illumination

—1fO
OCC
to Il

_ multimodal as a fn of illumination (e.g.
usions), modes usually far apart compared

umination change variance
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Face tracking results ake etal, icasspor
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Face tracking: RMSE from ground truth

[Kale et al, ICASSP’'07]
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Comparing PF-MT with 10 dim regular PFs (original, auxiliary)
& with PF- K dim (not track illumination at all). N = 100
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Deformable Contour Tracking

e State: contour, contour point velocities
* Observation: image intensity and/or edge map

 OL: segmentation energies (region or edge based)

— Region based: observation is the image intensity. OL is
the probability of the image being generated by the
contour. Assumes a certain object/bgnd intensity model

— Edge based: observation is the edge locations (edge
map). OL is the probability of a subset of these edges
being generated by the contour, and of others being
generated by clutter or low contrast
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Two proposed PF-MT algorithms

e Affilne PF-MT [Rathi et al, CVPR'05, PAMI (to appear)]
— Effective basis sp: 6-dim space of affine deformations

— Assumes OL modes separated only by affine
deformation or small non-affine deformation per frame

e Deform PF-MT [vaswani et al, CDC’06]

— Effective basis sp: translation & deformation at K sub-
sampled locations around the contour. K can change

— Useful when OL modes separated by non-affine def
(e.g. due to overlapping clutter or low contrast) & large
non-affine deformation per frame (fast deforming seq)
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Low contrast images, small deformation

per frame: use Affine PF-MT/Rrathi etal, cvPR'05]

o Tracking humans from a distance (small def per frame)

« Deformation due to perspective camera effects
(changing viewpoints), e.g. UAV tracking a plane

t""‘l L
" *-t -

Condensation
(PF K-dim) fails
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Low contrast images, large def per
frame: Brain slices (Tumor Sequence)

e Multiple nearby OL modes of non-affine
deformation: due to low contrast

 Tracking with Deform PF-MT [Vaswani et al,CDC’06]
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Overlapping Background clutter

Small non-affine deformation per frame: Affine PF-MT works

z 2 4
#
‘.

Larae non-affine deformation per frame: Affine PF-MT falls

Larae non-affine deformation per frame: Deform PF-MT works

»
£
-
=
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Partial Occlusions (car)

« 3 dominant modes (many weak modes) of edge based OL
due to partial occlusion

e Tracking using Deform PF-MT [Vaswani et al, CDC’06]
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Ongoing Work: System Id
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System Id

« LDSS: Time sequences of discretized spatial
“signals” (usually heavily oversampled)

— “signal”: spatially stationary or p.w. stationary

o System Id problem has 2 parts

— Estimate effective basis dim: use PSD of spatial signal
& Its r% cut-off frequency

— Learn Temporal dynamics: AR model on LPF’ed
Fourier coefficients or on subsampled spatial signal

IOWA STATE UNIVERSITY
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An Example: Estimating K

M = 178 dimensional contour deformation “signal”

aop

B
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Using PSD to estimate K

® -||:|‘1- Squared magnitude of Fourer Transform {FT)} of deformation
15 T
T
&
S
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§ 10
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g —
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E
&
I:I n n » »
0 0.1 0.2 0.3 0.4 0.5

Spatial freq (Hz=cycles/pixel) —

f., = 0.03Hz for residual deformation = 0.05% of
total deformation. M =178, K= [M. 2f_. | =12
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System |d: Open Issues

 Temporally piecewise stationary seguences
— Detect changes in PSD (spatial)
— Detect change Iin effective basis dimension, K
— Detect change in temporal dynamics (if K same)
— Do all the above while tracking

o Spatial nonstationarity
e Contour deformation sequences: spatial axis

(arclength) warps over time: total L changes,
distance b/w points changes

— Effects not studied in regular signal processing
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Collaborators

« Deformable contour tracking
— Anthony Yezzi, Georgia Tech
— Yogesh Rathi, Georgia Tech
— Allen Tannenbaum, Georgia Tech

 lllumination tracking
— Amit Kale, Siemens Corporate Tech, Bangalore

e System Id for time sequences of spatial signals
— Ongoing work with my student, Wei Lu
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