Tracking (Optimal filtering) on Large Dimensional State Spaces (LDSS)

Namrata Vaswani

Dept of Electrical & Computer Engineering Iowa State University

http://www.ece.iastate.edu/~namrata

HMM Model & Tracking

- Hidden State sequence X_t, Observations Y_t
 - $\{X_t\}$ is a Markov chain
 - $X_t \rightarrow Y_t$ is a Markov chain at each t
 - $p(X_t|X_{t-1})$: state transition prior (STP) : known
 - $p(Y_t|X_t)$: observation likelihood (OL) : known
- Tracking (Optimal filtering): Get the "optimal" estimate of X_t based on observations Y_{1:t} (causally)
 - Compute/approx the posterior, $\pi_t(X_t) = p(X_t|Y_{1:t})$
 - Use π_t to compute any "optimal" state estimate

LDSS Tracking Problems

• Image Sequences

- Boundary contour of a moving/deforming object
- Rigid motion & Illumination variation (over space & time)
- Optical flow (motion of each pixel)
- Sensor Networks
 - Spatially varying physical quantities, e.g. temperature
 - Boundary of a chemical spill or target emissions
- Time-varying system transfer functions
 - Time-varying STRF: repr. for neuronal transfer functions
 - Time varying AR model for speech (e.g STV-PARCOR)

Problem Setup

- Observation Likelihood (OL) is often multimodal
 - e.g. clutter, occlusions, low contrast images
 - e.g. some sensors fail or nonlinear sensors
 - If STP narrow, posterior unimodal: can adapt KF, EKF
 - If STP broad (fast changing sequence): require a Particle Filter (PF)
- Large dimensional state space (LDSS)
 - e.g. deformable contour tracking
 - e.g. tracking temperature in a large area
 - PF expensive: requires impractically large N

Temperature tracking: bimodal OL

• Nonlinear sensor (measures square of temp.)

$$Y_t = X_t^2 + w_t, \qquad w_t \sim N(0,\sigma^2)$$

• Whenever $Y_t>0$, $p(Y_t|X_t)$ is bimodal as a function of X_t with modes at $X_t = Y_t^{1/2} \& X_t = -Y_t^{1/2}$

Temperature tracking: bimodal OL

Temperature measured with 2 sensors, each with some probability of failure. Bimodal OL if one of them fails. Bimodal posterior when STP broad

Contour tracking: multimodal OL

Low contrast images (tumor region in brain MRI)

Overlapping background clutter

Tracking on LDSS - N. Vaswani

Particle Filter [GSS'93]

- Sequential Monte Carlo technique to approx Bayes' recursion for computing the posterior $\pi_t(X_{1:t}) = p(X_{1:t}|Y_{1:t})$
 - Approx approaches true posterior as the # of M.C. samples ("particles") → ∞, for a large class of nonlinear/non-Gaussian problems
- Does this sequentially at each t using Sequential Importance Sampling along with a Resampling step (to throw away particles with very small importance weights)

Monte Carlo, Importance Sampling

- Goal: compute $E_p[\gamma(X)] = \int_X \gamma(x) p(x) dx$ (compute expected value of any function of X)
- Monte Carlo:
- $$\begin{split} \mathsf{E}_{\mathsf{p}}\left[\gamma(\mathsf{X})\right] &= \int_{\mathsf{X}} \gamma(\mathsf{x}) \ \mathsf{p}(\mathsf{x}) \ \mathsf{d}\mathsf{x} \\ &\approx (1/\mathsf{N}) \ \sum_{i} \gamma(\mathsf{X}^{i}), \quad \mathsf{X}^{i} \sim \mathsf{p} \end{split}$$
- Imp Sampling: If cannot sample from p, $E_{p} [\gamma(X)] = E_{q} [\gamma(x) p(x)/q(x)]$ $\approx (1/N) \sum_{i} \gamma(X^{i}) p(X^{i}) / q(X^{i}) , \quad X^{i} \sim q$

Bayesian Importance Sampling

- Goal: compute E [$\gamma(X)|Y$] = E_{p(X|Y)} [$\gamma(X)$] (compute posterior expectation of any function of X)
- Choose Imp Samp. density q_Y & rewrite above as $E_{p(X|Y)} [\gamma(X)] = N/D$ $N = E_{q_Y} [\gamma(X) p(Y|X) p(X) / q_Y(X)]$ $D = E_{q_Y} [p(Y|X) p(X) / q_Y(X)]$
 - Imp Sample: $X^i \sim q_Y$
 - Weight: $w^i \propto p(Y|X^i) p(X^i) / q_Y(X^i)$
 - Posterior, $p(X|Y) \approx \sum_{i} w^{i} \delta(X X^{i})$ $E_{p(X|Y)} [\gamma(X)] \approx \sum_{i} \gamma(X^{i}) w^{i}$

Particle Filter: Seq. Imp Sampling

- Sequential Imp Sampling for HMM model
 - Replace Y by $Y_{1:t}$, Replace X by $X_{1:t}$
 - Choose Imp Sampling density s.t. it factorizes as

$$q_{t,Y_{1:t}}(X_{1:t}) = q_{t-1,Y_{1:t-1}}(X_{1:t-1}) q_{X_{t-1},Y_{t}}(X_{t})$$

- Allows for recursive computation of weights
- Seq Imp Sampling: At each t, for each i,
 - Importance Sample: $X_t^i \sim q_{X_{t-1}^i,Y_t}(X_t)$
 - Weight: $w_t^i \propto w_{t-1}^i p(Y_t | X_t^i) p(X_t^i | X_{t-1}^i) / q_{X_{t-1}^i,Y_t}(X_t^i)$
 - Posterior, $\pi_t(X_{1:t}) \approx \pi_t^{N}(X_{1:t}) = \sum_i w_t^{i} \delta(X_{1:t} X_{1:t}^{i})$

Particle Filter: Resampling step

• Seq IS: gives a weighted delta function estimate of posterior: $\pi_t^{N}(X_{1:t}) = \sum_i w_t^{i} \delta(X_{1:t} - X_{1:t}^{i})$

 With just Seq IS, as t increases, most weights become very small (particles "wasted")

- "Resample": Sample N times from π_t^N to get an equally weighted delta function estimate of posterior: $\pi_t^{N,new}(X_t) = \sum_i (1/N) \delta(X_t X_t^{i,new})$
 - Effect: High weight particles repeated multiple times, very low weight ones thrown away

Outline

- Goal, Existing Work & Key Ideas
- Proposed algorithms: PF-EIS, PF-EIS-MT
- Open Issues
- Applications
- Ongoing Work (System Id)

Goal, Existing Work & Key Ideas

Our Goal

- Design efficient importance sampling techniques for PF, when
 - OL is multimodal & STP is broad and/or
 - Large dimensional state space (LDSS)

OL multimodal & STP broad

- "OL multimodal": p(Y_t|X_t) has multiple local maxima as a function of X_t
- If OL multimodal but STP narrow, posterior given previous state (p*) is unimodal
 - If the posterior is also unimodal: can adapt KF or Posterior Mode Trackers
 - Efficient importance sampling methods for PF exist
- If OL multimodal & STP broad: p* multimodal
 Original PF (sample from STP): but inefficient
 ?

Narrow STP: Unimodal p*

Broad STP: Multimodal p*

Temperature measured with 2 types of sensors, each with some failure prob

IOWA STATE UNIVERSITY Becoming the best.

Tracking on LDSS - N. Vaswani

Existing Work

- No assumptions reqd, but inefficient
 - PF-Original: Imp Sample from STP [GSS'93]
- Optimal Imp Sampling density: $p^* = p(X_t | X_{t-1}, Y_t)$
 - Cannot be computed in closed form most cases [D'98]
- When p* is unimodal

ATE UNIVERSITY

Becoming the best.

 KF/EKF/UKF, PMT: Use OL mode nearest to predicted state as new observation [BIR,CDC'94][TZ'92][JYS, CDC'04]

- PF-D: Imp Sample from Gaussian approx to p* [D'98]

- PF-EKF/UPF: UKF/EKF to approx to p* [VDDW,NIPS'01]
- Number of OL modes small & known
 - MHT, IMM, Gaussian Sum PF, ...

Large Dim State Space (LDSS)

- As dimension increases, N required for accurate tracking also increases (effective particle size reduces)
- Regular PF impractical for > 10-12 dims
 - Resample multiple times within a time interval [MB,ICCV'98][OM, MCIP, Ch 13]: increases particle degeneracy
 - If large part of state space conditionally Linear Gaussian or can be vector quantized into a few discrete centroids: RB-PF [CL,JASA'00], [SGN,TSP'05]
 - If not, ?

Key Idea 1: "LDSS property"

- State space dim may be large, but in most cases,
 - At any given time, most of the state change occurs in a small # of dims (effective basis) while the state change in the rest of the dims (residual space) is small

 Different from dimension reduction, which is useful only if state sequence is stationary

- Effective basis dimension can change with time

Key Idea 2: "Unimodality"

- If residual state change small (residual STP narrow) enough compared to distance b/w OL modes: "residual posterior" (p**) is unimodal
 - p^{**} = posterior of residual state conditioned on previous state & effective basis states
 - $-p^{**} = p^*$ conditioned on effective basis states
- If p** is unimodal, modify PF-D:
 - Imp Sample effective basis states from STP
 - Imp Sample residual states from Gaussian approx to p** about its unique mode

Key Idea 3: "IS-MT"

 If residual state change still smaller (residual STP still narrower), the residual posterior is unimodal & also narrow

Above usually true for a subset of residual space

- If an imp sampling (IS) density is unimodal & narrow, any sample from it is close to its mode with high probability
 - A valid approx: just use its mode as the sample:
 Mode Tracking (MT) approx of IS or IS-MT

PF with Efficient Imp Sampling (PF-EIS)

PF-Efficient IS (PF-EIS) [Vaswani, ICASSP'07, 06]

- LDSS problems with multimodal OL
 - # of OL modes large: MHT, GSPF impractical
 - STP broad in at least some dims: p* multimodal
 - Can Imp Sample from STP: inefficient
- But, LDSS property (residual STP narrow)
 - Choose X_{t,s} (effective basis states) & X_{t,r} (residual states)
 s.t. p^{**} (p^{*} conditioned on X_{t,s}) is unimodal
 - Imp Sample $X_{t,s}$ from its STP
 - Imp Sample $X_{t,r}$ from Gaussian approx of p**

Sufficient Conditions for PF-EIS (Unimodality of p**) [Vaswani, ICASSP'07]

- STP(X_{t,r}) log-concave and
- Predicted $X_{t,r}$ close enough to a mode of $OL(X_{t,s}^{i}, X_{t,r})$ s.t. its –log is locally convex around it. Denote this mode: X_r^*

and

- STP(X_{t,r}) narrow "enough", i.e. its maximum variance smaller than an upper bound, Δ^*
 - Δ^* increases as distance of X_r^* to next nearest OL mode increases or as strength of that mode decreases
 - $\Delta^* = \infty$ if OL(X_{t,s}ⁱ,X_{t,r}) is log-concave

Expression for Δ^* [Vaswani, ICASSP'07]

$$\max_{p} \Delta_{r,p} < \inf_{\substack{\cap_{p-1}^{M_r}(\mathcal{A}_p \cup \mathcal{Z}_p)}} \max_{p} \gamma_p(X_{t,r}) \triangleq \Delta^*$$

$$\gamma_p(X_{t,r}) \triangleq \begin{cases} \frac{|[\nabla D_{num}]_p|}{\epsilon_0 + |[\nabla E]_p|}, & if \ X_{t,r} \in \mathcal{A}_p \\\\ \frac{|[\nabla D_{num}]_p|}{\epsilon_0 - |[\nabla E]_p|}, & if \ X_{t,r} \in \mathcal{Z}_p \end{cases}$$

$$\nabla D_{num} \triangleq X_{t,r} - f_r^i$$

$$\mathcal{Z}_p \triangleq \{ X_{t,r} \in \mathcal{R}_{LC}^c : [\nabla E]_p . [\nabla D]_p \ge 0 \& | [\nabla E]_p | < \epsilon_0 \}$$
$$\mathcal{A}_p \triangleq \{ X_{t,r} \in \mathcal{R}_{LC}^c : [\nabla D_{num}]_p . [\nabla E]_p < 0 \}$$

$$\mathsf{E}(\mathsf{X}_{t,r}) = -\log \mathsf{OL}(\mathsf{X}_{t,s}^{i}, \mathsf{X}_{t,r})$$

$$f_r^i = predicted X_{t,r}$$

 R_{LC} : largest convex region in neighborhood of f_r^i where E is convex

Temperature tracking

- Track temperature at a set of nodes in a large area using a network of sensors
- STP: state, $X_t = [C_t, v_t]$
 - Temp change, v_t , spatially correlated & follows a Gauss-Markov model. Temp, $C_t = C_{t-1} + v_t$
- OL: observation, $Y_t = sensor measurements$
 - Diff. sensor meas. independent given actual temp (C_t)
 - Working sensor: meas. C_t corrupted by Gaussian noise
 - With some small probability, any sensor can fail
 - OL multimodal w.r.t. temp at a node, if its sensor fails

Applying PF-EIS: Choosing X_{t,s}

Choose X_{t,s} s.t. p** most likely to be unimodal

- Get eigen-decompⁿ of covariance of temp change
- If a node has older sensors (higher failure prob) than other nodes: choose temp change along eigen-directions most strongly correlated to temp at this node as X_{t,s}
- If all sensors have equal failure prob: choose coeff. along the K eigen-directions with highest eigenvalues as X_{t,s}

Simulation Results: Sensor failure

- Tracking temp at M=3 sensor nodes, each with 2 sensors. Node 1 has much higher failure prob than rest.
- PF-EIS uses K=1 dim effective basis
- PF-EIS (K=1) outperforms PF-D (K=0), PF-Original (K=3) & GSPF

Simulation Results: Nonlinear sensor

- Tracking temp at M=3 nodes, each with 1 sensor per node
- Node 1 has a squared sensor (measures square of temp plus Gaussian noise)
 - OL multimodal when $Y_t > 0$ (almost always for t > 3)
- PF-EIS (K=1) outperforms all others

PF-EIS with Mode Tracker (PF-EIS-MT)

PF-EIS Mode Tracking (PF-EIS-MT)

- If for part of the residual state, the residual posterior is unimodal & narrow enough,
 - It can be approx by a Dirac delta function at its mode
 - Happens if residual STP narrow enough (LDSS property)
- Above: MT approx of Imp Sampling (IS) or IS-MT
 - MT is an approx to IS: introduces some error
 - But MT reduces IS dim by a large amount (improves effective particle size): much lower error for a given N
 - Net effect if chosen carefully: lower error when N is small

PF-EIS-MT algorithm

Choose $X_{t,s}$, $X_{t,r} = [X_{t,r,s}, X_{t,r,r}]$. For each t, for each i, do

- Imp Sample $X_{t,s}^{i}$ from STP
- Compute (p**)_G(X_{t,r}): Gaussian approx to p**(X_{t,r}) which is the posterior of X_{t,r} given X_{t-1}ⁱ, X_{t,s}ⁱ
- Efficient Imp Sample $X_{t,r,s}^{i} \sim (p^{**})_{G}$
- Compute mode of $p^{**}(X_{t,r,r})$
- Set $X_{t,r,r}^{i}$ equal to this mode
- Weight & Resample $w_t^i \propto w_{t-1}^i OL(X_t^i) STP(X_{t,r}^i) / (p^{**})_G(X_{t,r}^i)$

PF-MT

- PF-MT: computationally simpler version of PF-EIS-MT
 - Combine X_{t,s} & X_{t,r,s} & Imp Sample from STP for both. Mode Track X_{t,r,r}

Simulation Results: Sensor failure

- Tracking on M=10 sensor nodes, each with two sensors per node. Node 1 has much higher failure prob than rest
- PF-MT (blue) has least RMSE
 - Using K=1 dim effective basis

Simulation Results: Nonlinear sensor

- Tracking on M=10 sensor nodes, each with one sensor per node. Node 1 has a squared sensor.
- PF-MT (blue) has least RMSE
 - Using K=1 dim effective basis

Summary

Efficient IS techniques for LDSS w/ multimodal OL

- Generalized existing work that assumed unimodality of posterior given previous state (p*)
- Derived sufficient conditions to test for unimodality of residual posterior, p** & used these to guide the choice of X_{t,s}, X_{t,r} for PF-EIS
- If STP of X_{t,r} narrow enough, p** will be unimodal & also very narrow: approx by Dirac delta function at its mode: IS-MT
 - Some extra error, but improves effective particle size

Open Issues

- PF-EIS much more expensive than original PF
 - Make mode computation faster
 - Choose effective basis dimension to min computation complexity (not N) for given error
- Compute Δ^* (bound on residual STP) efficiently & use it to choose $X_{t,s}$ on-the-fly
 - Or derive sufficient conditions to choose X_{t,s} to max probability that p** will be unimodal offline
- Analyze IS-MT: systematic way to choose "narrowness" bound, when is net error lower?
- Extensions to PF-Smoothing (for offline problems)

Applications

Applications

ATE UNIVERSIT

Becoming the best.

- Deformable contour tracking
 - Affine PF-MT [Rathi et al, CVPR'05, PAMI (to appear)]
 - Deform PF-MT [Vaswani et al, CDC'06]
- Tracking spatially varying illumination change of moving objects
 - Moving into lighted room, face tracking [Kale et al, ICASSP'07]
- Tracking change in spatially varying physical quantities using sensor networks
 - Tracking temperature change [Vaswani,ICASSP'07]

Illumination Tracking: PF-MT [Kale et al, ICASSP'07]

- State = Motion (3 dim) + Illumination (7 dim)
- IS on motion (3 dim) & MT on illumination
 - Illumination changes very slowly
 - OL usually unimodal as a function of illumination
 - If OL multimodal as a fn of illumination (e.g. occlusions), modes usually far apart compared to illumination change variance

Face tracking results [Kale et al, ICASSP'07]

IOWA STAT

Becoming the best.

Tracking on LDSS - IN. Vaswani

Face tracking: RMSE from ground truth [Kale et al, ICASSP'07]

Comparing PF-MT with 10 dim regular PFs (original, auxiliary) & with PF- K dim (not track illumination at all). N = 100

Tracking on LDSS – N. Vaswani

Deformable Contour Tracking

- State: contour, contour point velocities
- Observation: image intensity and/or edge map
- OL: segmentation energies (region or edge based)
 - Region based: observation is the image intensity. OL is the probability of the image being generated by the contour. Assumes a certain object/bgnd intensity model
 - Edge based: observation is the edge locations (edge map). OL is the probability of a subset of these edges being generated by the contour, and of others being generated by clutter or low contrast

Two proposed PF-MT algorithms

- Affine PF-MT [Rathi et al, CVPR'05, PAMI (to appear)]
 - Effective basis sp: 6-dim space of affine deformations
 - Assumes OL modes separated only by affine deformation or small non-affine deformation per frame
- Deform PF-MT [Vaswani et al, CDC'06]
 - Effective basis sp: translation & deformation at K subsampled locations around the contour. K can change
 - Useful when OL modes separated by non-affine def (e.g. due to overlapping clutter or low contrast) & large non-affine deformation per frame (fast deforming seq)

Low contrast images, small deformation per frame: use Affine PF-MT[Rathi etal,CVPR'05]

- Tracking humans from a distance (small def per frame)
- Deformation due to perspective camera effects (changing viewpoints), e.g. UAV tracking a plane

Tracking on LDSS - N. Vaswani

Low contrast images, large def per frame: Brain slices (Tumor Sequence)

- Multiple nearby OL modes of non-affine deformation: due to low contrast
- Tracking with Deform PF-MT [Vaswani et al,CDC'06]

Overlapping Background clutter

Small non-affine deformation per frame: Affine PF-MT works

Large non-affine deformation per frame: Affine PF-MT fails

Large non-affine deformation per frame: Deform PF-MT works

Tracking on LDSS - N. Vaswani

Partial Occlusions (car)

- 3 dominant modes (many weak modes) of edge based OL due to partial occlusion
- Tracking using Deform PF-MT [Vaswani et al, CDC'06]

(a) Tracking the contour for the car to left of the pole using Algorithm 2

Ongoing Work: System Id

System Id

- LDSS: Time sequences of discretized spatial "signals" (usually heavily oversampled)
 - "signal": spatially stationary or p.w. stationary
- System Id problem has 2 parts
 - Estimate effective basis dim: use PSD of spatial signal & its r% cut-off frequency
 - Learn Temporal dynamics: AR model on LPF'ed Fourier coefficients or on subsampled spatial signal

An Example: Estimating K

M = 178 dimensional contour deformation "signal"

Tracking on LDSS - N. Vaswani

Using PSD to estimate K

 $f_{min} = 0.03Hz$ for residual deformation = 0.05% of total deformation. M = 178, K = [M. 2 f_{min}] = 12

System Id: Open Issues

- Temporally piecewise stationary sequences
 - Detect changes in PSD (spatial)
 - Detect change in effective basis dimension, K
 - Detect change in temporal dynamics (if K same)
 - Do all the above while tracking
- Spatial nonstationarity
- Contour deformation sequences: spatial axis (arclength) warps over time: total L changes, distance b/w points changes
 - Effects not studied in regular signal processing

Collaborators

- Deformable contour tracking
 - Anthony Yezzi, Georgia Tech
 - Yogesh Rathi, Georgia Tech
 - Allen Tannenbaum, Georgia Tech
- Illumination tracking
 - Amit Kale, Siemens Corporate Tech, Bangalore
- System Id for time sequences of spatial signals
 Ongoing work with my student, Wei Lu