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HMM Model & Tracking
• Hidden State sequence Xt, Observations Yt

– {Xt } is a Markov chain
– Xt Yt is a Markov chain at each t
– p(Xt|Xt-1) : state transition prior (STP) : known
– p(Yt|Xt) : observation likelihood (OL) : known

• Tracking (Optimal filtering): Get the “optimal”
estimate of Xt based on observations Y1:t (causally) 
– Compute/approx the posterior, πt(Xt) = p(Xt|Y1:t)
– Use πt to compute any “optimal” state estimate
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LDSS Tracking Problems
• Image Sequences

– Boundary contour of a moving/deforming object
– Rigid motion & Illumination variation (over space & time)
– Optical flow (motion of each pixel)

• Sensor Networks
– Spatially varying physical quantities, e.g. temperature 
– Boundary of a chemical spill or target emissions

• Time-varying system transfer functions
– Time-varying STRF: repr. for neuronal transfer functions
– Time varying AR model for speech (e.g STV-PARCOR)
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Problem Setup
• Observation Likelihood (OL) is often multimodal

– e.g. clutter, occlusions, low contrast images
– e.g. some sensors fail or nonlinear sensors
– If STP narrow, posterior unimodal: can adapt KF, EKF
– If STP broad (fast changing sequence): require 

a Particle Filter (PF)

• Large dimensional state space (LDSS)
– e.g. deformable contour tracking
– e.g. tracking temperature in a large area
– PF expensive: requires impractically large N
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Temperature tracking: bimodal OL

• Nonlinear sensor (measures square of temp.) 
Yt = Xt

2 + wt, wt ∼ N(0,σ2)

• Whenever Yt>0, p(Yt|Xt) is bimodal as a function 
of Xt with modes at Xt = Yt

1/2 & Xt = -Yt
1/2
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Temperature measured with 2 sensors, each with some 
probability of failure. Bimodal OL if one of them fails. 
Bimodal posterior when STP broad

Temperature tracking: bimodal OL
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Contour tracking: multimodal OL

Overlapping background clutter

Low contrast images (tumor region in brain MRI)
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Particle Filter [GSS’93]

• Sequential Monte Carlo technique to approx 
Bayes’ recursion for computing the posterior 
πt(X1:t) = p(X1:t|Y1:t)
– Approx approaches true posterior as the # of M.C. 

samples (“particles”) ∞, for a large class of 
nonlinear/non-Gaussian problems

• Does this sequentially at each t using Sequential 
Importance Sampling along with a  Resampling
step (to throw away particles with very small 
importance weights)
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Monte Carlo, Importance Sampling

• Goal: compute Ep [γ(X)] = ∫x γ(x) p(x) dx
(compute expected value of any function of X)

• Monte Carlo:
Ep [γ(X)] = ∫x γ(x) p(x) dx

≈ (1/N) ∑i γ(Xi),    Xi ∼ p

• Imp Sampling: If cannot sample from p,
Ep [γ(X)] = Eq [γ(x) p(x)/q(x) ] 

≈ (1/N) ∑i γ(Xi) p(Xi) / q(Xi) ,   Xi ∼ q
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Bayesian Importance Sampling
• Goal: compute E [ γ(X)|Y ] = Ep(X|Y) [ γ(X) ]
(compute posterior expectation of any function of X)

• Choose Imp Samp. density qY & rewrite above as
Ep(X|Y) [ γ(X)] =  N/D

N = EqY
[ γ(X) p(Y|X) p(X) / qY(X) ]

D = EqY
[ p(Y|X) p(X) / qY(X) ]

– Imp Sample:    Xi ∼ qY
– Weight: wi ∝ p(Y|Xi) p(Xi) / qY(Xi)
– Posterior,  p(X|Y) ≈ ∑i wi δ(X - Xi)  

Ep(X|Y) [ γ(X) ]  ≈ ∑i γ(Xi) wi
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Particle Filter: Seq. Imp Sampling
• Sequential Imp Sampling for HMM model

– Replace Y by Y1:t, Replace X by X1:t

– Choose Imp Sampling density s.t. it factorizes as
qt,Y1:t

(X1:t) = qt-1,Y1:t-1
(X1:t-1) qXt-1,Yt

(Xt)
– Allows for recursive computation of weights

• Seq Imp Sampling: At each t, for each i, 
– Importance Sample: Xt

i ~ q Xt-1
i,Yt

(Xt)
– Weight: wt

i ∝ wt-1
i p(Yt|Xt

i) p(Xt
i|Xt-1

i) / q Xt-1
i,Yt

(Xt
i)

– Posterior, πt(X1:t) ≈ πt
N(X1:t) = ∑i wt

i δ(X1:t - X1:t
i)
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Particle Filter: Resampling step
• Seq IS: gives a weighted delta function estimate 

of posterior: πt
N(X1:t) = ∑i wt

i δ(X1:t- X1:t
i)

– With just Seq IS, as t increases, most weights 
become very small (particles “wasted”) 

• “Resample”: Sample N times from πt
N to get an 

equally weighted delta function estimate of 
posterior: πt

N,new(Xt) = ∑i (1/N) δ(Xt- Xt
i,new)

– Effect: High weight particles repeated multiple times, 
very low weight ones thrown away
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Outline
• Goal, Existing Work & Key Ideas

• Proposed algorithms: PF-EIS, PF-EIS-MT
• Open Issues

• Applications

• Ongoing Work (System Id)
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Goal, Existing Work & Key Ideas
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Our Goal

• Design efficient importance sampling 
techniques for PF, when 
– OL is multimodal & STP is broad
and/or
– Large dimensional state space (LDSS) 
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OL multimodal & STP broad
• “OL multimodal”: p(Yt|Xt) has multiple local 

maxima as a function of Xt

• If OL multimodal but STP narrow, posterior given 
previous state (p*) is unimodal
– If the posterior is also unimodal: can adapt KF or 

Posterior Mode Trackers 
– Efficient importance sampling methods for PF exist

• If OL multimodal & STP broad: p* multimodal
– Original PF (sample from STP): but inefficient
– ?
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Narrow STP: 
Unimodal p*

Broad STP: 
Multimodal p*

Temperature measured with 2 types of sensors, each with some failure prob
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Existing Work
• No assumptions reqd, but inefficient

– PF-Original: Imp Sample from STP [GSS’93]

• Optimal Imp Sampling density: p*= p(Xt|Xt-1,Yt)
– Cannot be computed in closed form most cases [D’98]

• When p* is unimodal
– KF/EKF/UKF, PMT: Use OL mode nearest to predicted 

state as new observation [BIR,CDC’94][TZ’92][JYS, CDC’04]

– PF-D: Imp Sample from Gaussian approx to p* [D’98]

– PF-EKF/UPF: UKF/EKF to approx to p* [VDDW,NIPS’01]

• Number of OL modes small & known
– MHT, IMM, Gaussian Sum PF, …
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Large Dim State Space (LDSS)
• As dimension increases, N required for accurate 

tracking also increases (effective particle size 
reduces)

• Regular PF impractical for > 10-12 dims
– Resample multiple times within a time interval 

[MB,ICCV’98][OM, MCIP, Ch 13]: increases particle degeneracy

– If large part of state space conditionally Linear Gaussian 
or can be vector quantized into a few discrete centroids:  
RB-PF [CL,JASA’00], [SGN,TSP’05]

– If not, ?
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Key Idea 1: “LDSS property”
• State space dim may be large, but in most cases,

– At any given time, most of the state change 
occurs in a small # of dims (effective basis) 
while the state change in the rest of the dims 
(residual space) is small

– Different from dimension reduction, which is 
useful only if state sequence is stationary 

– Effective basis dimension can change with time
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Key Idea 2: “Unimodality”
• If residual state change small (residual STP 

narrow) enough compared to distance b/w OL 
modes: “residual posterior” (p**) is unimodal
– p** = posterior of residual state conditioned on previous 

state & effective basis states
– p** = p* conditioned on effective basis states

• If p** is unimodal, modify PF-D:
– Imp Sample effective basis states from STP
– Imp Sample residual states from Gaussian approx to p** 

about its unique mode
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Key Idea 3: “IS-MT”
• If residual state change still smaller (residual 

STP still narrower), the residual posterior is 
unimodal & also narrow
– Above usually true for a subset of residual space

• If an imp sampling (IS) density is unimodal & 
narrow, any sample from it is close to its mode 
with high probability
– A valid approx: just use its mode as the sample: 

Mode Tracking (MT) approx of IS or IS-MT
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PF with Efficient Imp Sampling 
(PF-EIS)
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PF-Efficient IS (PF-EIS)
[Vaswani, ICASSP’07, 06]

• LDSS problems with multimodal OL
– # of OL modes large: MHT, GSPF impractical
– STP broad in at least some dims: p* multimodal
– Can Imp Sample from STP: inefficient

• But, LDSS property (residual STP narrow)
– Choose Xt,s (effective basis states) & Xt,r (residual states) 

s.t. p** (p* conditioned on Xt,s) is unimodal
• Imp Sample Xt,s from its STP
• Imp Sample Xt,r from Gaussian approx of p**
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Sufficient Conditions for PF-EIS 
(Unimodality of p**) [Vaswani, ICASSP’07]

• STP(Xt,r) log-concave
and

• Predicted Xt,r close enough to a mode of 
OL(Xt,s

i,Xt,r) s.t. its –log is locally convex around it. 
Denote this mode: Xr*

and

• STP(Xt,r) narrow “enough”, i.e. its maximum 
variance smaller than an upper bound, Δ*
– Δ* increases as distance of Xr* to next nearest OL mode 

increases or as strength of that mode decreases

– Δ* = ∞ if OL(Xt,s
i,Xt,r) is log-concave 
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Expression for Δ* [Vaswani, ICASSP’07]

RLC: largest convex 
region in 
neighborhood of fri
where E is convex

E(Xt,r) = -log OL(Xt,s
i, Xt,r)

fri = predicted Xt,r
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Temperature tracking
• Track temperature at a set of nodes in a large 

area using a network of sensors

• STP: state, Xt = [Ct, vt] 
– Temp change, vt, spatially correlated & follows a 

Gauss-Markov model. Temp, Ct = Ct-1 + vt

• OL: observation, Yt = sensor measurements
– Diff. sensor meas. independent given actual temp (Ct)
– Working sensor: meas. Ct corrupted by Gaussian noise
– With some small probability, any sensor can fail
– OL multimodal w.r.t. temp at a node, if its sensor fails
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Applying PF-EIS: Choosing Xt,s

Choose Xt,s s.t. p** most likely to be unimodal

• Get eigen-decompn of covariance of temp change

• If a node has older sensors (higher failure prob) than 
other nodes: choose temp change along eigen-directions 
most strongly correlated to temp at this node as Xt,s

• If all sensors have equal failure prob: choose coeff. 
along the K eigen-directions with highest eigenvalues as Xt,s
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Simulation Results: Sensor failure

• Tracking temp at M=3 
sensor nodes, each 
with 2 sensors. Node 
1 has much higher 
failure prob than rest.

• PF-EIS uses K=1 dim 
effective basis

• PF-EIS (K=1) 
outperforms PF-D 
(K=0), PF-Original 
(K=3) & GSPF
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Simulation Results: Nonlinear sensor

• Tracking temp at M=3 
nodes, each with 1 
sensor per node

• Node 1 has a squared 
sensor (measures 
square of temp plus 
Gaussian noise)
– OL multimodal 

when Yt > 0 (almost 
always for t > 3)

• PF-EIS (K=1) 
outperforms all others
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PF-EIS with Mode Tracker 
(PF-EIS-MT)
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PF-EIS Mode Tracking (PF-EIS-MT)

• If for part of the residual state, the residual posterior 
is unimodal & narrow enough,
– It can be approx by a Dirac delta function at its mode
– Happens if residual STP narrow enough (LDSS property)

• Above: MT approx of Imp Sampling (IS) or IS-MT
– MT is an approx to IS: introduces some error
– But MT reduces IS dim by a large amount (improves 

effective particle size): much lower error for a given N
– Net effect if chosen carefully: lower error when N is small 
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PF-EIS-MT algorithm
Choose Xt,s, Xt,r = [ Xt,r,s, Xt,r,r ]. For each t, for each i, do

• Imp Sample Xt,s
i from STP

• Compute (p**)G(Xt,r): Gaussian approx to p**(Xt,r) which 
is the posterior of Xt,r given Xt-1

i, Xt,s
i

• Efficient Imp Sample Xt,r,s
i ∼ (p**)G

• Compute mode of p**(Xt,r,r)

• Set Xt,r,r
i equal to this mode

• Weight & Resample
wt

i ∝ wt-1
i OL(Xt

i) STP(Xt,r
i) / (p**)G(Xt,r

i)
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PF-MT

• PF-MT: computationally simpler version of 
PF-EIS-MT
– Combine Xt,s & Xt,r,s & Imp Sample from STP 

for both. Mode Track Xt,r,r
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Simulation Results: Sensor failure

• Tracking on M=10 
sensor nodes, each 
with two sensors per 
node. Node 1 has 
much higher failure 
prob than rest

• PF-MT (blue) has 
least RMSE
– Using K=1 dim 

effective basis
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Simulation Results: Nonlinear sensor

• Tracking on M=10 
sensor nodes, 
each with one 
sensor per node. 
Node 1 has a 
squared sensor. 

• PF-MT (blue) has 
least RMSE
– Using K=1 dim 

effective basis
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Summary
Efficient IS techniques for LDSS w/ multimodal OL

• Generalized existing work that assumed 
unimodality of posterior given previous state (p*)

• Derived sufficient conditions to test for unimodality
of residual posterior, p** & used these to guide 
the choice of Xt,s, Xt,r for PF-EIS

• If STP of Xt,r narrow enough, p** will be unimodal
& also very narrow: approx by Dirac delta function 
at its mode: IS-MT
– Some extra error, but improves effective particle size
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Open Issues
• PF-EIS much more expensive than original PF

– Make mode computation faster
– Choose effective basis dimension to min computation 

complexity (not N) for given error

• Compute Δ* (bound on residual STP) efficiently & 
use it to choose Xt,s on-the-fly
– Or derive sufficient conditions to choose Xt,s to max 

probability that p** will be unimodal offline

• Analyze IS-MT: systematic way to choose 
“narrowness” bound, when is net error lower?

• Extensions to PF-Smoothing (for offline problems)
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Applications



Tracking on LDSS – N. Vaswani
40

Applications
• Deformable contour tracking

– Affine PF-MT [Rathi et al, CVPR’05, PAMI (to appear)]

– Deform PF-MT [Vaswani et al, CDC’06]

• Tracking spatially varying illumination change of 
moving objects
– Moving into lighted room, face tracking [Kale et al, 

ICASSP’07]

• Tracking change in spatially varying physical 
quantities using sensor networks
– Tracking temperature change [Vaswani,ICASSP’07]
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Illumination Tracking: PF-MT
[Kale et al, ICASSP’07]

• State = Motion (3 dim) + Illumination (7dim)

• IS on motion (3 dim) & MT on illumination
– Illumination changes very slowly
– OL usually unimodal as a function of illumination
– If OL multimodal as a fn of illumination (e.g. 

occlusions), modes usually far apart compared 
to illumination change variance
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Face tracking results [Kale et al, ICASSP’07]

PF-MT

3 dim 
PF (no 
illum)

10-dim 
Auxiliary 
PF
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Face tracking: RMSE from ground truth
[Kale et al, ICASSP’07]

Comparing PF-MT with 10 dim regular PFs (original, auxiliary) 
& with PF- K dim (not track illumination at all). N = 100
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Deformable Contour Tracking
• State: contour, contour point velocities
• Observation: image intensity and/or edge map

• OL: segmentation energies (region or edge based)
– Region based: observation is the image intensity. OL is 

the probability of the image being generated by the 
contour. Assumes a certain object/bgnd intensity model

– Edge based: observation is the edge locations (edge 
map). OL is the probability of a subset of these edges 
being generated by the contour, and of others being 
generated by clutter or low contrast
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Two proposed PF-MT algorithms
• Affine PF-MT [Rathi et al, CVPR’05, PAMI (to appear)]

– Effective basis sp: 6-dim space of affine deformations
– Assumes OL modes separated only by affine 

deformation or small non-affine deformation per frame

• Deform PF-MT [Vaswani et al, CDC’06]

– Effective basis sp: translation & deformation at K sub-
sampled locations around the contour. K can change

– Useful when OL modes separated by non-affine def 
(e.g. due to overlapping clutter or low contrast) & large 
non-affine deformation per frame (fast deforming seq)
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Low contrast images, small deformation 
per frame: use Affine PF-MT[Rathi etal,CVPR’05]

• Tracking humans from a distance (small def per frame)
• Deformation due to perspective camera effects 

(changing viewpoints), e.g. UAV tracking a plane

Condensation 
(PF K-dim) fails
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Low contrast images, large def per 
frame: Brain slices (Tumor Sequence)

• Multiple nearby OL modes of non-affine 
deformation: due to low contrast

• Tracking with Deform PF-MT [Vaswani et al,CDC’06]
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Overlapping Background clutter
Small non-affine deformation per frame: Affine PF-MT works

Large non-affine deformation per frame: Affine PF-MT fails

Large non-affine deformation per frame: Deform PF-MT works
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Partial Occlusions (car)
• 3 dominant modes (many weak modes) of edge based OL 

due to partial occlusion
• Tracking using Deform PF-MT [Vaswani et al, CDC’06]
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Ongoing Work: System Id
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System Id
• LDSS: Time sequences of discretized spatial 

“signals” (usually heavily oversampled)
– “signal”: spatially stationary or p.w. stationary

• System Id problem has 2 parts
– Estimate effective basis dim: use PSD of spatial signal 

& its r% cut-off frequency

– Learn Temporal dynamics: AR model on LPF’ed
Fourier coefficients or on subsampled spatial signal
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An Example: Estimating K
M = 178 dimensional contour deformation “signal”
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Using PSD to estimate K

fmin = 0.03Hz for residual deformation = 0.05% of 
total deformation. M = 178,  K = dM. 2 fmine = 12
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System Id: Open Issues
• Temporally piecewise stationary sequences

– Detect changes in PSD (spatial)
– Detect change in effective basis dimension, K
– Detect change in temporal dynamics (if K same)
– Do all the above while tracking

• Spatial nonstationarity

• Contour deformation sequences: spatial axis 
(arclength) warps over time: total L changes, 
distance b/w points changes
– Effects not studied in regular signal processing
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Collaborators
• Deformable contour tracking

– Anthony Yezzi, Georgia Tech
– Yogesh Rathi, Georgia Tech
– Allen Tannenbaum, Georgia Tech

• Illumination tracking
– Amit Kale, Siemens Corporate Tech, Bangalore

• System Id for time sequences of spatial signals
– Ongoing work with my student, Wei Lu
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