Recursive Causal Reconstruction of Sparse Signal Sequences

Namrata Vaswani

Department of Electrical and Computer Engineering lowa State University http://www.ece.iastate.edu/~namrata

・ロト ・回ト ・ヨト ・ヨト

æ

Motivation Background Problem definition & Key ideas

Our Goal

- Causally & recursively reconstruct a time seq. of sparse signals
- with slowly changing sparsity patterns
- ▶ from a *small number* of linear projections at each time
- "recursive": use only current measurements vector and previous reconstruction to get current reconstruction

Motivation Background Problem definition & Key ideas

Our Goal

- Causally & recursively reconstruct a time seq. of sparse signals
- with slowly changing sparsity patterns
- from a small number of linear projections at each time
- "recursive": use only current measurements vector and previous reconstruction to get current reconstruction
- Applications
 - real-time dynamic MRI reconstruction
 - interventional radiology apps, e.g. MRI-guided surgery
 - fMRI-based study of neural activation patterns
 - ▶ single-pixel video imaging with a real-time video display, ...

- Why causal?
 - needed for real-time applications
- Why causal & recursive?
 - much faster than causal & batch
 - $O(m^3) v/s O(t^3 m^3)$ at time t (m: signal length)
 - also much faster than offline & batch
- Why reduce the number of measurements needed?
 - data acquisition in MRI or single-pixel camera is sequential: fewer meas ⇒ faster acquisition (needed for real-time)

Motivation Background Problem definition & Key ideas

- Most existing work is either
 - for static sparse reconstruction or
 - or is offline & batch [Wakin et al'06(video)],[Gamper et al'08, Jung et al'09 (MRI)]

► Fails if applied to online problem with few measurements

Motivation Background Problem definition & Key ideas

Example: dynamic MRI recon. of a cardiac sequence

Original sequence

CS-reconstructed sequence

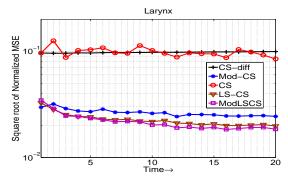
Modified-CS reconstructed sequence

using only 16% Fourier measurements at t > 0 (50% at t = 0), existing work (CS) gives large reconstruction error (10-12%), proposed approach (modified-CS) is very accurate

Motivation Background Problem definition & Key ideas

Example: dynamic MRI recon of a vocal tract sequence

videos: http://www.ece.iastate.edu/~luwei/modcs/



using only 19% Fourier measurements at all times, existing work (CS, CS-diff) has large error

< ロ > < 同 > < 回 > < 回 >

Motivation Background Problem definition & Key ideas

What is sparse reconstruction?

- Reconstruct a sparse signal x from y := Ax (noiseless) or y := Ax + w (noisy),
 - when A is a fat matrix
- Solved if one can find the sparsest vector satisfying y = Ax
 - ▶ and spark(A) > 2|support(x)|
- But, this has exponential complexity

Motivation Background Problem definition & Key ideas

What is sparse reconstruction?

- Reconstruct a sparse signal x from y := Ax (noiseless) or y := Ax + w (noisy),
 - when A is a fat matrix
- Solved if one can find the sparsest vector satisfying y = Ax
 - ▶ and spark(A) > 2|support(x)|
- But, this has exponential complexity
- ▶ Practical approaches (have polynomial complexity in *m*):
 - convex relaxation approaches, e.g. BP, BPDN, DS, ...
 - ▶ greedy methods, e.g. MP, OMP, CoSaMP, ...

Motivation Background Problem definition & Key ideas

What is sparse reconstruction?

- Reconstruct a sparse signal x from y := Ax (noiseless) or y := Ax + w (noisy),
 - when A is a fat matrix
- Solved if one can find the sparsest vector satisfying y = Ax
 - ▶ and spark(A) > 2|support(x)|
- But, this has exponential complexity
- ▶ Practical approaches (have polynomial complexity in *m*):
 - convex relaxation approaches, e.g. BP, BPDN, DS, ...
 - ▶ greedy methods, e.g. MP, OMP, CoSaMP, ...
- Compressed Sensing (CS) literature provides the missing theoretical guarantees for the practical approaches

Motivation Background Problem definition & Key ideas

Notation [Candes, Romberg, Tao'05]

- Notation:
 - \blacktriangleright |*T*|: cardinality of set *T*
 - $T^c = [1, 2, \dots, m] \setminus T$: complement of set T
 - $\|\beta\|_k$: ℓ_k norm of vector β , $\|\beta\|$: ℓ_2 norm
 - ||A||: spectral matrix norm (induced 2-norm) of matrix A
 - ▶ β_T : sub-vector containing elements of β with indices in set T
 - A_T : sub-matrix containing columns of A with indices in set T
 - A': denotes the transpose of matrix A

(日) (部) (注) (注) (言)

Motivation Background Problem definition & Key ideas

Notation [Candes, Romberg, Tao'05]

- Notation:
 - \blacktriangleright |*T*|: cardinality of set *T*
 - $T^c = [1, 2, \dots, m] \setminus T$: complement of set T
 - $\|\beta\|_k$: ℓ_k norm of vector β , $\|\beta\|$: ℓ_2 norm
 - ||A||: spectral matrix norm (induced 2-norm) of matrix A
 - ▶ β_T : sub-vector containing elements of β with indices in set T
 - A_T : sub-matrix containing columns of A with indices in set T
 - A': denotes the transpose of matrix A

► RIP constant, δ_{S} : smallest real number s.t. all eigenvalues of $A_T A_T$ lie $b/w \ 1 \pm \delta_S$ whenever $|T| \leq S$ [Candes,Romberg,Tao'05]

(日) (部) (注) (注) (言)

Motivation Background Problem definition & Key ideas

Notation [Candes, Romberg, Tao'05]

- Notation:
 - \blacktriangleright |*T*|: cardinality of set *T*
 - $T^c = [1, 2, \dots, m] \setminus T$: complement of set T
 - $\|\beta\|_k$: ℓ_k norm of vector β , $\|\beta\|$: ℓ_2 norm
 - ||A||: spectral matrix norm (induced 2-norm) of matrix A
 - ▶ β_T : sub-vector containing elements of β with indices in set T
 - A_T : sub-matrix containing columns of A with indices in set T
 - A': denotes the transpose of matrix A

► RIP constant, δ_{S} : smallest real number s.t. all eigenvalues of $A_T A_T$ lie $b/w \ 1 \pm \delta_S$ whenever $|T| \leq S$ [Candes,Romberg,Tao'05]

• $\delta_{S} < 1 \Leftrightarrow A$ satisfies the S-RIP

Motivation Background Problem definition & Key ideas

Notation [Candes, Romberg, Tao'05]

- Notation:
 - \blacktriangleright |*T*|: cardinality of set *T*
 - $T^c = [1, 2, \dots, m] \setminus T$: complement of set T
 - $\|\beta\|_k$: ℓ_k norm of vector β , $\|\beta\|$: ℓ_2 norm
 - ||A||: spectral matrix norm (induced 2-norm) of matrix A
 - ▶ β_T : sub-vector containing elements of β with indices in set T
 - A_T : sub-matrix containing columns of A with indices in set T
 - A': denotes the transpose of matrix A
- ► RIP constant, δ_{S} : smallest real number s.t. all eigenvalues of $A_T A_T$ lie $b/w \ 1 \pm \delta_S$ whenever $|T| \leq S$ [Candes,Romberg,Tao'05]

• $\delta_S < 1 \Leftrightarrow A$ satisfies the S-RIP

► ROP constant, θ_{S_1,S_2} : smallest real number s.t. for disjoint sets, $T_1, T_2 \text{ with } |T_1| \le S_1, |T_2| \le S_2,$ $|c'_1 A_{T_1} A_{T_2} c_2| \le \theta_{S_1,S_2} ||c_1||_2 ||c_2||_2 \text{ [Candes,Romberg,Tao'05]}$

Motivation Background Problem definition & Key ideas

Notation [Candes, Romberg, Tao'05]

- Notation:
 - ► |T|: cardinality of set T
 - $T^c = [1, 2, \dots, m] \setminus T$: complement of set T
 - $\|\beta\|_k$: ℓ_k norm of vector β , $\|\beta\|$: ℓ_2 norm
 - ||A||: spectral matrix norm (induced 2-norm) of matrix A
 - β_T : sub-vector containing elements of β with indices in set T
 - A_T : sub-matrix containing columns of A with indices in set T
 - A': denotes the transpose of matrix A
- \triangleright RIP constant, δ_S : smallest real number s.t. all eigenvalues of $A_T'A_T$ lie b/w $1 \pm \delta_S$ whenever $|T| \leq S$ [Candes,Romberg,Tao'05]

• $\delta s < 1 \Leftrightarrow A$ satisfies the S-RIP

• ROP constant, θ_{S_1,S_2} : smallest real number s.t. for disjoint sets, $|T_1, T_2| = V_1 |T_1| < S_1, |T_2| < S_2.$ $|c_1'A_{T_1}'A_{T_2}c_2| \le \theta_{S_1,S_2} \|c_1\|_2 \|c_2\|_2$ [Candes,Romberg,Tao'05]

• easy to see: $||A_{T_1}'A_{T_2}|| < \theta_{|T_1| ||T_2|}$

8/53

Motivation Background Problem definition & Key ideas

Compressive sensing [Candes,Romberg,Tao'05][Donoho'05],

- ℓ_1 min approaches
 - ▶ Basis pursuit (BP) [Chen,Donoho,Saunders'97]: $\min_{\beta} \|\beta\|_1 \ s.t. \ y = A\beta$
 - ▶ BP denoising (BPDN): $\min_{\beta} \|\beta\|_1 \ s.t. \ \|y A\beta\|_2 \le \epsilon$
 - BPDN unconst.: $\gamma \min_{\beta} \|\beta\|_1 + \|y A\beta\|_2^2$
 - ▶ Dantzig selector (DS): $\min_{\beta} \|\beta\|_1 \ s.t. \|A'(y A\beta)\|_{\infty} < \lambda$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ シのへで

Motivation Background Problem definition & Key ideas

Compressive sensing [Candes,Romberg,Tao'05][Donoho'05]

- ▶ ℓ₁ min approaches
 - ▶ Basis pursuit (BP) [Chen,Donoho,Saunders'97]: $\min_{\beta} \|\beta\|_1 \ s.t. \ y = A\beta$
 - ▶ BP denoising (BPDN): $\min_{\beta} \|\beta\|_1 \ s.t. \|y A\beta\|_2 \le \epsilon$
 - BPDN unconst.: $\gamma \min_{\beta} \|\beta\|_1 + \|y A\beta\|_2^2$
 - ▶ Dantzig selector (DS): $\min_{\beta} \|\beta\|_1 \ s.t. \|A'(y A\beta)\|_{\infty} < \lambda$
- If x is S-sparse and $\delta_{2S} + \theta_{S,2S} < 1$,
 - noiseless measurements: BP gives exact reconstruction
 - noisy meas.: DS or BPDN error can be bounded [Candes, Tao'06][Tropp'05]

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Motivation Background Problem definition & Key ideas

Problem definition

Measure

$$y_t = Ax_t$$
 (noise-free) or $y_t = Ax_t + w_t$ (noisy)

- $A = H\Phi$, H: measurement matrix, Φ : sparsity basis matrix
- y_t : measurements $(n \times 1)$
- ► x_t: sparsity basis coefficients (m × 1), m > n
- N_t : support of x_t (set of indices of nonzero elements of x_t)
- Goal: recursively reconstruct x_t from $y_0, y_1, \ldots y_t$,
 - i.e. use only \hat{x}_{t-1} and y_t for reconstructing x_t

Motivation Background Problem definition & Key ideas

Assumptions

- Measurement basis is "incoherent" w.r.t. sparsity basis
 - A satisfies S-RIP for $S > |N_t|+?$
- x_t is sparse at each time with support denoted N_t

Motivation Background Problem definition & Key ideas

Assumptions

- Measurement basis is "incoherent" w.r.t. sparsity basis
 A satisfies S-RIP for S > |N_t|+?
- x_t is sparse at each time with support denoted N_t
- Support changes slowly over time:

 $|N_t \setminus N_{t-1}| \approx |N_{t-1} \setminus N_t| \ll |N_t|$

Motivation Background Problem definition & Key ideas

Assumptions

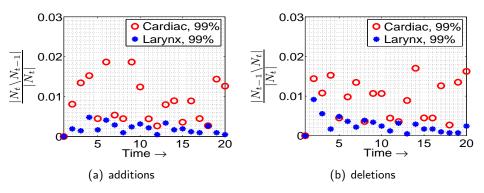
- Measurement basis is "incoherent" w.r.t. sparsity basis
 A satisfies S-RIP for S > |N_t|+?
- x_t is sparse at each time with support denoted N_t
- Support changes slowly over time:

 $|N_t \setminus N_{t-1}| \approx |N_{t-1} \setminus N_t| \ll |N_t|$

Usually nonzero elements of x_t also change slowly over time

Motivation Background Problem definition & Key ideas

Slow support change in medical image sequences



- ▶ N_t : 99%-energy support of the 2D-DWT of the image
- ▶ additions: $N_t \setminus N_{t-1}$, deletions: $N_{t-1} \setminus N_t$
- maximum size of additions/deletions is less than $0.02|N_t|$

Motivation Background Problem definition & Key ideas

Two Formulations

- 1. Only use "slow support change" assumption
 - $\blacktriangleright \Leftrightarrow$ sparse reconstruction with partially known support

Motivation Background Problem definition & Key ideas

Two Formulations

- 1. Only use "slow support change" assumption
 - \blacktriangleright \Leftrightarrow sparse reconstruction with partially known support
 - two types of approaches
 - ► LS-CS-residual (LS-CS) [Vaswani, ICIP'08, IEEE Trans. SP (to appear)]
 - ► Modified-CS (mod-CS) [Vaswani, Lu, ISIT'09, IEEE Trans. SP (to appear)]

Motivation Background Problem definition & Key ideas

Two Formulations

1. Only use "slow support change" assumption

- $\blacktriangleright \Leftrightarrow$ sparse reconstruction with partially known support
- two types of approaches
 - ► LS-CS-residual (LS-CS) [Vaswani, ICIP'08, IEEE Trans. SP (to appear)]
 - ► Modified-CS (mod-CS) [Vaswani, Lu, ISIT'09, IEEE Trans. SP (to appear)]
- 2. Also use "slow signal value change"
 - regularize both of the above approaches
 - KF-CS-residual (KF-CS) [Vaswani, ICIP'08, ICASSP'09]
 - KF-modCS (regularized mod-CS)

Motivation Background Problem definition & Key ideas

Two Formulations

1. Only use "slow support change" assumption

- ► ⇔ sparse reconstruction with partially known support
- two types of approaches
 - ► LS-CS-residual (LS-CS) [Vaswani, ICIP'08, IEEE Trans. SP (to appear)]
 - ► Modified-CS (mod-CS) [Vaswani, Lu, ISIT'09, IEEE Trans. SP (to appear)]
- 2. Also use "slow signal value change"
 - regularize both of the above approaches
 - KF-CS-residual (KF-CS) [Vaswani, ICIP'08, ICASSP'09]
 - KF-modCS (regularized mod-CS)
 - significant performance improvement with fewer measurements

Motivation Background Problem definition & Key ideas

Two Formulations

1. Only use "slow support change" assumption

- ► ⇔ sparse reconstruction with partially known support
- two types of approaches
 - ► LS-CS-residual (LS-CS) [Vaswani, ICIP'08, IEEE Trans. SP (to appear)]
 - ► Modified-CS (mod-CS) [Vaswani, Lu, ISIT'09, IEEE Trans. SP (to appear)]
- 2. Also use "slow signal value change"
 - regularize both of the above approaches
 - KF-CS-residual (KF-CS) [Vaswani, ICIP'08, ICASSP'09]
 - KF-modCS (regularized mod-CS)
 - significant performance improvement with fewer measurements
 - but difficult to analyze

Motivation Background Problem definition & Key ideas

Key Contributions [Vaswani, ICIP'08, Trans. SP (to appear)] [Vaswani, Lu, ISIT'09, Trans. SP (to appear)]

Assume: "slow support change"

Under weaker sufficient conditions (fewer measurements) than CS,

1. Mod-CS achieves exact recon (noise-free case)

Motivation Background Problem definition & Key ideas

Key Contributions [Vaswani, ICIP'08, Trans. SP (to appear)] [Vaswani, Lu, ISIT'09, Trans. SP (to appear)]

Assume: "slow support change"

Under weaker sufficient conditions (fewer measurements) than CS,

- 1. Mod-CS achieves exact recon (noise-free case)
- 2. Noisy case: error bound is significantly smaller than CS
 - if previous recon accurate enough

Motivation Background Problem definition & Key ideas

Key Contributions [Vaswani, ICIP'08, Trans. SP (to appear)] [Vaswani, Lu, ISIT'09, Trans. SP (to appear)]

Assume: "slow support change"

Under weaker sufficient conditions (fewer measurements) than CS,

- 1. Mod-CS achieves exact recon (noise-free case)
- 2. Noisy case: error bound is significantly smaller than CS
 - if previous recon accurate enough
 - holds for both Mod-CS & LS-CS

Motivation Background Problem definition & Key ideas

Key Contributions [Vaswani, ICIP'08, Trans. SP (to appear)] [Vaswani, Lu, ISIT'09, Trans. SP (to appear)]

Assume: "slow support change"

Under weaker sufficient conditions (fewer measurements) than CS,

- 1. Mod-CS achieves exact recon (noise-free case)
- 2. Noisy case: error bound is significantly smaller than CS
 - if previous recon accurate enough
 - holds for both Mod-CS & LS-CS
- 3. Noisy case: error is "stable" over time
 - time-invariant bound on support errors (misses/extras) & hence on recon errors; support error bound « support size

Motivation Background Problem definition & Key ideas

Key Contributions [Vaswani, ICIP'08, Trans. SP (to appear)] [Vaswani, Lu, ISIT'09, Trans. SP (to appear)]

Assume: "slow support change"

Under weaker sufficient conditions (fewer measurements) than CS,

- 1. Mod-CS achieves exact recon (noise-free case)
- 2. Noisy case: error bound is significantly smaller than CS
 - if previous recon accurate enough
 - holds for both Mod-CS & LS-CS
- 3. Noisy case: error is "stable" over time

 - holds for both Mod-CS & LS-CS

Motivation Background Problem definition & Key ideas

Key Contributions [Vaswani, ICIP'08, Trans. SP (to appear)] [Vaswani, Lu, ISIT'09, Trans. SP (to appear)]

Assume: "slow support change"

Under weaker sufficient conditions (fewer measurements) than CS,

- 1. Mod-CS achieves exact recon (noise-free case)
- 2. Noisy case: error bound is significantly smaller than CS
 - if previous recon accurate enough
 - holds for both Mod-CS & LS-CS
- 3. Noisy case: error is "stable" over time
 - time-invariant bound on support errors (misses/extras) & hence on recon errors; support error bound « support size
 - holds for both Mod-CS & LS-CS
- 4. Demonstrated all the above for recon'ing real image sequences (approx. sparse) from both partial Fourier (MRI) & Gaussian meas's

Motivation Background Problem definition & Key ideas

Related Work

Batch CS [Wakin et al (video)],[Gamper et al, Jan'08 (MRI)],[Jung et al'09 (MRI)]

non-causal, very high reconstruction complexity

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Motivation Background Problem definition & Key ideas

Related Work

Batch CS [Wakin et al (video)],[Gamper et al,Jan'08 (MRI)],[Jung et al'09 (MRI)]

- non-causal, very high reconstruction complexity
- ▶ [Cevher et al, ECCV'08]: CS for background subtracted images (CS-diff)
 - $CS(y_t y_{t-1})$: designed to only recon $x_t x_{t-1}$
 - unstable if try to recon x_t from few measurements

Motivation Background Problem definition & Key ideas

Related Work

- Batch CS [Wakin et al (video)],[Gamper et al, Jan'08 (MRI)],[Jung et al'09 (MRI)]
 - non-causal, very high reconstruction complexity
- [Cevher et al, ECCV'08]: CS for background subtracted images (CS-diff)
 - $CS(y_t y_{t-1})$: designed to only recon $x_t x_{t-1}$
 - unstable if try to recon x_t from few measurements

[von Borries et al,CAMSAP'07]: static CS with prior support knowledge

 did not give any exact reconstruction guarantees or error bounds or experimental results

Motivation Background Problem definition & Key ideas

Parallel, later and not-so-related work

- Parallel work related to modified-CS [Vaswani,Lu, ISIT'09]
 - ► [Khajenejad et al, ISIT'09]: static CS with probabilistic prior on support

Motivation Background Problem definition & Key ideas

Parallel, later and not-so-related work

- ► Parallel work related to modified-CS [Vaswani,Lu, ISIT'09]
 - ► [Khajenejad et al, ISIT'09]: static CS with probabilistic prior on support
- ► Work related to KF-CS, LS-CS [Vaswani, ICIP'08]
 - [Angelosante, Giannakis, DSP'09]
 - focusses only on time-invariant support: restrictive
 - [Carmi et al, pseudo-measurement KF, IBM tech report'09]
 - modifies KF-CS [Vaswani, ICIP'08]

Motivation Background Problem definition & Key ideas

Parallel, later and not-so-related work

- ► Parallel work related to modified-CS [Vaswani,Lu, ISIT'09]
 - ► [Khajenejad et al, ISIT'09]: static CS with probabilistic prior on support
- ► Work related to KF-CS, LS-CS [Vaswani, ICIP'08]
 - [Angelosante, Giannakis, DSP'09]
 - focusses only on time-invariant support: restrictive
 - [Carmi et al, pseudo-measurement KF, IBM tech report'09]
 - modifies KF-CS [Vaswani, ICIP'08]
- Our goals are very different from:
 - homotopy methods e.g. [Asif,Romberg'09], [Rozell et al'07]
 - speed up optimization, do not reduce no. of meas's reqd.
 - reconstruct one signal recursively from seq. arriving meas's,
 - e.g. [Sequential CS, Maliotov et al, ICASSP'08], [Garrigues et al'08], [Asif, Romberg'08], [Angelosante, Giannakis, RLS-Lasso, ICASSP'09]
 - multiple measurements vector (MMV) problem

Motivation Background Problem definition & Key ideas

Outline

- Sparse reconstruction with partially known support
 - problem definition
 - LS-CS-residual and error bound
 - Modified-CS and exact reconstruction conditions
 - Stability over time
- Summary
- Ongoing work: KF-CS-residual, KF-mod-CS

・ロト ・回 ト ・ヨト ・ヨト

Sparse reconstruction with partly known support

• Rewrite the support, N_t , as

$$N_t = T \cup \Delta \setminus \Delta_e$$

- ► *T*: "known" part of the support at *t*, may have error
- $\Delta_e := T \setminus N_t$: error in T, unknown
- $\Delta := N_t \setminus T$: unknown part of support

Sparse reconstruction with partly known support

• Rewrite the support, N_t , as

$$N_t = T \cup \Delta \setminus \Delta_e$$

- ► *T*: "known" part of the support at *t*, may have error
- $\Delta_e := T \setminus N_t$: error in T, unknown
- $\Delta := N_t \setminus T$: unknown part of support
- In our problem:
 - at t > 0, use $T = \hat{N}_{t-1}$

Sparse reconstruction with partly known support

• Rewrite the support, N_t , as

$$N_t = T \cup \Delta \setminus \Delta_e$$

- ► *T*: "known" part of the support at *t*, may have error
- $\Delta_e := T \setminus N_t$: error in *T*, unknown
- $\Delta := N_t \setminus T$: unknown part of support
- In our problem:
 - at t > 0, use $T = \hat{N}_{t-1}$
 - if previous recon accurate enough and "slow support change",

$$\blacktriangleright |\Delta_e|, |\Delta| \ll |N_t|$$

Sparse reconstruction with partly known support

• Rewrite the support, N_t , as

$$N_t = T \cup \Delta \setminus \Delta_e$$

- ► *T*: "known" part of the support at *t*, may have error
- $\Delta_e := T \setminus N_t$: error in T, unknown
- $\Delta := N_t \setminus T$: unknown part of support
- In our problem:
 - at t > 0, use $T = \hat{N}_{t-1}$
 - if previous recon accurate enough and "slow support change",

$$\bullet |\Delta_e|, |\Delta| \ll |N_t|$$

• at t = 0, T = empty or use prior knowledge

- The problem is also of independent interest
- T may be available from prior knowledge
- Examples:
 - 1. piecewise smooth images with small black background
 - most approximation coefficients of its DWT are nonzero

- The problem is also of independent interest
- T may be available from prior knowledge
- Examples:
 - 1. piecewise smooth images with small black background
 - most approximation coefficients of its DWT are nonzero
 - 2. Fourier sparse signals/images: usually most low frequencies present

- The problem is also of independent interest
- T may be available from prior knowledge
- Examples:
 - 1. piecewise smooth images with small black background
 - most approximation coefficients of its DWT are nonzero
 - 2. Fourier sparse signals/images: usually most low frequencies present
 - 3. fMRI brain activation tracking: use initial frame support as "known part"

イロト イポト イヨト

LS-CS-residual (LS-CS) & error bound Modified-CS & exact reconstruction conditions Error Stability of LS-CS & modified-CS

LS-CS-residual (LS-CS) [Vaswani, ICIP'08, ICASSP'09, Trans. SP (to appear)]

- Our problem: reconstruct x with support $N = T \cup \Delta \setminus \Delta_e$ from y := Ax or from y := Ax + w, when T is known
- CS-residual idea:
 - compute an initial LS estimate assuming T is correct support

$$(\hat{x}_{init})_T = A_T^{\dagger} y$$

 $(\hat{x}_{init})_{T^c} = 0$

LS-CS-residual (LS-CS) & error bound Modified-CS & exact reconstruction conditions Error Stability of LS-CS & modified-CS

LS-CS-residual (LS-CS) [Vaswani, ICIP'08, ICASSP'09, Trans. SP (to appear)]

- Our problem: reconstruct x with support $N = T \cup \Delta \setminus \Delta_e$ from y := Ax or from y := Ax + w, when T is known
- CS-residual idea:
 - compute an initial LS estimate assuming T is correct support

$$(\hat{x}_{init})_T = A_T^{\dagger} y$$

 $(\hat{x}_{init})_{T^c} = 0$

compute the observation residual

$$\tilde{y}_{\rm res} = y - A \hat{x}_{\rm init}$$

LS-CS-residual (LS-CS) & error bound Modified-CS & exact reconstruction conditions Error Stability of LS-CS & modified-CS

LS-CS-residual (LS-CS) [Vaswani, ICIP'08, ICASSP'09, Trans. SP (to appear)]

- Our problem: reconstruct x with support $N = T \cup \Delta \setminus \Delta_e$ from y := Ax or from y := Ax + w, when T is known
- CS-residual idea:
 - compute an initial LS estimate assuming T is correct support

$$(\hat{x}_{init})_T = A_T^{\dagger} y$$

 $(\hat{x}_{init})_{T^c} = 0$

compute the observation residual

$$\tilde{y}_{\rm res} = y - A \hat{x}_{\rm init}$$

• CS on observation residual, add back \hat{x}_{init}

$$\hat{x}_{\mathsf{CSres}} = CS(\tilde{y}_{\mathsf{res}}) + \hat{x}_{\mathsf{init}}$$

LS-CS-residual (LS-CS) & error bound Modified-CS & exact reconstruction conditions Error Stability of LS-CS & modified-CS

LS-CS-residual (LS-CS) [Vaswani, ICIP'08, ICASSP'09, Trans. SP (to appear)]

- Our problem: reconstruct x with support $N = T \cup \Delta \setminus \Delta_e$ from y := Ax or from y := Ax + w, when T is known
- CS-residual idea:
 - compute an initial LS estimate assuming T is correct support

$$(\hat{x}_{init})_T = A_T^{\dagger} y$$

 $(\hat{x}_{init})_{T^c} = 0$

compute the observation residual

$$\tilde{y}_{\rm res} = y - A \hat{x}_{\rm init}$$

• CS on observation residual, add back \hat{x}_{init}

$$\hat{x}_{\mathsf{CSres}} = CS(\tilde{y}_{\mathsf{res}}) + \hat{x}_{\mathsf{init}}$$

• Notice that $\tilde{y}_{res} = A\beta + w$, $\beta = x - \hat{x}_{init}$

LS-CS-residual (LS-CS) & error bound Modified-CS & exact reconstruction conditions Error Stability of LS-CS & modified-CS

Why CS-residual works better?

▶ Notice that $\tilde{y}_{res} = A\beta + w$, where $\beta = x - \hat{x}_{init}$ with

$$\begin{aligned} (\beta)_{(T\cup\Delta)^c} &= 0\\ (\beta)_T &= (A_T'A_T)^{-1}A_T'(A_\Delta x_\Delta + w),\\ (\beta)_\Delta &= x_\Delta \end{aligned}$$

► $|\Delta|, |\Delta_e| \text{ small} \Rightarrow ||A_T'A_\Delta|| \le \theta_{|T|,|\Delta|} \text{ small}$

LS-CS-residual (LS-CS) & error bound Modified-CS & exact reconstruction conditions Error Stability of LS-CS & modified-CS

Why CS-residual works better?

▶ Notice that $\tilde{y}_{res} = A\beta + w$, where $\beta = x - \hat{x}_{init}$ with

$$\begin{aligned} (\beta)_{(\mathcal{T}\cup\Delta)^c} &= 0\\ (\beta)_{\mathcal{T}} &= (A_{\mathcal{T}}'A_{\mathcal{T}})^{-1}A_{\mathcal{T}}'(A_{\Delta}x_{\Delta}+w),\\ (\beta)_{\Delta} &= x_{\Delta} \end{aligned}$$

- ► $|\Delta|$, $|\Delta_e|$ small $\Rightarrow ||A_T'A_\Delta|| \le \theta_{|T|,|\Delta|}$ small
- if noise also small \Rightarrow second term in $(\beta)_T$ equation is small

LS-CS-residual (LS-CS) & error bound Modified-CS & exact reconstruction conditions Error Stability of LS-CS & modified-CS

Why CS-residual works better?

▶ Notice that $\tilde{y}_{res} = A\beta + w$, where $\beta = x - \hat{x}_{init}$ with

$$\begin{aligned} &(\beta)_{(\mathcal{T}\cup\Delta)^c} &= & 0\\ &(\beta)_{\mathcal{T}} &= & (A_{\mathcal{T}}'A_{\mathcal{T}})^{-1}A_{\mathcal{T}}'(A_{\Delta}x_{\Delta}+w),\\ &(\beta)_{\Delta} &= & x_{\Delta} \end{aligned}$$

- $\blacktriangleright \ |\Delta|, \ |\Delta_e| \ \text{small} \Rightarrow \|A_T ' A_\Delta\| \le \theta_{|T|, |\Delta|} \ \text{small}$
- if noise also small \Rightarrow second term in $(\beta)_T$ equation is small
- ► $|\Delta_e| \text{ small} \Rightarrow ||(A_T A_T)^{-1}|| \le (1 \delta_{|T|})^{-1}$ not large

LS-CS-residual (LS-CS) & error bound Modified-CS & exact reconstruction conditions Error Stability of LS-CS & modified-CS

Why CS-residual works better?

▶ Notice that $\tilde{y}_{res} = A\beta + w$, where $\beta = x - \hat{x}_{init}$ with

$$\begin{aligned} (\beta)_{(\mathcal{T}\cup\Delta)^c} &= 0\\ (\beta)_{\mathcal{T}} &= (A_{\mathcal{T}}'A_{\mathcal{T}})^{-1}A_{\mathcal{T}}'(A_{\Delta}x_{\Delta}+w),\\ (\beta)_{\Delta} &= x_{\Delta} \end{aligned}$$

- $\blacktriangleright \ |\Delta|, \ |\Delta_e| \ \text{small} \Rightarrow \|A_T ' A_\Delta\| \le \theta_{|T|, |\Delta|} \ \text{small}$
- if noise also small \Rightarrow second term in $(\beta)_T$ equation is small
- ► $|\Delta_e|$ small $\Rightarrow ||(A_T'A_T)^{-1}|| \le (1 \delta_{|T|})^{-1}$ not large
- ▶ all the above $\Rightarrow ||(\beta)_T||$ small $\Rightarrow \beta$ is approx $|\Delta|$ -sparse

LS-CS-residual (LS-CS) & error bound Modified-CS & exact reconstruction conditions Error Stability of LS-CS & modified-CS

Why CS-residual works better?

▶ Notice that $\tilde{y}_{res} = A\beta + w$, where $\beta = x - \hat{x}_{init}$ with

$$\begin{aligned} &(\beta)_{(\mathcal{T}\cup\Delta)^c} &= & 0\\ &(\beta)_{\mathcal{T}} &= & (A_{\mathcal{T}}'A_{\mathcal{T}})^{-1}A_{\mathcal{T}}'(A_{\Delta}x_{\Delta}+w),\\ &(\beta)_{\Delta} &= & x_{\Delta} \end{aligned}$$

- ► $|\Delta|$, $|\Delta_e|$ small $\Rightarrow ||A_T'A_\Delta|| \le \theta_{|T|,|\Delta|}$ small
- if noise also small \Rightarrow second term in $(\beta)_T$ equation is small
- ► $|\Delta_e| \text{ small} \Rightarrow ||(A_T'A_T)^{-1}|| \le (1 \delta_{|T|})^{-1}$ not large
- all the above $\Rightarrow ||(\beta)_T||$ small $\Rightarrow \beta$ is approx $|\Delta|$ -sparse
- β is "sparse-compressible"

LS-CS-residual (LS-CS) & error bound Modified-CS & exact reconstruction conditions Error Stability of LS-CS & modified-CS

Why CS-residual works better?

▶ Notice that $\tilde{y}_{res} = A\beta + w$, where $\beta = x - \hat{x}_{init}$ with

$$\begin{aligned} &(\beta)_{(\mathcal{T}\cup\Delta)^c} &= & 0\\ &(\beta)_{\mathcal{T}} &= & (A_{\mathcal{T}}'A_{\mathcal{T}})^{-1}A_{\mathcal{T}}'(A_{\Delta}x_{\Delta}+w),\\ &(\beta)_{\Delta} &= & x_{\Delta} \end{aligned}$$

- $\blacktriangleright \ |\Delta|, \ |\Delta_e| \ \text{small} \Rightarrow \|A_T ' A_\Delta\| \le \theta_{|T|, |\Delta|} \ \text{small}$
- if noise also small \Rightarrow second term in $(\beta)_T$ equation is small
- ► $|\Delta_e| \text{ small} \Rightarrow ||(A_T'A_T)^{-1}|| \le (1 \delta_{|T|})^{-1}$ not large
- ▶ all the above $\Rightarrow ||(\beta)_T||$ small $\Rightarrow \beta$ is approx $|\Delta|$ -sparse
- β is "sparse-compressible"
- ► ⇒ CS-residual error much smaller than CS error, with fewer measurements,

LS-CS-residual (LS-CS) & error bound Modified-CS & exact reconstruction conditions Error Stability of LS-CS & modified-CS

Why CS-residual works better?

▶ Notice that $\tilde{y}_{res} = A\beta + w$, where $\beta = x - \hat{x}_{init}$ with

$$\begin{aligned} &(\beta)_{(\mathcal{T}\cup\Delta)^c} &= & 0\\ &(\beta)_{\mathcal{T}} &= & (A_{\mathcal{T}}'A_{\mathcal{T}})^{-1}A_{\mathcal{T}}'(A_{\Delta}x_{\Delta}+w),\\ &(\beta)_{\Delta} &= & x_{\Delta} \end{aligned}$$

- $\blacktriangleright \ |\Delta|, \ |\Delta_e| \ \text{small} \Rightarrow \|A_T ' A_\Delta\| \le \theta_{|T|, |\Delta|} \ \text{small}$
- if noise also small \Rightarrow second term in $(\beta)_T$ equation is small
- ► $|\Delta_e| \text{ small} \Rightarrow ||(A_T'A_T)^{-1}|| \le (1 \delta_{|T|})^{-1}$ not large
- all the above $\Rightarrow ||(\beta)_T||$ small $\Rightarrow \beta$ is approx $|\Delta|$ -sparse
- β is "sparse-compressible"
- ► ⇒ CS-residual error much smaller than CS error, with fewer measurements, when support errors are small

LS-CS-residual (LS-CS) & error bound Modified-CS & exact reconstruction conditions Error Stability of LS-CS & modified-CS

Reconstruction error bound [Vaswani, Trans. SP (to appear)]

- **•** Bound reconstruction error as a function of $|T|, |\Delta|$
 - ▶ L1: obtain error bound for CS on sparse-compressible vectors
 - $(\beta)_T$ is "compressible" part of $\beta := x \hat{x}_{init}$
 - bound $\|(\beta)_T\|_1$ and apply L1

LS-CS-residual (LS-CS) & error bound Modified-CS & exact reconstruction conditions Error Stability of LS-CS & modified-CS

Reconstruction error bound [Vaswani, Trans. SP (to appear)]

- **•** Bound reconstruction error as a function of $|T|, |\Delta|$
 - ▶ L1: obtain error bound for CS on sparse-compressible vectors
 - $(\beta)_T$ is "compressible" part of $\beta := x \hat{x}_{init}$
 - bound $\|(\beta)_T\|_1$ and apply L1
- Comparison with CS: if $|\Delta|, |\Delta_e| \ll |N|$
 - our bound holds under weaker sufficient cond's (fewer meas.)

LS-CS-residual (LS-CS) & error bound Modified-CS & exact reconstruction conditions Error Stability of LS-CS & modified-CS

Reconstruction error bound [Vaswani, Trans. SP (to appear)]

- **•** Bound reconstruction error as a function of $|T|, |\Delta|$
 - ▶ L1: obtain error bound for CS on sparse-compressible vectors
 - $(\beta)_T$ is "compressible" part of $\beta := x \hat{x}_{init}$
 - bound $\|(\beta)_T\|_1$ and apply L1
- Comparison with CS: if $|\Delta|, |\Delta_e| \ll |N|$
 - our bound holds under weaker sufficient cond's (fewer meas.)
 - under these sufficient conditions,
 - possible to obtain another CS error bound
 - can argue: our bound is smaller

recall: T: "known" support, Δ : unknown part of support, Δ_e : error in known part

LS-CS-residual (LS-CS) & error bound Modified-CS & exact reconstruction conditions Error Stability of LS-CS & modified-CS

Simulations: normalized MSE [Vaswani, Trans. SP (to appear)]

So far: only upper bound comparison, need simulations

LS-CS-residual (LS-CS) & error bound Modified-CS & exact reconstruction conditions Error Stability of LS-CS & modified-CS

Simulations: normalized MSE [Vaswani, Trans. SP (to appear)]

So far: only upper bound comparison, need simulations

- Simulation setup
 - ▶ signal length m = 200, |N| = 20, $|\Delta| = |\Delta_e| = 2$
 - $(x_N)_i$ i.i.d ± 1 w.p 1/2
 - noise: zero mean Gaussian, vary σ^2 and *n* (no. of meas's)
 - compare with Dantzig selector (DS) with various choices of λ

LS-CS-residual (LS-CS) & error bound Modified-CS & exact reconstruction conditions Error Stability of LS-CS & modified-CS

Simulations: normalized MSE [Vaswani, Trans. SP (to appear)]

So far: only upper bound comparison, need simulations

- Simulation setup
 - ▶ signal length m = 200, |N| = 20, $|\Delta| = |\Delta_e| = 2$
 - $(x_N)_i$ i.i.d ± 1 w.p 1/2
 - noise: zero mean Gaussian, vary σ^2 and *n* (no. of meas's)
 - compare with Dantzig selector (DS) with various choices of λ

	<i>n</i> = 59	<i>n</i> = 59	<i>n</i> = 59	n = 100
	$\sigma = 0.04$	$\sigma = 0.09$	$\sigma = 0.44$	$\sigma = 0.04$
DS, $\lambda = 4\sigma$	0.6545	0.6759	0.9607	0.2622
DS, $\lambda=0.4\sigma$	0.5375	0.5479	1.0525	0.0209
CS -residual, $\lambda = 4\sigma$	0.0866	0.1069	0.1800	0.0402
CS-residual w/ add-then-del	0.0044	0.0205	0.1793	0.0032

n = 59: CS-residual error much smaller than CS error

LS-CS-residual (LS-CS) & error bound Modified-CS & exact reconstruction conditions Error Stability of LS-CS & modified-CS

Support estimation [Vaswani, ICIP'08, Trans. SP (to appear)]

• Option 1: $\hat{N} = \{i : |(\hat{x}_{CSres})_i| > \alpha_a\}$

LS-CS-residual (LS-CS) & error bound Modified-CS & exact reconstruction conditions Error Stability of LS-CS & modified-CS

Support estimation [Vaswani, ICIP'08, Trans. SP (to appear)]

- Option 1: $\hat{N} = \{i : |(\hat{x}_{CSres})_i| > \alpha_a\}$
 - difficulty: CS output biased towards zero [Candes, Tao'06]
 - $\Rightarrow \hat{x}_{CSres}$ biased towards zero along Δ , away from zero along T
 - $\blacktriangleright \Rightarrow$ need small threshold for addition, large for deletion

LS-CS-residual (LS-CS) & error bound Modified-CS & exact reconstruction conditions Error Stability of LS-CS & modified-CS

Support estimation [Vaswani, ICIP'08, Trans. SP (to appear)]

- Option 1: $\hat{N} = \{i : |(\hat{x}_{CSres})_i| > \alpha_a\}$
 - difficulty: CS output biased towards zero [Candes, Tao'06]
 - $\Rightarrow \hat{x}_{CSres}$ biased towards zero along Δ , away from zero along T
 - $\blacktriangleright \Rightarrow$ need small threshold for addition, large for deletion

Option 2: Add-then-Delete

$$T_{add} = T \cup \{i : |(\hat{x}_{CSres})_i| > \alpha_{add}\}$$

$$\hat{x}_{add} = LS(T_{add}, y_t)$$

$$\hat{N} = T_{add} \setminus \{i : |(\hat{x}_{add})_i| \le \alpha_{del}\}$$

LS-CS-residual (LS-CS) & error bound Modified-CS & exact reconstruction conditions Error Stability of LS-CS & modified-CS

Support estimation [Vaswani, ICIP'08, Trans. SP (to appear)]

- Option 1: $\hat{N} = \{i : |(\hat{x}_{CSres})_i| > \alpha_a\}$
 - difficulty: CS output biased towards zero [Candes, Tao'06]
 - $\Rightarrow \hat{x}_{CSres}$ biased towards zero along Δ , away from zero along T
 - $\blacktriangleright \Rightarrow$ need small threshold for addition, large for deletion
- Option 2: Add-then-Delete

$$T_{add} = T \cup \{i : |(\hat{x}_{CSres})_i| > \alpha_{add}\}$$

$$\hat{x}_{add} = LS(T_{add}, y_t)$$

$$\hat{N} = T_{add} \setminus \{i : |(\hat{x}_{add})_i| \le \alpha_{del}\}$$

- Advantage:
 - use α_{add} as small as possible: ensure LS step error small
 - if LS estimate accurate \Rightarrow (a) deletion better, (b) α_{del} can be larger \Rightarrow huge improvement in recon error

LS-CS-residual (LS-CS) & error bound Modified-CS & exact reconstruction conditions Error Stability of LS-CS & modified-CS

Support estimation [Vaswani, ICIP'08, Trans. SP (to appear)]

- Option 1: $\hat{N} = \{i : |(\hat{x}_{CSres})_i| > \alpha_a\}$
 - difficulty: CS output biased towards zero [Candes, Tao'06]
 - $\Rightarrow \hat{x}_{CSres}$ biased towards zero along Δ , away from zero along T
 - $\blacktriangleright \Rightarrow$ need small threshold for addition, large for deletion
- Option 2: Add-then-Delete

$$T_{add} = T \cup \{i : |(\hat{x}_{CSres})_i| > \alpha_{add}\}$$

$$\hat{x}_{add} = LS(T_{add}, y_t)$$

$$\hat{N} = T_{add} \setminus \{i : |(\hat{x}_{add})_i| \le \alpha_{del}\}$$

- Advantage:
 - use α_{add} as small as possible: ensure LS step error small
 - if LS estimate accurate \Rightarrow (a) deletion better, (b) α_{del} can be larger \Rightarrow huge improvement in recon error
- Similar idea also introduced in [Needell-Tropp,CoSaMP'08]

LS-CS-residual (LS-CS) & error bound Modified-CS & exact reconstruction conditions Error Stability of LS-CS & modified-CS

LS-CS-residual (LS-CS) algo [Vaswani, Trans. SP (to appear)]

At each time t,

- ► Initial LS.
 - compute $\hat{x}_{t,\text{init}} = \text{LS}(T, y_t)$
 - compute residual, $\tilde{y}_{t,res} = y_t A\hat{x}_{t,init}$
- ► CS-residual.
 - compute $\hat{x}_{t, \mathsf{CSres}} = \mathsf{CS}(\tilde{y}_{t, \mathsf{res}}) + \hat{x}_{t, \mathsf{init}}$
- Support Additions and LS.
 - compute $\tilde{T}_{add} = T \cup \text{threshold}(\hat{x}_{t, \text{CSres}}, \alpha_{add})$
 - compute $\hat{x}_{t,add} = \mathsf{LS}(\tilde{T}_{add}, y_t)$

Support Deletions and LS.

- compute $\hat{N}_t = \tilde{T}_{add} \setminus \text{threshold}(\hat{x}_{t,add}, \alpha_{del})$
- compute $\hat{x}_t = \mathsf{LS}(\hat{N}_t, y_t)$

LS-CS-residual (LS-CS) & error bound Modified-CS & exact reconstruction conditions Error Stability of LS-CS & modified-CS

Exact reconstruction from fewer noiseless measurements?

- Consider noise-free measurements, i.e. y := Ax.
- Can CS-residual achieve exact reconstruction using fewer measurements?

LS-CS-residual (LS-CS) & error bound Modified-CS & exact reconstruction conditions Error Stability of LS-CS & modified-CS

Exact reconstruction from fewer noiseless measurements?

- Consider noise-free measurements, i.e. y := Ax.
- Can CS-residual achieve exact reconstruction using fewer measurements?
- Answer: NO
 - ▶ No. of meas. needed for exact recon depends on support size
 - CS-residual reconstructs $\beta := x_t \hat{x}_{t,\text{init}}$ from the LS residual
 - Support of β is $T \cup \Delta$ and $|T \cup \Delta| \ge |N|$ (support size of x)
- Need something else...

recall: T: "known" support, Δ : unknown part of support, Δ_e : error in known part

LS-CS-residual (LS-CS) & error bound Modified-CS & exact reconstruction conditions Error Stability of LS-CS & modified-CS

Modified-CS: noiseless measurements [Vaswani,Lu, ISIT'09, Trans. SP (to appear)]

• Our problem: reconstruct a sparse x with support $N = T \cup \Delta \setminus \Delta_e$ from y := Ax, when T is known

LS-CS-residual (LS-CS) & error bound Modified-CS & exact reconstruction conditions Error Stability of LS-CS & modified-CS

Modified-CS: noiseless measurements [Vaswani,Lu, ISIT'09, Trans. SP (to appear)]

- Our problem: reconstruct a sparse x with support $N = T \cup \Delta \setminus \Delta_e$ from y := Ax, when T is known
- Our idea: find a vector that is sparsest outside of T and satisfies the data constraint, i.e.

$$\min_{\beta} \| (\beta)_{T^c} \|_0 \ s.t. \ y = A\beta$$

LS-CS-residual (LS-CS) & error bound Modified-CS & exact reconstruction conditions Error Stability of LS-CS & modified-CS

Modified-CS: noiseless measurements [Vaswani,Lu, ISIT'09, Trans. SP (to appear)]

- Our problem: reconstruct a sparse x with support $N = T \cup \Delta \setminus \Delta_e$ from y := Ax, when T is known
- Our idea: find a vector that is sparsest outside of T and satisfies the data constraint, i.e.

 $\min_{\beta} \| (\beta)_{T^c} \|_0 \ s.t. \ y = A\beta$

• Exact recon if $\delta_{|\mathcal{N}|+|\Delta_e|+|\Delta|} < 1$

LS-CS-residual (LS-CS) & error bound Modified-CS & exact reconstruction conditions Error Stability of LS-CS & modified-CS

Modified-CS: noiseless measurements [Vaswani,Lu, ISIT'09, Trans. SP (to appear)]

- Our problem: reconstruct a sparse x with support $N = T \cup \Delta \setminus \Delta_e$ from y := Ax, when T is known
- Our idea: find a vector that is sparsest outside of T and satisfies the data constraint, i.e.

 $\min_{\beta} \| (\beta)_{T^c} \|_0 \ s.t. \ y = A\beta$

- Exact recon if $\delta_{|N|+|\Delta_e|+|\Delta|} < 1$
- ▶ ℓ_0 -CS needs $\delta_{2|N|} < 1$

LS-CS-residual (LS-CS) & error bound Modified-CS & exact reconstruction conditions Error Stability of LS-CS & modified-CS

Modified-CS: noiseless measurements [Vaswani, Lu, ISIT'09, Trans. SP (to appear)]

- Our problem: reconstruct a sparse x with support $N = T \cup \Delta \setminus \Delta_e$ from y := Ax, when T is known
- Our idea: find a vector that is sparsest outside of T and satisfies the data constraint, i.e.

 $\min_{\beta} \| (\beta)_{T^c} \|_0 \ s.t. \ y = A\beta$

- Exact recon if $\delta_{|N|+|\Delta_e|+|\Delta|} < 1$
- ▶ ℓ_0 -CS needs $\delta_{2|N|} < 1$

▶ Replace ℓ_0 norm by ℓ_1 norm: get a convex problem:

 $\min_{\beta} \| (\beta)_{T^c} \|_1 \ s.t. \ y = A\beta \ \text{(modified-CS)}$

recall: T: known part of support, Δ : unknown part, Δ_e : error in known part, \Box) (\Box) (\Box) (Ξ) (Ξ) (Ξ)

æ

LS-CS-residual (LS-CS) & error bound Modified-CS & exact reconstruction conditions Error Stability of LS-CS & modified-CS

Exact recon with modified-CS [Vaswani,Lu, ISIT'09, Trans. SP (to appear)]

$$\min_{\beta} \|\beta_{T^c}\|_1 \ s.t. \ y = A\beta \quad (\text{modified-CS})$$

Theorem

x is the unique minimizer of (modified-CS) if $\delta_{|\mathcal{T}|+|\Delta|} < 1$ and

$$(\theta_{|\Delta|,|\Delta|} + \delta_{2|\Delta|} + \theta_{|\Delta|,2|\Delta|}) + (\delta_{|\mathcal{T}|} + \theta_{|\Delta|,|\mathcal{T}|}^2 + 2\theta_{2|\Delta|,|\mathcal{T}|}^2) < 1$$

recall: $T = N \cup \Delta_e \setminus \Delta$, T: known part of support, Δ : unknown part, Δ_e : error in known part

LS-CS-residual (LS-CS) & error bound Modified-CS & exact reconstruction conditions Error Stability of LS-CS & modified-CS

Comparing the sufficient conditions

• Modified-CS needs $\delta_{|\mathcal{T}|+|\Delta|} < 1$ and

 $Mcond := (\delta_{2|\Delta|} + \theta_{|\Delta|,|\Delta|} + \theta_{|\Delta|,2|\Delta|}) + (\delta_{|\mathcal{T}|} + \theta_{|\Delta|,|\mathcal{T}|}^2 + 2\theta_{2|\Delta|,|\mathcal{T}|}^2) < 1$

► CS needs [Decoding by LP, Candes, Tao'05]:

$$\textit{Ccond} := \delta_{2|\textit{N}|} + \theta_{|\textit{N}|,|\textit{N}|} + \theta_{|\textit{N}|,2|\textit{N}|} < 1$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

LS-CS-residual (LS-CS) & error bound Modified-CS & exact reconstruction conditions Error Stability of LS-CS & modified-CS

Comparing the sufficient conditions

• Modified-CS needs $\delta_{|\mathcal{T}|+|\Delta|} < 1$ and

 $Mcond := (\delta_{2|\Delta|} + \theta_{|\Delta|,|\Delta|} + \theta_{|\Delta|,2|\Delta|}) + (\delta_{|\mathcal{T}|} + \theta_{|\Delta|,|\mathcal{T}|}^2 + 2\theta_{2|\Delta|,|\mathcal{T}|}^2) < 1$

CS needs [Decoding by LP, Candes, Tao'05]:

$$\textit{Ccond} := \delta_{2|\textit{N}|} + \theta_{|\textit{N}|,|\textit{N}|} + \theta_{|\textit{N}|,2|\textit{N}|} < 1$$

- ► If $|\Delta| \approx |\Delta_e| \ll |N|$ (typical for medical image seq's), Mcond < Ccond
 - ▶ the difference (Ccond Mcond) is larger when n is smaller
 - e.g. if n < 2|N|, Ccond > 1, but Mcond < 1 can hold

recall: *n* is the number of measurements, *T*: known part of support, Δ : unknown part, Δ_e : error in known part

LS-CS-residual (LS-CS) & error bound Modified-CS & exact reconstruction conditions Error Stability of LS-CS & modified-CS

Comparison with the best sufficient conditions for CS

CS gives exact recon if

 $\delta_{2|\textit{N}|} < \sqrt{2}-1~~\text{or}~~\delta_{2|\textit{N}|} + \delta_{3|\textit{N}|} < 1~~\text{[Candes'08, Candes-Tao'06]}$

Modified-CS gives exact recon if

$$2\delta_{2|\Delta|} + \delta_{3|\Delta|} + \delta_{|N|+|\Delta_e|-|\Delta|} + \delta_{|N|+|\Delta_e|}^2 + 2\delta_{|N|+|\Delta_e|+|\Delta|}^2 < 1$$

$$\blacktriangleright$$
 use $\delta_{ck} \leq c \delta_{2k}$ [CoSaMP'08]

If |∆| = |∆_e| = 0.02|N| (typical in medical sequences),
 sufficient condition for CS:

$$\delta_{2|\Delta|} < 1/241.5$$

sufficient condition for modified-CS:

$$\delta_{2|\Delta|} < 1/132.5$$

LS-CS-residual (LS-CS) & error bound Modified-CS & exact reconstruction conditions Error Stability of LS-CS & modified-CS

Simulations: probability of exact reconstruction

Simulation setup:

- ▶ signal length, m = 256, support size s = |N| = 0.1m
- use random-Gaussian A, varied n, $|\Delta|$ and $|\Delta_e|$
- ▶ for each choice, Monte Carlo averaged over N, $(x)_N$, Δ , Δ_e
- ▶ we say "works" (gives exact recon) if $||x \hat{x}||_2 < 10^{-5} ||x||_2$

LS-CS-residual (LS-CS) & error bound Modified-CS & exact reconstruction conditions Error Stability of LS-CS & modified-CS

Simulations: probability of exact reconstruction

Simulation setup:

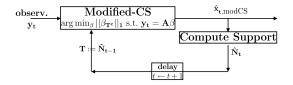
- ▶ signal length, m = 256, support size s = |N| = 0.1m
- use random-Gaussian A, varied n, $|\Delta|$ and $|\Delta_e|$
- ▶ for each choice, Monte Carlo averaged over N, $(x)_N$, Δ , Δ_e
- ▶ we say "works" (gives exact recon) if $||x \hat{x}||_2 < 10^{-5} ||x||_2$

n	mod-CS	mod-CS	CS
	$ \Delta , \Delta_e \leq 0.08 N $	$ \Delta , \Delta_e \leq 0.20 N $	$(\Delta = \textit{N}, \Delta_{e} = \emptyset)$
19%	0.998	0.68	0
25%	1	0.99	0.002
40%	1	1	0.98

recall: n is number of measurements, Δ : unknown part of support, Δ_e : error in known part

LS-CS-residual (LS-CS) & error bound Modified-CS & exact reconstruction conditions Error Stability of LS-CS & modified-CS

Modified-CS for time sequences



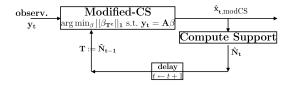
Initial time (t = 0):

- ▶ use *T*⁰ from prior knowledge, e.g. wavelet approx. coeff's
- typically need more measurements at t = 0

æ

LS-CS-residual (LS-CS) & error bound Modified-CS & exact reconstruction conditions Error Stability of LS-CS & modified-CS

Modified-CS for time sequences



Initial time (t = 0):

- use T_0 from prior knowledge, e.g. wavelet approx. coeff's
- typically need more measurements at t = 0

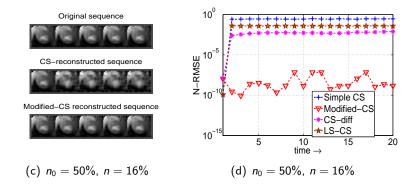
Stability: (trivial in the noise-free case)

• error stable at zero if Mcond < 1 at t = 0 and at all t > 0

イロト イポト イヨト イヨト

LS-CS-residual (LS-CS) & error bound Modified-CS & exact reconstruction conditions Error Stability of LS-CS & modified-CS

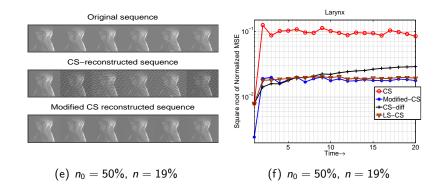
Exact recon of a sparsified cardiac sequence



support size ~ 10% using n = 16% MRI measurements at t > 0, $n_0 = 50\%$ at t = 0. modified-CS gives exact recon (NRMSE ~ 10^{-8}), others do not

LS-CS-residual (LS-CS) & error bound Modified-CS & exact reconstruction conditions Error Stability of LS-CS & modified-CS

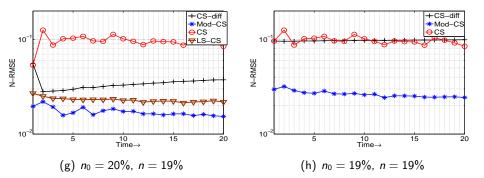
Small error recon of a true larynx sequence



using n = 19% MRI measurements at t > 0, $n_0 = 50\%$ at t = 0

LS-CS-residual (LS-CS) & error bound Modified-CS & exact reconstruction conditions Error Stability of LS-CS & modified-CS

Small error recon of a true larynx sequence



reducing n_0 (no. of measurements at t = 0)

イロト イヨト イヨト イヨト

臣

LS-CS-residual (LS-CS) & error bound Modified-CS & exact reconstruction conditions Error Stability of LS-CS & modified-CS

Noisy measurements

Mod-CS(noisy): relax the data constraint, e.g.

$$\min_{\beta} \|\beta_{\mathcal{T}^c}\|_1 \text{ s.t. } \|y_t - A\beta\|_2 \le \epsilon$$

use add-then-delete for support estimation

LS-CS-residual (LS-CS) & error bound Modified-CS & exact reconstruction conditions Error Stability of LS-CS & modified-CS

Noisy measurements

Mod-CS(noisy): relax the data constraint, e.g.

$$\min_{\beta} \|\beta_{T^c}\|_1 \text{ s.t. } \|y_t - A\beta\|_2 \le \epsilon$$

use add-then-delete for support estimation

 Noisy meas's: Mod-CS or LS-CS-residual or Mod-CS-residual (ongoing work)

ヘロン 人間と 人間と 人間と

æ

LS-CS-residual (LS-CS) & error bound Modified-CS & exact reconstruction conditions Error Stability of LS-CS & modified-CS

Noisy measurements

Mod-CS(noisy): relax the data constraint, e.g.

$$\min_{\beta} \|\beta_{T^c}\|_1 \text{ s.t. } \|y_t - A\beta\|_2 \le \epsilon$$

use add-then-delete for support estimation

- Noisy meas's: Mod-CS or LS-CS-residual or Mod-CS-residual (ongoing work)
- ► Easy to bound error as a function of |T|, $|\Delta|$ [Lu,Vaswani,ICASSP'10], [Jacques,Arxiv'09]
 - \blacktriangleright but $|\mathcal{T}|, |\Delta|$ depend on accuracy of previous recon
 - bound may keep increasing over time limited use

æ

LS-CS-residual (LS-CS) & error bound Modified-CS & exact reconstruction conditions Error Stability of LS-CS & modified-CS

Stability [Vaswani, Trans. SP (to appear)]

A bound that may keep increasing over time – limited use

LS-CS-residual (LS-CS) & error bound Modified-CS & exact reconstruction conditions Error Stability of LS-CS & modified-CS

Stability [Vaswani, Trans. SP (to appear)]

- A bound that may keep increasing over time limited use
- Need conditions under which a time-invariant bound holds
 - ▶ i.e. need conditions for "stability" over time

LS-CS-residual (LS-CS) & error bound Modified-CS & exact reconstruction conditions Error Stability of LS-CS & modified-CS

Stability [Vaswani, Trans. SP (to appear)]

- A bound that may keep increasing over time limited use
- Need conditions under which a time-invariant bound holds
 - ▶ i.e. need conditions for "stability" over time

Approach:

- obtain a time-invariant bound on the support errors (extras & misses)
- argue: bound small compared to support size
- directly implies time-invariant and small bound on recon error

LS-CS-residual (LS-CS) & error bound Modified-CS & exact reconstruction conditions Error Stability of LS-CS & modified-CS

Stability of modified-CS and LS-CS: setting

- Bounded measurement noise.
 - ► Why? -
 - ▶ Gaussian noise: error bounds at *t* hold with "large" probability
 - stability: need the bounds to hold for all t: will hold w.p. zero

LS-CS-residual (LS-CS) & error bound Modified-CS & exact reconstruction conditions Error Stability of LS-CS & modified-CS

Stability of modified-CS and LS-CS: setting

- Bounded measurement noise.
 - ▶ Why? -
 - ▶ Gaussian noise: error bounds at t hold with "large" probability
 - stability: need the bounds to hold for all t: will hold w.p. zero
- Two signal models with
 - two different support change models
 - 1. S_a elements added and deleted "every-so-often"
 - 2. S_a elements added and deleted at every time

LS-CS-residual (LS-CS) & error bound Modified-CS & exact reconstruction conditions Error Stability of LS-CS & modified-CS

Stability of modified-CS and LS-CS: setting

- Bounded measurement noise.
 - ▶ Why? -
 - ▶ Gaussian noise: error bounds at t hold with "large" probability
 - stability: need the bounds to hold for all t: will hold w.p. zero
- Two signal models with
 - two different support change models
 - 1. S_a elements added and deleted "every-so-often"
 - 2. S_a elements added and deleted at every time
 - almost constant signal power,
 - slowly increasing/decreasing coeff. magnitudes

LS-CS-residual (LS-CS) & error bound Modified-CS & exact reconstruction conditions Error Stability of LS-CS & modified-CS

Stability of modified-CS and LS-CS: setting

- Bounded measurement noise.
 - ▶ Why? -
 - ▶ Gaussian noise: error bounds at t hold with "large" probability
 - stability: need the bounds to hold for all t: will hold w.p. zero
- Two signal models with
 - two different support change models
 - 1. S_a elements added and deleted "every-so-often"
 - 2. S_a elements added and deleted at every time
 - almost constant signal power,
 - slowly increasing/decreasing coeff. magnitudes

▶ In case of 1.: perfect support estimation possible after a small delay

・ロン ・回 と ・ ヨン ・ ヨン

LS-CS-residual (LS-CS) & error bound Modified-CS & exact reconstruction conditions Error Stability of LS-CS & modified-CS

Stability of modified-CS and LS-CS: summary [Vaswani, Trans. SP (to appear)]

▶ For a given *n* (no. of meas.) and noise level,

- 1. if use enough measurements for accurate recon at t = 02. if
 - the support is small enough, and
 - the support changes slowly enough,
- 3. if the nonzero coefficients increase/decrease fast enough, and
- 4. if addition & deletion thresholds are appropriately set,

then

▶ support errors (no. of extras and misses) are bounded

イロト イポト イヨト

LS-CS-residual (LS-CS) & error bound Modified-CS & exact reconstruction conditions Error Stability of LS-CS & modified-CS

Stability of modified-CS and LS-CS: summary [Vaswani, Trans. SP (to appear)]

▶ For a given *n* (no. of meas.) and noise level,

- 1. if use enough measurements for accurate recon at t = 02. if
 - the support is small enough, and
 - the support changes slowly enough,
- 3. if the nonzero coefficients increase/decrease fast enough, and
- 4. if addition & deletion thresholds are appropriately set,

then

- ▶ support errors (no. of extras and misses) are bounded
- Can argue: our sufficient conditions allow larger support sizes, for a given n, than CS results

LS-CS-residual (LS-CS) & error bound Modified-CS & exact reconstruction conditions Error Stability of LS-CS & modified-CS

Result 1: support changes every-so-often [Vaswani, Trans. SP (to appear)]

- Signal model:
 - S_a additions (removals) to (from) support every d frames
 - support size is always either S_0 or $S_0 S_a$
 - the magnitude of the *ith* new coeff increases at rate *a_i* for *d* time units and then becomes constant
 - similar model for coeff decrease

LS-CS-residual (LS-CS) & error bound Modified-CS & exact reconstruction conditions Error Stability of LS-CS & modified-CS

Result 1: support changes every-so-often [Vaswani, Trans. SP (to appear)]

- Signal model:
 - S_a additions (removals) to (from) support every d frames
 - support size is always either S_0 or $S_0 S_a$
 - the magnitude of the *ith* new coeff increases at rate *a_i* for *d* time units and then becomes constant
 - similar model for coeff decrease
- ▶ If "conditions" hold, then
 - at all times, misses and extras are bounded:

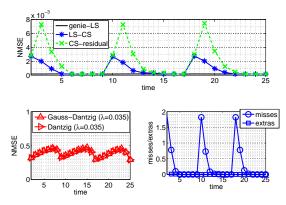
$$|N_t \setminus \hat{N}_t| \leq S_a$$
, and $|\hat{N}_t \setminus N_t| \leq 2S_a + 4$

- within a short delay, $S_a + 2$, after a new addition, $\hat{N}_t = N_t$
- remains this way until next addition time

substituting $d_0 = 2$ in [Vaswani, LS-CS-residual, TSP (to appear)]

LS-CS-residual (LS-CS) & error bound Modified-CS & exact reconstruction conditions Error Stability of LS-CS & modified-CS

Simulations: verifying stability



• m = 200, support size, $S_0 = 20$

- $S_a = 2$ additions/removals every d = 8 frames
- > 29.5% measurements at t > 0, noise $\sim unif(-c, c)$, c = 0.05

LS-CS-residual (LS-CS) & error bound Modified-CS & exact reconstruction conditions Error Stability of LS-CS & modified-CS

Proof strategy: key lemmas [Vaswani, Trans. SP (to appear)]

Obtain sufficient conditions so that

LS-CS-residual (LS-CS) & error bound Modified-CS & exact reconstruction conditions Error Stability of LS-CS & modified-CS

Proof strategy: key lemmas [Vaswani, Trans. SP (to appear)]

Obtain sufficient conditions so that

• (few false adds) there are S_a or less false adds per unit time

LS-CS-residual (LS-CS) & error bound Modified-CS & exact reconstruction conditions Error Stability of LS-CS & modified-CS

Proof strategy: key lemmas [Vaswani, Trans. SP (to appear)]

Obtain sufficient conditions so that

- (few false adds) there are S_a or less false adds per unit time
- (detection) all current coeff's with magnitude more than b get detected

LS-CS-residual (LS-CS) & error bound Modified-CS & exact reconstruction conditions Error Stability of LS-CS & modified-CS

Proof strategy: key lemmas [Vaswani, Trans. SP (to appear)]

Obtain sufficient conditions so that

- (few false adds) there are S_a or less false adds per unit time
- (detection) all current coeff's with magnitude more than b
 get detected
- (no false deletion) these and previously added large coeff's do not get falsely deleted

LS-CS-residual (LS-CS) & error bound Modified-CS & exact reconstruction conditions Error Stability of LS-CS & modified-CS

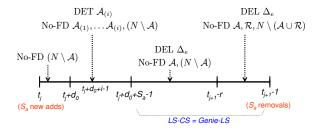
Proof strategy: key lemmas [Vaswani, Trans. SP (to appear)]

Obtain sufficient conditions so that

- (few false adds) there are S_a or less false adds per unit time
- (detection) all current coeff's with magnitude more than b get detected
- (no false deletion) these and previously added large coeff's do not get falsely deleted
- (true deletion) all extras in support estimate (zero coeff's) do get deleted

LS-CS-residual (LS-CS) & error bound Modified-CS & exact reconstruction conditions Error Stability of LS-CS & modified-CS

Proof strategy: induction step [Vaswani, Trans. SP (to appear)]



DET: detection No-FD: no false deletion DEL: true deletion

▶ t_j : j^{th} support addition time, $t_{j+1} - 1$: support removal time

- \mathcal{A} : set added at t_j (increasing coeff's),
 - $\mathcal{A}_{(i)}$: *i*th largest element of \mathcal{A}
- $N \setminus A$: previously added set (constant coeff's)

LS-CS-residual (LS-CS) & error bound Modified-CS & exact reconstruction conditions Error Stability of LS-CS & modified-CS

Result 2: support changes at every time

- Signal model 2:
 - S_a additions and S_a removals at each time
 - support size constant at S_0
 - every new coeff's magnitude increases at rate r until it reaches a max value M
 - similar model for coeff decrease
- ▶ Noise, $||w|| \le \epsilon$

► If

- 1. accurate recon at initial time,
- 2. $\delta_{S_0+4S_a} < 0.414$ and $\theta_{S_0+2S_a,S_a} < 1/\sqrt{18S_a}$.

• if LS error bound equal in all directions: only need $\theta_{S_0+2S_a,S_a} < \sqrt{S_0/18S_a}$

3.
$$r > f_{incr}(S_0, S_a, \epsilon, \alpha_{add}, \alpha_{del}),$$

4. α_{add} , α_{del} large enough,

then $|N_t \setminus \hat{N}_t| \le 2S_a$ and $|\hat{N}_t \setminus N_t| = 0$

LS-CS-residual (LS-CS) & error bound Modified-CS & exact reconstruction conditions Error Stability of LS-CS & modified-CS

Result 2: support changes at every time

- Signal model 2:
 - S_a additions and S_a removals at each time
 - support size constant at S_0
 - every new coeff's magnitude increases at rate r until it reaches a max value M
 - similar model for coeff decrease
- ▶ Noise, $||w|| \le \epsilon$

► If

- 1. accurate recon at initial time,
- 2. $\delta_{S_0+4S_a} < 0.414$ and $\theta_{S_0+2S_a,S_a} < 1/\sqrt{18S_a}$.
 - ▶ if LS error bound equal in all directions: only need $\theta_{S_0+2S_a,S_a} < \sqrt{S_0/18S_a}$
- 3. $r > f_{incr}(S_0, S_a, \epsilon, \alpha_{add}, \alpha_{del}),$
- 4. α_{add} , α_{del} large enough,

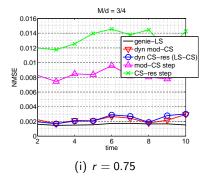
then $|N_t \setminus \hat{N}_t| \le 2S_a$ and $|\hat{N}_t \setminus N_t| = 0$

• Compare: CS needs $\delta_{2S_0} < 0.414$

・ロト ・回ト ・ヨト ・

LS-CS-residual (LS-CS) & error bound Modified-CS & exact reconstruction conditions Error Stability of LS-CS & modified-CS

Simulations: verifying stability



▶ m = 200, $S_0 = 20$, additions/removals, $S_a = 2$ at each time

> 29.5% measurements at t > 0, noise $\sim unif(-c, c)$, c = 0.1266

CS error 22-30% in all cases

(日) (同) (日) (日)

Summary Ongoing Work Open Questions

Summary

$$T := \hat{N}_{t-1}, \quad \mu_T := (\hat{x}_{t-1})_T$$

- CS on observation residual
 - ► initial estimate: compute using LS(y_t, T) or use previous recon or use KF'ed estimate

Summary Ongoing Work Open Questions

Summary

$$T := \hat{N}_{t-1}, \quad \mu_T := (\hat{x}_{t-1})_T$$

- CS on observation residual
 - ► initial estimate: compute using LS(y_t, T) or use previous recon or use KF'ed estimate
 - compute observation residual, do CS on residual, add back initial estimate

Summary Ongoing Work Open Questions

Summary

$$T := \hat{N}_{t-1}, \quad \mu_T := (\hat{x}_{t-1})_T$$

- CS on observation residual
 - ► initial estimate: compute using LS(y_t, T) or use previous recon or use KF'ed estimate
 - compute observation residual, do CS on residual, add back initial estimate
- Modified-CS
 - search for a signal that is sparsest outside of T and satisfies the data constraint

Summary Ongoing Work Open Questions

Summary

$$T := \hat{N}_{t-1}, \quad \mu_T := (\hat{x}_{t-1})_T$$

- CS on observation residual
 - ► initial estimate: compute using LS(y_t, T) or use previous recon or use KF'ed estimate
 - compute observation residual, do CS on residual, add back initial estimate
- Modified-CS
 - ► search for a signal that is sparsest outside of *T* and satisfies the data constraint
 - noisy meas.'s: can combine with CS-residual idea
 - or can combine with KF (or regularized LS) idea

$$\min_{\beta} \|(\beta)_{\mathcal{T}^{c}}\|_{1} + \gamma \|y_{t} - A\beta\|_{2}^{2} + \lambda \|(\beta)_{\mathcal{T}} - \mu_{\mathcal{T}}\|_{2}^{2}$$

イロト イポト イヨト

Summary Ongoing Work Open Questions

Summary

$$T := \hat{N}_{t-1}, \quad \mu_T := (\hat{x}_{t-1})_T$$

- CS on observation residual
 - initial estimate: compute using LS(yt, T) or use previous recon or use KF'ed estimate
 - compute observation residual, do CS on residual, add back initial estimate
- Modified-CS
 - search for a signal that is sparsest outside of T and satisfies the data constraint
 - noisy meas.'s: can combine with CS-residual idea
 - or can combine with KF (or regularized LS) idea

$$\min_{\beta} \|(\beta)_{\mathcal{T}^{c}}\|_{1} + \gamma \|y_{t} - A\beta\|_{2}^{2} + \lambda \|(\beta)_{\mathcal{T}} - \mu_{\mathcal{T}}\|_{2}^{2}$$

Support estimation in either case

add-LS-delete is better than simple thresholding

Summary Ongoing Work Open Questions

- If support changes slowly enough,
- under much weaker sufficient conditions than CS,
 - modified-CS gives exact reconstruction
 - its stability proof is trivial
 - noisy meas's: LS-CS & modified-CS error is stable
 - noisy meas's: both error bounds smaller than CS bound

Summary Ongoing Work Open Questions

- If support changes slowly enough,
- under much weaker sufficient conditions than CS,
 - modified-CS gives exact reconstruction
 - its stability proof is trivial
 - noisy meas's: LS-CS & modified-CS error is stable
 - noisy meas's: both error bounds smaller than CS bound
- ► For dynamic MRI and video reconstruction,
 - significant improvement over CS, Gauss-CS and CS-diff
 - only slightly worse than batch methods (batch-CS, k-t-focuss)

イロト イポト イヨト イヨト

Summary Ongoing Work Open Questions

Key References

- Namrata Vaswani, LS-CS-residual (LS-CS): Compressive Sensing on the Least Squares Residual, To Appear in IEEE Trans. Signal Processing
 - Namrata Vaswani, Kalman Filtered Compressed Sensing, IEEE Intl. Conf. Image Proc. (ICIP), 2008
 - Namrata Vaswani, Analyzing Least Squares and Kalman Filtered Compressed Sensing, IEEE Intl. Conf. Acous. Speech. Sig. Proc. (ICASSP), 2009

Namrata Vaswani and Wei Lu, Modified-CS: Modifying Compressive Sensing for Problems with Partially Known Support, To Appear in IEEE Trans. Signal Processing

 Namrata Vaswani and Wei Lu, Modified-CS: Modifying Compressive Sensing for Problems with Partially Known Support, IEEE Intl. Symp. Info. Theory (ISIT), 2009

Summary Ongoing Work Open Questions

Acknowledgements

- Research supported by NSF grants
 - CCF-0917015 and ECCS-0725849
- Ian Atkinson (UIC): functional MRI
- Graduate students
 - ► Wei Lu
 - Chenlu Qiu
 - Taoran Li
 - Samarjit Das
 - Fardad Raisali

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Summary Ongoing Work Open Questions

Slow support and signal value change [Vaswani, ICIP'08, ICASSP'09]

- Arrack a time sequence of signals with slowly changing "principal" directions (in a given sparsity basis) and slowly changing principal coefficient values
 - 1. can we accurately detect the changes?
 - 2. can we compute/approximate the causal MMSE estimate?

イロト イポト イヨト イヨト

Summary Ongoing Work Open Questions

Slow support and signal value change [Vaswani, ICIP'08, ICASSP'09]

- Arrack a time sequence of signals with slowly changing "principal" directions (in a given sparsity basis) and slowly changing principal coefficient values
 - 1. can we accurately detect the changes?
 - 2. can we compute/approximate the causal MMSE estimate?
- Proposed solution 1: Kalman filtered CS-residual (KF-CS)
 - KF on the coefficients in the current "principal" subspace

イロト イポト イヨト イヨト

Summary Ongoing Work Open Questions

Slow support and signal value change [Vaswani, ICIP'08, ICASSP'09]

- Arrack a time sequence of signals with slowly changing "principal" directions (in a given sparsity basis) and slowly changing principal coefficient values
 - 1. can we accurately detect the changes?
 - 2. can we compute/approximate the causal MMSE estimate?
- Proposed solution 1: Kalman filtered CS-residual (KF-CS)
 - ▶ KF on the coefficients in the current "principal" subspace
 - CS on KF residual to add new "principal" directions (if any)
 - replacing "CS on LS residual" by "CS on KF residual"

Summary Ongoing Work Open Questions

Slow support and signal value change [Vaswani, ICIP'08, ICASSP'09]

- Arrack a time sequence of signals with slowly changing "principal" directions (in a given sparsity basis) and slowly changing principal coefficient values
 - 1. can we accurately detect the changes?
 - 2. can we compute/approximate the causal MMSE estimate?
- Proposed solution 1: Kalman filtered CS-residual (KF-CS)
 - ▶ KF on the coefficients in the current "principal" subspace
 - CS on KF residual to add new "principal" directions (if any)
 - replacing "CS on LS residual" by "CS on KF residual"
 - delete directions which have near-zero coefficients

Summary Ongoing Work Open Questions

Slow support and signal value change [Vaswani, ICIP'08, ICASSP'09]

- Arrack a time sequence of signals with slowly changing "principal" directions (in a given sparsity basis) and slowly changing principal coefficient values
 - 1. can we accurately detect the changes?
 - 2. can we compute/approximate the causal MMSE estimate?
- Proposed solution 1: Kalman filtered CS-residual (KF-CS)
 - ▶ KF on the coefficients in the current "principal" subspace
 - CS on KF residual to add new "principal" directions (if any)
 - replacing "CS on LS residual" by "CS on KF residual"
 - delete directions which have near-zero coefficients
- ▶ KF-CS error is stable (so 1. and 2. hold): under strong assumptions

Summary Ongoing Work Open Questions

Proposed solution 2: Regularized Modified-CS

- Most practical apps: the (significantly) nonzero elements of x_t also change slowly
- To also use this fact, we can solve

$$\min_{\beta} \|(\beta)_{\mathcal{T}^c}\|_1 + \gamma \|(\beta)_{\mathcal{T}} - \mu_{\mathcal{T}}\|_2^2 \quad \text{s.t.} \quad y_t = A\beta$$

with $T = \hat{N}_{t-1}$, $\mu_T = (\hat{x}_{t-1})_T$, $\mu_{T^c} = 0$

Summary Ongoing Work Open Questions

Proposed solution 2: Regularized Modified-CS

- Most practical apps: the (significantly) nonzero elements of x_t also change slowly
- To also use this fact, we can solve

$$\min_{\beta} \|(\beta)_{\mathcal{T}^c}\|_1 + \gamma \|(\beta)_{\mathcal{T}} - \mu_{\mathcal{T}}\|_2^2 \quad \text{s.t.} \quad y_t = A\beta$$

with $T = \hat{N}_{t-1}$, $\mu_T = (\hat{x}_{t-1})_T$, $\mu_{T^c} = 0$

- Above computes a causal MAP estimate if
 - posterior at t-1 approx by a Dirac delta at μ
 - $(x_t)_T$ are i.i.d. Gaussian with mean μ_T and variance σ^2 ,
 - $(x_t)_{T^c}$ are i.i.d. Laplacian with mean zero and scale b,
 - and we set $\gamma = b/2\sigma^2$

Summary Ongoing Work Open Questions

Regularized Modified CS (RegModCS): simulations

$$\begin{split} \min_{\beta} \| (\beta)_{\mathcal{T}^c} \|_1 + \gamma \| y_t - A\beta \|_2^2 + \lambda \| (\beta)_{\mathcal{T}} - \mu_{\mathcal{T}} \|_2^2 \end{split}$$
with $\mathcal{T} = \hat{N}_{t-1}, \quad \mu_{\mathcal{T}} = (\hat{x}_{t-1})_{\mathcal{T}}$

・ロン ・回 と ・ ヨン ・ ヨン

Summary Ongoing Work Open Questions

Regularized Modified CS (RegModCS): simulations

$$\begin{split} \min_{\beta} \|(\beta)_{T^{c}}\|_{1} + \gamma \|y_{t} - A\beta\|_{2}^{2} + \lambda \|(\beta)_{T} - \mu_{T}\|_{2}^{2} \\ \text{with } T = \hat{N}_{t-1}, \quad \mu_{T} = (\hat{x}_{t-1})_{T} \\ & \int_{10^{0}} \frac{1}{10^{0}} \frac{1}{10^{$$

Summary Ongoing Work Open Questions

Ongoing/Future Work

Most current work: non-Bayesian, only recursive approaches

Summary Ongoing Work Open Questions

Ongoing/Future Work

Most current work: non-Bayesian, only recursive approaches Open questions:

- ► Partly Bayesian and Fully Bayesian models:
 - ▶ KF-CS, reg-mod-CS: "stability" under mild assumptions?
 - much more difficult: dependence on prev. recon signal values

Summary Ongoing Work Open Questions

Ongoing/Future Work

Most current work: non-Bayesian, only recursive approaches Open questions:

- ► Partly Bayesian and Fully Bayesian models:
 - ▶ KF-CS, reg-mod-CS: "stability" under mild assumptions?
 - much more difficult: dependence on prev. recon signal values
 - Fully Bayesian case: open...

Summary Ongoing Work Open Questions

Ongoing/Future Work

Most current work: non-Bayesian, only recursive approaches Open questions:

- ► Partly Bayesian and Fully Bayesian models:
 - KF-CS, reg-mod-CS: "stability" under mild assumptions?
 - much more difficult: dependence on prev. recon signal values
 - Fully Bayesian case: open...
- "Optimal" causal estimate?

Summary Ongoing Work Open Questions

Ongoing/Future Work

Most current work: non-Bayesian, only recursive approaches Open questions:

- ► Partly Bayesian and Fully Bayesian models:
 - ▶ KF-CS, reg-mod-CS: "stability" under mild assumptions?
 - much more difficult: dependence on prev. recon signal values
 - Fully Bayesian case: open...
- "Optimal" causal estimate?
- Real dynamic MRI problems (ongoing: fMRI)