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1 Model

At each time ¢, we have y, = Az, + w;.

Time indices are discrete. Make the distinction between sampling times (used) and
continuous time (not used).

2 Algorithm — KF-CS with LS



3 Proofs

Lemma 1. Assume that {x;} follow the signal model above, y; = Axy + wy, {to,to+ 1,0 +
2,...} is a discrete set of sampling times, only additions to true support (N, C Nyyq for all
t), ete.

Further assume that

i) The true solution is exactly recovered at the initial time to: &y, = xy,, SO Nto =Ny, =
Ny; Can we relax this to just the true support is recovered?

it) The mazimum support size Spae Satisfies Spyar < Sww = max{s : dos(A) < V2 — 1};

iii) The observation noise wy is bounded in magnitude: ||w;|| < & for allt and some & > 0;

iv) The addition threshold oy satisfies o = C1€ for each sampling time t, where C) =
Ci(|Ne|, &) (verify) is defined below OR in Candes; and

Note: if we can define o as mazx of all C§, we can remove t dependence.
Alternately since |N;| < Spaz for all t, we can define C in terms of Spa
and if C; s increasing we can remove the t dependence that way.

v) The addition delay d satisfies d > T4y (PROBLEM: 740 is a function of t,
which destroys the entire argument — need to remove t dependence in «),

where the detection delay Tqe is defined by
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Here, ®'(x) is the inverse of the standard Guassian CDF, ®(x) = [ \/%e

< superscript looks bad

Tdet = 7—det(Oét? E) =

+2

7 dz.

Then

1) |lxy — @t csresll2 < o for all sampling times t;

2) N, C N, for all sampling times t; and

3) Pr(E; | F;) > 1—¢, where E; = {N, = N, for allt € [t; + Tt : tj1 — 1]} and

F"j = {Nt]’—l = th—].}'
Proof. Need to find some way to get Candes Thm 1.3 in here and make the
connection that 7, cgres in our notation is z* in his
To prove claims 1 and 2, we proceed by induction on the value of ¢.

Consider the base case, where ¢ = t;. Claim 1 follows from Theorem 1.3 in [1] and
assumptions (ii), (iii), and (iv) (Not immediate — need to connect to Candes as
above), and assumption (i) trivially proves claim 2.
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Suppose now that claims 1 and 2 are both true for some time (¢ — 1). We show that the
claims are true at time ¢.

First, we verify claim 1 at time ¢. Let

Br = x¢ — Tt init

B = arg min [|5]|; subject to [l — AB|l2 <€
j:t,CSres = Zit,init + Bta

where 24 in;; is defined in the algorithm and supp(Zyinit) = N,

By the induction hypothesis, N,_; € N,_;, and by our model assumptions we have
N;—1 C N;. Therefore, supp(5;) € Ny U Ny—1 = Ny, so |supp(5i)| < |N¢| < Smax. With this,
we can apply Theorem 1.3 in [1] to see that |8, — ]|z < a; (AGAIN, need to make this
connection). By the definitions of 8; and & csres, we see that ||5; — Bt||2 = ||zt — Zt.CSresl|2s
so claim 1 follows.

Next, we verify claim 2 at time ¢. Suppose that (x;); = 0 for some index i, so that
i ¢ supp(x;) = N;. Since Ni—1 € N, we must also have i ¢ N;_1; by the induction
hypothesis, this implies that ¢ ¢ N;_;.

Applying the result of claim 1,
’(i't,CSres)i‘2 = |(xt - ijt,CSres)i|2 S ”xt - it,CSresH% S 05?7

S0 |(Zt.csres)i] < . Referring to the algorithm, N, =N, ;U {J : |(Zt,c8res);| > ou}. Since
i ¢ Ni—1 and |(Z¢,csres)i| < au, it follows that ¢ ¢ N;. Thusifi ¢ N, then i ¢ Vy; equivalently,
if i € N;, then i € N;. Therefore, N; C N, which proves claim 2 and completes our induction
proof.



Now, we prove claim 3. Let ¢ € [¢; : t;41 — 1] for some j > 0.

Let Ay = N, \ N,_; denote the set of indices of the true support at time ¢t which have not
been detected before time ¢.

Let 7 € At'
Suppose |(x;);| > 2cy, which implies that

|(52't,CSreS)l| |( ) [( ) - (i't CSres)i”
Zth ‘_|xt_xtCSres H
> [|(@0)il = (e — Zo.csres)ill2]
> |20zt - at|
= O,

where have applied the result from claim 1 in the final inequality. We see that if |(z;);| > 20,
then |(Z+csres)i| > o, 801 € Ny = Ny_qy U{J « [(&r,c8res) | > it}

So if [(xy);] > 20y for all j € A, then Ay C {j : [(Zr.osres)j| > au} C N;, that is, each
undetected element of the true support will be detected at time .

The event {N; = N, | F;} is equivalent to the event {A; C N;}.

Conditioned on Fj, we have Ny, = Ny, 1 U Dpqqe; = th,l U Aadd,;- So we add at most
Saaq new indices.

FIX ALL OF the stuff above this line, it’s a disaster... moving on and skipping
some stuff...

The entries (z;); are independent and identically distributed N (0, (¢ — t;)02,) random
variables.

We see that (we can get rid of some of the F; conditions somewhere in here)

Pr(N, = N, | F;) > Pr (|(z,);] > 20 for all i € A, | F})
> Pr (|(a:t) | > 2ay for all i € Agaay, | F)
= [Pr (|

= [Pr (|(2:)1] > 2a0)] ™

_ {2@ <—20‘t )radd.
Osys t— t]'

(2¢)i] > 20y for some i € Agaay,)] | Aadd,i |



We examine the particular case there ¢ = t; + 7qe¢. In this case,

Sadd
2@ 20ét
szs \/(tj + 7—det) - tj

Sadd
Gl
Osysy/ Tdet
FILL IN THE DETAILS after we get 74¢¢ settled...

>1—c.

Pr<th+Tdet = th+7det E]) Z

If Nt = N, for t = t;+74et, then the model and algorithm assumptions imply that Nt =N,
for all t € [t; 4 Tqet : tj41 — 1]. Therefore, Pr(E; | F}) = Pr(Ny1ry,, = Nijary, | Fj) > 1—¢,
which completes the proof. O
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