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1 Model

Major change: time indexing redone to match NV original. t; is now the first
addition and we assume there’s an initial (¢, — 1) step.

At each time t > (to — 1) (do we have a y;, 17), we have

Yy = Axy + wy
Tip1 = Ty + Vg1
Here, E[w;] = 0, cov(w;) = Elww,] = R = 02 Lyxn, iid and independent of x;; x4, 1 ~
N(0,02 0In,,_,); and v, ~ N (0,02, 1,) iid. for t >t

Yy, wy € R", A€ RV™ x, v, € R™.

Time indices are discrete. Make the distinction between sampling times (used) and

continuous time (not used).

Update picture?

o T
Lj ti+1

For j > 0, we have the addition times {¢;}. The initial time is ¢ = (t, — 1). At the
addition times ¢; = to + jd, the support of x, changes: Ny = Ny, for all t € [t; : t;11 — 1],
and th - th+1‘



2 Algorithm — KFCS with LS

This algorithm applies to the case where there are no support deletions.
Issues:

P,,—1 and Q; — is this an identity of size |Nhat| or is it a full-blown identity
with nonzeros on diagonal entries corresponding to Nhat

Is this algorithm transcribed correctly? There are 3 versions of it that I have
(NV original, AB+NV typed draft, and AB handwritten) and all 3 are different.

Look for places to simplify — this is long and contains repeat steps, which is
non-ideal



Needs to be redone for the new timescale
Inplﬂ:: Osys; Oobsy Osys,05 Aa {tj}7 {Nt}a {yt}

Tt = argmin, ||z||; subject to |y, — Ax|ls < &
Nig = {k < [(&1mic)s| > a}

FBry1 = Uszys,OINto

Qi =0

Ty—1 =0

Pigito—1 = Prg—1 + Q4

Kiy = Piojtg 1A' (AP, 1A'+ 02, 1)

Ty =1 — K, A

Py = Jiy Prglte—1

Tyy = JioTio—1 + Ko Yto

for t >ty do
Qt = O-SQyS]Nt,1

Pt|t—1 = Ptfl + Qt
-1
Kt = Pt|t_1A/ (Apt|t—1A/ + Uzbsl)
J=1—-KA
Py = JiPyi
Tt init = Jele—1 + Ky
Yeres = Yt — A:it,init
By = argming || 5]|1 subject to ||yt es — ABl2 < &
i.t,CSres = :i't,init + Bt
AA = {k : |(j\7t,CSres)k| > Oé}
Nt = Ntfl U AA
if Ay =0 then

‘ Tt = Tt,init

else
.ft - 0
(@) g, = (Apy ) 9
Pt = Omxm
—1
(Pt>]\7t,]<7t = (A[lzn],Nt),(A[lzn},Nt) UgbsI\Nﬂ
end
end

Algorithm 1: Kalman-Filtered Compressed Sensing (KFCS)



3 Algorithm — Genie-Aided Kalman Filtering (GAKF)

This algorithm applies to the case where there are no support deletions.

Issues:

Check blue piece below — do we want all-ones, identity of size |DeltaA|, or
identity restricted to DeltaA and zero else?

Needs to be redone for the new timescale
Input: Usys; Oobs) o-sys,()a A, {tj}7 {Nt}a {yt}

for t >ty do

if t = t;, then

T - NO

Ptfl = 052y570[T

(%tfl = O

Q=0

else

T'= N

Q= UgySIT

if t =t; for some j > 0 then
Ag = Ny \ Ny

]5,5,1) =02 Ia
( AaAa sys*|Aal
end

end

Py—1 = P11 + Qy

B j B -1
Kt = F)t|t—1A/ (Apt|t—1A/ + O-(Q)bsl>
J=1—KA

P, = {tRf|t—1 .

.f't = thlvftfl —+ Ktyt

end

Algorithm 2: Genie-Aided Kalman Filter (GAKF)



4 Candes RIP — (; Computation for «

[1], Theorem 1.3: Suppose y = Az + 7, |supp(z)| = s, 625 = 02s(A) < V2 — 1, and
Inll2 < € Then
& = argmin ||z||; subject to ||y — Az||s <&

satisfies

|z — 2]z < Ci(s)E,
where
44/1 + 09y

A = T Ve

Claim / Note: It can be shown that C} is an increasing function of dos, and o, is an
increasing function of s, so C; is an increasing function of s.

For any support size s in this paper, we will have s < Sy and thus C(s) < C1(Smax)-



5 Linear Systems Theory

5.1 Definitions

We present some basic definitions from linear systems theory. These can be found in [3],
Appendix C. Throughout, let F,G, H € R"*".

A matrix F' is stable if p(F') < 1.

The pair {F,G} is controllable if the matrix [G, FG,..., F""'G] is full rank n. An
equivalent characterization of controllability is that rank([A] — F, G]) = n for all eigenvalues
Aof F.

The pair {F, G} is stabilizable if rank([A\] — F, G]) = n for all eigenvalues A\ of F' with
AL

The pair {F, H} is detectable if and only if {F’, H'} is stabilizable.

Consider the case where F' = I. Then A = 1 is the only eigenvalue of F' = F’ and the
matrix (A — F, G] = [0, G] has rank n if and only if G has rank n. Therefore, if G is full
rank, then {I, G} is controllable and stabilizable. Additionally, since rank(H) = rank(H’),
we can use the same argument to conclude that {I, H} is detectable if H is full rank.

5.2 Theoretical Results

Here we present two important theoretical results from linear systems theory.
The general form of a discrete-time algebraic Riccati equation (DARE) is
P=FPF +GQG — (FPH +GS)(R+ HPH')""(FPH' + GS), (1)
where P, F,G,H,Q, R, S € R™".
[2], Theorem 7.5.1.b: Consider the DARE (1), where {F, H} is detectable and
FEE

If, in addition, {F — GSR™'H,GQ — GSR™'5'} is stabilizable, then the DARE always has
a unique Hermitian and positive semi-definite stabilizing solution P such that F' — K, H is
stable, where K, = (FPH' + GS)(R+ HPH')™".

The general form of a discrete-time algebraic Riccati recursion (DARR) is

Py = FPF +GQG — K,;R. ;K]

D)

i>0 2)

where K,,; = (FP,H' +GS)(R+ HP,H')™', R.; = R+ HP,H', and {P:}, F,G,H,Q, R, S €
RTLXTL.



[2], Lemma 8.7.3: Consider the Riccati recursion (2) with positive semi-definite initial
condition Py = 0. If Q = 0, R > 0, {F, H} is detectable and {F—GSR™'H, GQ—GSR™'S'}
is stabilizable then P; converges to the unique positive semi-definite matrix, P, that satisfies
the discrete-time algebraic Riccati equation (1).



6 Proofs
Lemma 1. Assume that {x;} and {y:} follow the signal model above, {t} is a discrete set
of sampling times, only additions to true support (Ny C Nyyq for all t), ete.

Further assume that

i) The true solution is exactly recovered at the initial time t = (to — 1): Tty-1 = X451,
50 Nyy—1 = Nyy—1; Can we relax this to just the true support is recovered?

i1) The mazimum support size Sy Satisfies Smazr < Sex = max{s : dos(A) < V2 — 1};

ii) The observation noise wy is bounded in magnitude: ||wl|s < & for all t and some

£€>0;

iv) The addition thresholds oy satisfy oy = a = C& for all t, where

41+
C = C(Smaa) 02

T 1= (1+2) as,...

with dss,, .. = 0as,,..(A); and

v) The addition delay d satisfies d > Tz, where the detection delay T4 is defined by

2

200
Tdet = Tdet(a7 5) = -1

—e)1/S,
UsysQ_l ((1 6)2 dd>

Here, Q' (x) is the inverse of the Gaussian Q-function, Q(x) =

Then

1) |lzy — 2t csresll2 < « for all sampling times t > (to — 1);
2) There are no false support additions: Ny C Ny for all t > (tg —1); and

3) Foranyj >0, Pr(E;|F;) > 1—¢, where By = {Nt = N, for all t € [tj+7ae : tj1—1]},
F; = {Nt]-—l = Nt]._l}, and € > 0 is arbitrary.



Proof. Need to find some way to get Candes Thm 1.3 in here and make the
connection that #; csres in our notation is z* in his. Also need to point out that
the way we chose «, we have any (1§ < (1 (Smax)é = a.

To prove claims 1 and 2, we proceed by induction on the value of ¢.

Consider the base case, where ¢t = (o — 1). Claim 1 follows from [1], Theorem 1.3
and assumptions (ii), (iii), and (iv) (Not immediate — need to connect to Candes as
above), and assumption (i) trivially proves claim 2.

Suppose now that claims 1 and 2 are both true for some time (¢ — 1). We show that the
claims are true at time ¢.

First, we verify claim 1 at time t. Referring to Algorithm 1, we have

5t = Tt — Tt init

Bt = argmﬁin |BIlx subject to ||ytres — ABl2 < &
ﬁ:t,CSres = :i't,init + Bb

where supp (i) = Ni_1.

By the induction hypothesis, Ny, C N;_1, and by our model assumptions we have
N;_1 C N;. Therefore, supp(5;) € Ny U Ny_1 = Ny, so |supp(5:)| < |N¢| < Smax- With this,
we can apply [1], Theorem 1.3 to see that ||3; — f]|z < o (AGAIN, need to make this
connection). By the definitions of 8, and Z; cgres, We see that || — ,@tHg = ||zt — Tt CSres]|2s
so claim 1 follows.

Next, we verify claim 2 at time ¢. Suppose that (x;); = 0 for some index i, so that
i ¢ supp(x;) = N;. Since Ni—1 € N;, we must also have i ¢ N;_1; by the induction
hypothesis, this implies that ¢ ¢ N;_;.

Applying the result of claim 1,
|<£t,CSres>z’| - |<$t - i't,CSres)i| S ||mt - fi't,CSresHQ S .

Referring to Algorithm 1, N, = Nt_lu{k :|(Z¢.csres k| > @} Sincei ¢ N,_; and |(Z+.csres)i] <
a, it follows that i ¢ N,. Thus if i ¢ Ny, then i ¢ Ny; equivalently, if i € IV;, then i € N;.
Therefore, N; C N;, which proves claim 2 and completes our induction proof.



Now, we prove claim 3. Let A; = N, \ Nt—l denote the set of indices of the true support
at time ¢ which have not been detected before time ¢. Fix j > 0 and suppose that F; holds,
that iS, th,1 = thfl.

Since FJ hOldS, At g Aadd,tj for all t € [t] . tj+1 — 1]

Let ¢ € A, for some t € [t; : t;11 — 1] and suppose that |(z;);| > 2a. Applying the result
from claim 1,

O S |(xt - j:t,CSres)i| S ||xt - jt,CSres||2 S a < 20[ < |(xt)z|7

so that
(24, csves)i| = | () — (&4,08res)i) |
“ ) | - | (2 —l‘tcsms)
= [(z4)il = [(2¢ = &4,08res)i]
> 20—«
=aq.

We see that if |(z¢);| > 2a, then |(Z;csres)i| > o, 801 € Ny =N, ;U {k = |(Zt,c80es)k] > a}.
If [(w¢)i| > 2a for all i € Agaay,, then Ay C Agaay; € Nt; in words, we will detect all
“missing” indices at time ¢, so Nt = N,.

From the above discussion, we see that the event {|(x);] > 2a for all i € Augqy,} is
contained within the event {|(z;);| > 2a for alli € A, | F;}, which in turn is contained
within the event {N; = N; | F;}.

All of the above is still kind of weak in places. It all makes sense in words
and is true, but the math / set theory is kind of wonky.

Our model asserts that the entries (z;); for i € Aaddt are independent and identically
distributed A (0, (¢t — t; + 1)o Sys) random variables. With this in mind, we see that

Pr <Nt = Nt

FJ.) > Pr(|(24);] > 2 for all i € A, |F;)
> Pr (\(:U )il > 2a for all ¢ € Aadd,tj)
r([(z)e] > 2a)]%9, ke Auad,; arbitrary

ol

Sadd

10



We examine the particular case where ¢t = ¢; + 74¢. In this case,

Sadd
2c
Fi) > |2
J) - [ Q (gsys\/(tj—}—’rdet—f—l) —t]>]

%20 Sadd
= (2 I —
|: Q<szs\/7—det+1):|

>1—c¢,

Pr (th+7det = th+‘rdet

where the final inequality is easily verified and follows from the ceiling in the definition of
Taer and the fact that Q is a decreasing function.

If N, =N, for t = tj + Tdet, then the model assumptions of no support deletions and no
support additions until time ¢;;,, in addition to the result of claim 2, imply that N, = N,
for all t € [t; + Taet © tj41 — 1], which is exactly the event E;. Therefore, Pr (E; | F;) =

Pr (Ntﬁmet = Ni; trge, Fj> > 1 — €, which completes the proof. O

11



Lemma 2. Assume that {x;} and {y;} follow the signal model above, {t} is a discrete set
of sampling times, only additions to true support (Ny C Nyiq for all t), etc.

(Ssmaz(A) <1, age =0.

Define the event D = {N, = N, = N, for all t € [t, : t,,]}, where N, is some fired index

set.

At each time t, let Ty = Ty xpes be the KFCS estimate of x¢ (Algorithm 1) and let
Ty = Ty, gakr be the GAKF estimate of x, (Algorithm 2).

Then given any € > 0 there exists some tp,s > t. such that for all t € [t : ], we have
E[|Z; — 2¢]|3| D] < ¢, i.e., &y converges to Ty in mean square.

Proof. Throughout, we assume that the event D occurs and ¢ € [t, : t..].

Where possible, we consider variables and parameters only along the support set N,, but
to simplify notation will omit the subscript N,. Thus, v; = ()n,, A = Apmn,, @ = Qn. N,
T = (@)n., S = (J)nvene, K = (K)wopm)s Pip—1 = (Pyge—1)nvon., Pr = (P)n,,n,, and
analogously for 7, jt, f(t, f’t|t—1, and P,.

Note, however, that y;, and w; may be be supported on [1 : n] and are thus not truncated
when they appear; similarly, R is not truncated.

For t > t,, both KFCS and GAKF run the same fixed-dimensional and fixed-parameter
Kalman filter for (z;)y,, but with different initial conditions. Elaborate...

J—— moved to enhance the flow of the proof

Suppose that t € [t, : t..]. We see that

P =P+ Q
= - KtA)Pt\t—l +Q
=Pjy1+Q— Py 1A (AP 1A'+ R)_lA})ﬂtfla

which is a discrete algebraic Riccati recursion (2) with F' =1, G = I, Q = 02 Iin.|x|n.) > 0,
R=02% I,., = 0,and S = 0. Verify Q, R — goes back to the algorithm issues. Note

obs
that @ is constant on [t. : t..] since we assume that D occurs.

Since |N,| < Smax and dg,,.. < 1, A = (Ap.yw,) is full rank. Therefore, using the
results from Section 5.1, {I, A} is detectable. Further, since Q = 02,1 is full rank, {I,Q} is
stabilizable.

Referring to the algorithm (which one?), we see that Py = P,,_1 = 02,,] > 0. is
this even true? Need to get the algorithms and model set up correctly. I think
we want the initial step to be P 1 = Ogyslof + @y, = 0, but the two algorithms

disagree on what (), is.

Therefore, by [2], Lemma 8.7.3, the DARR converges to a positive semi-definite matrix P,
which satisfies the corresponding DARE. This implies that K; — K, = PLA' (AP, A"+ R)™!

12



and J; — J, = (I — K, A). Further, by [2], Theorem 7.5.1.b, p(J,) = p(I — K, A) < 1.

Since GAKF and KFCS run the same Kalman filter, these results also apply to the GAKF
iterates, i.e. Py — P, Ky — K, and J; — J,.

Define p = p(J,) and let ¢ = (1 — p)/2. A standard result from linear algebra states
that there exists a matrix norm || - ||, such that || /||, < p+¢eo = (1 + p)/2 < 1. Further,
by the equivalence of matrix norms on a finite-dimensional space, there exists some constant
c2,p such that || M|y < ¢g,||M]|, for any matrix M.

Since J, — J,, there exists some te > o such that for all ¢t > ¢, ||~J~t||2 < | ell2 + 1.
Therefore, for any ¢ > to, we have ||J;[|2 < max{||Jy, |2, [|tor1ll2; - - - [[ St ll2; [[Jull2 + 1},
i.e. there exists some value B; > 0 such that ||Ji[|; < By for all ¢. Since || J;||2 < oo for all ¢
and ||J,|l2 < oo, we must also have B; < co.

By similar arguments, since .J; converges to J, and Fy;_; and ﬁ’ﬂt_l converge to P,, there
exist some 0 < By, Bp, Bp < oo such that ||J||2 < By, ||Pyi-1ll2 < Bp, and ||Py—1]]2 < Bp
for all ¢.

Let € > 0 be arbitrary.

The convergence results above and standard analysis techniques can be used to show that
there exists some t. > t, such that for all ¢ > ¢., all of the following conditions hold:

L] ||Kt — Kt”? <g;
o [|Ji = Jil|l2 < & and

o [Iell, < [[ Ll + (1 = p)/4.

* Why do we care if . does not depend on y?

Problem: NV proof says Z;, is independent of y,, , but by definition it’s not. AB draft:
t, — 1. So I agree that we're independent of y; ...y, 1, but we are dependent on y;, ... y;
because T; = JiT;_1 + Ky, for t > t,. All of this independence stuff needs to be very
carefully worked and verified; also, why do we care? I think z is useless here, it
does not affect the choice of ..

Attempted fix: Examining the algorithms, we see that K, K, Jy, Ji, Py;—1 and ]5t|t_1
do not depend on {y;}, hence, neither do K, J,, and P,. It follows that ¢. also does not
depend on {y}.

T——  /moved

A

Let é; = x; — 2; and é; = x; — Z;. Define diff; = é; — ¢&; and notice that diff; = 7, — Z;.

13



Let t > t. > t,. By Algorithm 1 and the model, we see that
€t = Ty — Ty
= (x4 + 1) — (SiZ—1 + Koyr)
=1+ v — Syt — K(Azy + wy)
=21 + 1 — S — KeA(wey + 1) — Kawy
= - KAz — i + (I — KAy — Ky
= Jy(z4—1 — Ty1) + Sy — Ky
= Jies1 + Jiwy — Kywy.

Similarly, using Algorithm 2 and the model, we can verify that
ét = jtét—l + jtVt - f(twt.
Combining these results yields

dlfft = Jtdiﬁt_l + (Jt - jt)<ét—1 + Vt) + (Kt - Kt)wt.

Let ) 3
w = (Jy — Jp) (€1 + 1) + (K — Ky)wy,

so that diff, = J;diff,_; + u;. Recursively applying this identity, we see that
diff; = Jdiff,_; + wy
= Jp (S diffy o + wp1) +
= JyJiadifty o + Jue—1 +
= Ji i1 (Ji—odiffi_3 + w—2) + Jyus—1 + wy
= JpJi1Jyodifty 3 + Sy w0 + Jpup—y 4 uy

= JtJt—l cee Jt€+1diﬁt6 + JtJt—l cee Jts+2uts+1 + ...+ Jtut_l -+ Uz.

If we define
M — Jedi—1 - Tppr i k<t
I k>t

then we can more compactly write

t
diffy = M, diffy, + Y My, up

k=t:.+1

14



Therefore, applying the triangle and Cauchy-Schwarz inequalities for expectation and
noting that the matrices {M}} are deterministic,

t
—E HM;Hdifft€+ > My,
k=t-+1

1
2 2

D

SIS

E [||diff||3 | D]

2

t

_ 1 1 -1 1
<E [ M dift, ;| D]+ E [Ju? D] + Y- E[[|Mulf} | D]

k=t-+1
_ 1 1
<E || My} | D] E [jaif, |3 D] +
1 t—1 1 1
E[Jlwll}|D)? + Y- E[[Mil; D] E [Jlul} | D]
k=te+1

1 1
E [||diffy[|3 | D]* < | M ,,|l2 E [||diff,. |3 | D] +

(1 + Y ||M;||2) max {B [Jlu,|}| D)} 3)

l=t.+2
Recall that, for k > t., we have
[ kllp < N Tllp + (X = p)/A< (X +p)/2+ (1= p)/4=(B+p)/4 <1
Let a = (3+ p)/4. Then for t. < k <t,

IMEll2 < o, [ M,

= | JeJe—r - Tillp
< N ellpll e=1llp - - - 1Tkl
[M]l2 < cpat "1 (4)

With this, we see that

t t
<1+ > HMgHQ> < <1+ > czpat_m)

l=t+2 l=tc+2

[e.e]
<max{l,cy,} - Zaﬁ
=0

t
1
(1 + D HM?H?) < max{l, ¢} - T (5)

0=to+2
Let 7 € [t.+1 : t] be arbitrary. Since 7 > t., we have | K, — K,||» < € and || J, — J,||» < e.

15



Consider

2 3
D)

2

~ 1 ~ 1
< ”JT - JTHQ E [HéT—l + V—ng ‘ D] *+ HKT - KTHQ E [Hang } D] ’

E [Ju. |2 | D]} =E U\(JT )t v) ¢ (R — K,

1 1
<e-Efllé-1+ vl ‘ D]? +¢-E [||w7|]§ | D]>
E [lurll3 | D]? <& (E [llé-113| D] * +E [Jull3 | D] * +E [Jlw- ;| D)) , (6)
where we have used the triangle and Cauchy-Schwarz inequalities for expectation.

By the properties of the Kalman filter, for any k, we have

P =E[(@ —E@ |y vz - ) @ — ElEelye vz - ue)) | 90,020 0]
=E [(j“ck — ) (Tg —[Ek>/’y17y2,...,yk]
=E[e; [y1, 92, - U]
= E[é,6,],

where the independence on the last line follows because P, has no dependence on any of
the {y;}, a well-known property of the Kalman filter (and consequence of the algorithm).
Therefore,

Here, we used the fact that the occurrence of D is independent of the value of P, = E lexel.].
Make sure this is legitimate.

We see that
1Pell2 = [T Papp—rllz < 1kl )| Peper|l2 < BsBp < oo,

where we recall that ||Pys_illa < Bp and [|Jy|la < By. Since By is Hermitian, ||Py|, =
Amax(Px). Therefore,

tr(Py) = Z/\z(pk) < | N Amax(Br) = [NuJ|| Pell2 < |N.|B;Bp < o0,

so there exists some 0 < B < oo such that tr(P,) < B for all k.

16



Therefore,
E[|é, ]2 |D] = tr (157_1) < B.

Since D occurs, v, is supported on N, so the covariance of v, = (v;)y, is E[v, 1] =

E v, | D] = 03, In. xn.|- VERIFY this claim. Therefore,

A similar computation proves that E [HwTHg ! D] = no?

obs*
With (6), these results show that

E [HUT”§ | D}% <e <\/§+ \/|N*|U§ys + 4/ no? ) :

obs

Since 7 € [t. + 1 : t] was arbitrary, we conclude that

max {E [ 3] Dﬁ} <e <@+ NA \/nagbs) . (7)

TE[te+1:t]

We have seen that E [||ék||§ |D] < tr(P,) < B for some B and all k; by similar work,

we can conclude that there exists some B such that E [Heng |D] < tr(P) < B for all k.
Therefore, by the triangle inequality for expectation,

E [[le.. — &.|2| D]
1

1
< E[llew.|l3| D]? +E [||é.[I3| D]
E [|diff, |2| D] < B+ B. (8)

E [||diff,. |2 | D]?

Combining (3) with (4), (5), (7), and (8), we see that

E [||dift;[|3 | D]? < cs,0a" (B + B) + Ck,

where C' = max{1,c,} - 1 - (\/E—F \/ I Nl o2 + nagbs>'

17



It

Ce
tms = te + lOga N )
{ (CZp(BJFB))—‘

then we see that for all t > £,
1
2

E [|3 — &3] D]* = E [|diff || D] * < 2Ce,

and since C' is constant and ¢ is arbitrary we have obtained our desired result.

18



Corollary 1. Assume that the conditions of Lemma 2 hold.

Then given any € and €. there exists some Tgxrp = Tgp(€, Eerry Ni) Such that for all
t € [t + TkF : tu], we have Pr(Hﬁét — i"tH; < Eepr ‘ D) > 1 —e¢e. Note that if t, + Tgr > tex,
then this interval 1s empty and the result is vacuously true.

Proof. Let € > 0 and ¢, > 0 be given and let € < € - £, By Lemma 2, there exists some
tms = tms(€, Ny) such that for all ¢ > t,,

E [||Z; — &3 | D] <& < e e

Let t > t,s. By Markov’s inequality,

ElJé—al3ID) _ & __

561“[' 5err

Pr (”‘%t — i’t”% > Eerr | D)

IN

Define mxp = ts — t. Since t,, is a function of £, which is itself a function of € and &,
we have Tgxp = Tkr (€, €errs Ny ), and for all ¢ > t,,s = t. + TxF,

Pr (Hi‘t — jjt”g < Eerr

D) >1—c¢,

which is our desired result. O
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Theorem 1. Assume that the conditions of Lemma 1 and Lemma 2 hold. Recall def of
E; and F;?

Let € > 0, €. > 0 be given.
Let Tger = Taer(r, €) be as in Lemma 1.

Choose d > Tge; + max;{Txr(€, €crr, Ni;) }-

1) Given any j € [0: K — 1], Pr (|| — 24||3 < €err) > (L — )77 for all t € [t; + Taer +
7—KF(Z‘: Eerrs th) j+1 - 1]
2) Pr(|A] < Saaq and |A] =0 for allt > ty) > (1 —¢)X
3) Pr(Forallje[0: K —1], |Af =0 and |A.| =0 for allt € [t; + Tger : tj11 — 1])
> (1—e)f
Proof. We first show by induction that Pr(E;) > (1 —¢)/™! for all j > 0.

Consider the base case, where j = 0. By assumption, Nto_l = Ny,—1, so Fg occurs. We

have
PI‘(E()) = Pr (EO | F()) Z 1—¢

by Lemma 1, which proves the base case.

Now assume that the claim is true for j = (k — 1) for some k > 1, that is, Pr(Eyx_1) >
(1 —¢)*. Consider

Pr(Ex) = Pr(Ex N Ex_1) + Pr(Ex N (Ex_1)°)

> PI‘(Ek N Ekfl)

= Pr (Ek | Ek_1> PI‘(Ek_l)

= Pr (Ey |Fx) Pr(Ex 1) WHY is this true?
> (1-e)(1-e)f

— ( )k+1

where we applied Lemma 1 to conclude that Pr (Ey | Fix) > 1—e&. Therefore, by the principle
of mathematical induction, we conclude that

Pr(E;) > (1 —¢)’*!

for all 7 > 0.
Fix je[0: K —1].
Choosing t, = t; + Tqet and t, = tj11 — 1, the event D = {Nt = N, for all t € [t,

t«} is identically the event E; = {Nt = N, for all t € [t; + Taet : tj+1 — 1]} Corollary 1 thus
yields
Pr (|, — &3 < €en | Ej) > 1—¢
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for all ¢t € [t; + Taet + TkF (€, €err, Nt;) : i1 — 1]

Note that since d > Tet +TkF (€, err, Ny;) for all j, the interval [t 4 Taet +7xr (€, €err, Ny,)
tj+1 — 1] is nonempty.

For any t € [t; + Taet + Tkr © tj4+1 — 1], we see that
Pr ([|Z; — 25 < enr) = Pr ({17 — @43 < cen} NEy) +Pr ({[|7: — 2413 < €er} N (E)°)
> Pr ({[|7: — @5 < e} NEy)
=Pr (|7 — & < eere | Ej) Pr(E;)
> (1—¢)(1—eg)t!

= (1 —¢g)*,

which verifies the first claim.

I think that the third claim’s probability equals the one below. Either way,
we need this.

PI'(EO N E1 N...N EK—I) = PI'(E())PI' (El | Eo) Pr (E2 ’ EO N El) ---Pr (EK—I

[ﬁl EJ)

J=0

Stuff to verify:

Pr(E;| E;—1) = Pr(E; | F;): if Ej_; happens, then F; definitely happens, but not seeing
why these are equal yet.

Markov property used on {E;}: justification

Second claim: the event seems to be a superset of the event EyN...N Ek_1, so obviously
the probability is bigger than (1 — ¢)%. O
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