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1 Model

At each time t > ty, we have

Y = Az + wy
Tip1 = T + Vit Can we use ;7

Here, E[w;] = 0, cov(w;) = Elw,w,] = R = 02 L,xn, iid and independent of x;; zy, = z¢ ~
N(0, 02 01n,); and vy ~ N(0, 02, Iy,) iid.

Y, Wy € Rn’ A€ Rnxm’ T, Vy € R™.

Time indices are discrete. Make the distinction between sampling times (used) and
continuous time (not used).

41t +2 -1 | 41
t j+1

At the addition times t; = to + jd for some o, the support of z; changes: N; = Ny, for
all t € [tj : tj+1 — 1], and Nt]. C th+1.



2 Algorithm — KFCS with LS

This algorithm applies to the case where there are no support deletions.
Issues:

P,,—1 and Q; — is this an identity of size |Nhat| or is it a full-blown identity
with nonzeros on diagonal entries corresponding to Nhat

Is this algorithm transcribed correctly? There are 3 versions of it that I have
(NV original, AB+NV typed draft, and AB handwritten) and all 3 are different.

Look for places to simplify — this is long and contains repeat steps, which is
non-ideal



IHPUt: Osysy Oobsy Osys,05 Av {tj}7 {Nt}a {yt}

Tpymit = argmin, ||z||; subject to ||y, — Azl <&
Niy ={J :2|(jto7init)j| > a}
Pto—l = Usys,OINtO
Qto - O
i‘tofl =0
Pto‘tofl = Pto—]. + Qto
—1
Kt() = PtoltO*lA/ (Apto|t071A/ + OngI)
Jto - I — KtoA
Pto = JtQPt0|t0—1
i‘to = Jtoj:tofl + Ktoyto

for t > t; do
Qt = O-SySINt,1

Py—1 = P11 + Qy

Ky = Py A (ARf|t—1A/ + Ugbsf>_1
J,=1—K,A

Py = Ji Py

i"t,init = JiTy1 + Ktyt

yt,res =Yt — Ai‘t,init

By = argming || 5]|1 subject to ||yires — ABl2 <&
Lf;t,CSres - jlf,il’lit + /Bt

AA = {] : ’(it,CSres)j’ > Oé}

Nt - Nt_l U AA

if AA = (Z) then

A

‘ Ty = 'Tt,inlt
else
'Z%t — 0
Pt = Omxm
(Pt)]\A[t,Nt - (A[lzn],Nty(A[l:n},Nt) O-(Q)bsI\Nﬂ
end
end



3 Algorithm — Genie-Aided Kalman Filtering (GAKF)

This algorithm applies to the case where there are no support deletions.
Issues:

Check blue piece below — do we want all-ones, identity of size |DeltaA|, or
identity restricted to DeltaA and zero else?

Input: oy, Oobs, Osys0, A, {t;}, {N:e}, {w}

for t >ty do

if t =ty then

T =N,

Py = Us2yS7o]T

T 1=0

Q=0

else

T =Ny

Qi = UfyS[T

if t =t; for some j > 0 then
Ay = Ny \ Ny

Pt—l) 202 ]A
( AaAa sys*|Aal

end

end

]5t|t—1 =D+ Q

K, = Pt|t71A/ (AIBﬂtflA/ + oﬁbsl> B
Jy=1— KA

B= by

Ty = STy + Ky

end




4 Candes RIP — (; Computation for «

We need to add this as a theorem or something — cite [1] Thm 1.3 and explicitly
give the value of (', and the commentary below.

THEOREM / RESULT: [1], Theorem 1.3
Suppose y = Az + 1, |supp(z)| = s, dos = da5(A) < V2 — 1, and ||n]|2 < &. Then

& = argmin ||z||; subject to ||y — Az||s <&
z

satisfies

e —&]l2 < Ci(s)€,

where

AT ¥ 0,

O = T e

Claim / Note: It can be shown that C} is an increasing function of dos, and da, is an
increasing function of s, so C; is an increasing function of s.

For any support size S in this paper, we will have S < Sy and thus C1(S) < C1(Smax)-



5 Linear Systems Theory

5.1 Definitions

We present some basic definitions from linear systems theory. These can be found in [?],
Appendix C. matrix sizes / rank = n, etc.

A matrix F' is stable if p(F') < 1.

The pair {F,G} is controllable if the matrix [G, FG,..., F""'G] is full rank n. An
equivalent characterization of observability is that rank([A] — F, G]) = n for all eigenvalues
Aof F.

The pair {F, G} is unit-circle controllable if rank([A] — F, G]) = n for all eigenvalues
A of F with [\ = 1.

The pair {F, G} is stabilizable if rank([\] — F, G]) = n for all eigenvalues X\ of F' with
Al > 1.

The pair {F, H} is detectable if and only if {F’, H'} is stabilizable.

Consider the case where F' = I. Then A = 1 is the only eigenvalue of F' = F’ and the
matrix [\l — F, G] = [0, G] has rank n if and only if G has rank n. Therefore, if G is full
rank, then {I, G} is controllable, unit-circle controllable, and stabilizable. Additionally, since
rank(H) = rank(H’), we can use the same argument to conclude that {I, H} is detectable
if H is full rank.

5.2 Theoretical Results

Here we present two important theoretical results from linear systems theory. Specialize
these results for our case where S = 0, etc.?

The general form of a discrete-time algebraic Riccati equation (DARE) is

P=FPF +GQG — (FPH +GS)(R+ HPH') '(FPH' + GS)'. (1)

Define F* = F —GSR™'H and Q* = Q — SR™'9".

[3], Theorem E.5.1: Consider the discrete-time algebraic Riccati equation (1). The
following two statements are equivalent: (i) {F, H} is detectable and {F*, GQ*/?} is control-
lable on the unit circle. (ii) The DARE has a stabilizing solution P, i.e., one for which the
matrix F' — K,H is stable, where K, = (FPH' + GS)(R+ HPH')~'. Moreover, any such
stabilizing solution is unique and positive semi-definite.

[2], Lemma 8.7.3: Consider the Riccati recursion with positive semi-definite initial
condition

Pi+1 — FPZF/ —|— GQG/ - Kpﬂ'Re’iK/

Dy

Fy = 0.
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If@Q >0, R> 0, {F,H} is detectable and {F*, GQ*} is stabilizable then P, converges to
the unique positive semi-definite matrix, P, that satisfies the discrete-time algebraic Riccati
equation (1).

ISSUE: Hassibi thesis requires {F*, GQ°} stabilizable, not GQ*?. Inconsistent
with KSH and NV draft.



6 Kailath, Sayed, Hassibi — Linear Estimation

TEMPORARY SECTION

6.1 Appendix C, Section 3

Definitions and concepts from system theory.

iy = Fixg + G,
yi = Hizy + K,

Shorthand (F;, G;, H;, K;). PROBLEM: y is tied also to u here instead of some other
variable...

Stable: F is stable if |\;| < 1 for all \; € 0,(F), equivalently, p(F) < 1.

Controllable: {F,G} is controllable if and only if the controllability matrix C =
|G, FG, F?G, ..., F"'G] is full rank n.

Unit-circle Controllable: {F,G} is unit-circle controllable if rank(A — FG) = n at
all unit-circle eigenvalues \ of F'.

P. 502 — unit-circle controllable = there exists K with F'—G K has no unit-circle
eigenvalues. Is this even true? Nontrivial if so.

Stabilizable: {F,G} is stabilizable if and only if rank(A — F'G) = n for all A € g,(F)
with || > 1.

Observable: {F,H} is observable if and only if {F* H*} is controllable, i.e. C =
[H*, F*H*, (F*)?H*,...,(F*)""*H*] is full rank n.

Detectable: {F, H} is detectable if and only if {F™*, H*} is stabilizable, i.e. rank(\ —
F*H*) =n for all A € 0,(F) with |[A\| > 1.

6.2 Chapter 8, section 3

Solutions of a DARE
Section 8.1 — Time-Invariant State-Space Model (p.266)

Tiy1 = sz -+ GUZ
yi=Hz;+v;
Q = cov(u), R = cov(v), S = cov(u,v)



Discrete Algebraic Riccati Equation (DARE):
P = FPF* + GQG" — K,R.K"

R.= R+ HPH*
K,= (FPH*+GS)R.*

Define F* = F — GSR™'H and Q* = Q — SR™'S*.

Theorem 8.3.1: Assume that I is stable (otherwise, { F, H} is detectable), { F*, GQ*/?}
controllable on the unit circle,

Q S
—
[ g p| = 0, R > 0.
Under these conditions, the DARE has a unique solution P such that F' — K,H is stable.

Moreover, this so-called stabilizing solution is positive semi-definite and results in a positive
definite R, = R+ HPH*.

6.3 Chapter 14

Lemma 14.2.1: Consider the zero-initial-condition Riccati recursion and assume {F, H}
detectable and {F, GQ'/?} unit-circle controllable so that the unique stabilizing solution P
exists. Then PP converges to P if and only if {F, GQ'/?} is stabilizable.

I don’t think we’re in the zero-initial-condition case; rather, P’ = o].

Exercise 14.47 p.546

6.4 Appendix E

(Confirm the statement — p.783)

Theorem E.5.1: Consider the DARE (above). The following are equivalent: (i) {F, H}
is detectable and { F'*, GQ*/?} is controllable on the unit circle; (ii) the DARE has a stabilizing
solution P, i.e., one for which the matrix F' — K,H is stable. Moreover, any such stabilizing
solution is unique and positive semi-definite.



7 Callier / Desoer — Linear System Theory

TEMPORARY SECTION

Model — p. 57 — discrete-time system representation
Try1 = ApTy + Bruy,

yr = Crap + Dyuy

Problem: we have w, instead of D,u,. We can always find an appropriate Dy
unless u; = 0, which happens with probability 0, presumably, so it should be
okay?

Time-invariant: (A, B, C, D) constant in time.
(Thms: pp. 293-294)
Theorem 8.d.62.ii Consider a discrete-time time-invariant system representation Ry, =
[A, B,C, D]. If A and B are real, there exists F' € R™*" such that
0,(A+BF)CD(0,1)={z€C:|z| <1}

if and only if the pair (A, B) is stabilizable.
Theorem 8.d.65.ii Consider a discrete-time time-invariant system representation Ry =
[A, B,C, D]. If C and A are real, there exists L € R"*" such that
o,(A+LC) CD(0,1) ={z€C:|z| <1}

if and only if the pair (C, A) is detectable.

Problem: These theorems are for a time-invariant system. We have time-
invariance on everything except D, due to our wy issue. This may be a non-issue,
but I have no idea.

Translate to (F, G, H, K') notation:

Detectable: {F, H} is detectable if and only if p(F + LH) < 1 for some L.
Stabilizable: {F,G} is stabilizable if and only if p(F' 4+ GL) < 1 for some L.
Translate to our problem, F =1, H=A, G =1, Q = 021

Detectable: {I, A} is detectable if and only if p(I + LA) < 1 for some L.
Stabilizable: {I, o4} is stabilizable if and only if p(I + 0ssL) < 1 for some L.

10



8 Hassibi — PhD Thesis

TEMPORARY SECTION
Results on Riccati equations.

Section 7.3, footnote 1: Def: {F, H} is detectable if there exists a matrix K such that
F — KH is stable.

Linking this with the definition of detectable from KSHLinear:

JdKwithF — K Hstable = detectable = {F*, H* } stabilizable

Lemma 8.7.3 Consider the Riccati recursion with positive semi-definite initial condition

Py = FRF*+ GQG* — K, ;R K*, Py = 0.

p?z )

IfQ =0, R =0, {F, H} is detectable and { F~GSR™'H, GQ—GSR15*} is stabilizable then
P; converges to the unique positive semi-definite matrix, P, that satisfies the discrete-time
algebraic Riccati equation

P =FPF*+GQG* — (FPH* + GS)(R+ HPH*) '(FPH* + GS)*.

Thereom 8.7.1 Consider the Riccati recursion

Py = FPF"+GQG" — K, ;R.; K, Py

j

where R =0, Q — SR™1S* = 0, {F, H} is detectable and {F — GSR™'H,GQ — GSR™15*}
is stabilizable. Suppose, moreover, that the initial condition Fj is such that

I+ (P2 Py(P")'? 0,

where P? is the unique positive semi-definite solution to the dual Riccati recursion. Then
P; converges to the unique positive semi-definite matrix, P, that satisfies the discrete-time
algebraic Riccati equation

P = FPF* +GQG" — (FPH* + GS)(R + HPH*)"\(FPH* + GS)".

11



9 Proofs

Lemma 1. Assume that {x;} and {y;} follow the signal model above, {to,to+ 1,19 +2,...}
is a discrete set of sampling times, only additions to true support (Ny C Nyiq for allt), etc.

Further assume that

i) The true solution is exactly recovered at the initial time to: &y, = x4, s0 Ny = Ny =
Ny; Can we relax this to just the true support is recovered?

i1) The mazimum support size Sy Satisfies Smazr < Sex = max{s : dos(A) < V2 — 1};
iii) The observation noise wy is bounded in magnitude: ||w:|| < & for allt and some & > 0;

iv) The addition thresholds oy satisfy oy = a = C& for all t, where

4/T+0
C = C(Sma) 02

Tz (14 v2) b2s,.,

with dss,,,. = 0as,,..(A); and

v) The addition delay d satisfies d > Tz, where the detection delay T4 is defined by

2
2x

o)1/,
04y Q1 (UE)T“>

Tdet = Tdet<aa 5) =

Here, Q7'(z) is the inverse of the Gaussian Q-function, Q(z) = [° L =7 dt.
Then

1) ||zt — &t .csresll2 < « for all sampling times t;

2) there are no false support additions: N, C N, for all sampling times t; and

3) Pr(E;|F;) > 1 —¢, where By = {N, = N, for allt € [t; + T4 : tjs1 — 1]} and
Fj = {thfl = thfl}'

We may want to split claim 3 into its own piece because its proof relies
on the other 2 parts, which are proved separately with induction.

12



Proof. Need to find some way to get Candes Thm 1.3 in here and make the
connection that #; csres in our notation is z* in his. Also need to point out that
the way we chose «, we have any (1§ < (1 (Smax)é = a.

To prove claims 1 and 2, we proceed by induction on the value of ¢.

Consider the base case, where ¢ = t;. Claim 1 follows from Theorem 1.3 in [1] and
assumptions (ii), (iii), and (iv) (Not immediate — need to connect to Candes as
above), and assumption (i) trivially proves claim 2.

Suppose now that claims 1 and 2 are both true for some time (¢ — 1). We show that the
claims are true at time ¢.

First, we verify claim 1 at time ¢. Let TYPO HERE? vy, — ¥:,es? Can probably
remove after getting algorithm typed up.

By = x — L¢,init

B = argmin |||y subject t0 [[yzes — ABll> < €
it,CSres = :i't,init + Bt?

where 4 init and y; res are defined in the KFCS with LS algorithm and & in;; satisfies supp(Z imit) =
Nt—l-

By the induction hypothesis, Ny, C N;_1, and by our model assumptions we have
Ni_1 C N;. Therefore, supp(5;) € Ny U Ny_1 = Ny, so |supp(5y)| < [Vy| < Siax- With this,
we can apply Theorem 1.3 in [1] to see that |8, — ]|z < @ (AGAIN, need to make this
connection). By the definitions of 8, and & csres, We see that || — BtHg = ||zt — Tt CSres]|2s
so claim 1 follows.

Next, we verify claim 2 at time ¢. Suppose that (x;); = 0 for some index i, so that
i ¢ supp(x;) = N;. Since Ni—1 € N, we must also have i ¢ N, 1; by the induction
hypothesis, this implies that ¢ ¢ N;_;.

Applying the result of claim 1,
|(j:t,CSres)i| - |($t - jt,CSres)i| S ||xt - i‘t,CSresHQ S «.

Referring to the algorithm, N, = N, U {j : |(@tcsres)j] > a}. Since i ¢ N,_; and
|(Zt.0sres)i| < «, it follows that ¢ ¢ N;. Thus if i ¢ Ny, then i ¢ Ny; equivalently, if
1 € Ny, then ¢ € N;. Therefore, N; C N;, which proves claim 2 and completes our induction
proof.

13



Now, we prove claim 3. Let A; = N, \ Nt—l denote the set of indices of the true support
at time ¢ which have not been detected before time ¢. Suppose that F; holds, that is,
thfl = thfl‘

Since FJ hOldS, At g Aadd,tj for all t € [t] . tj+1 — 1]

Let ¢ € A, for some t € [t; : t;11 — 1] and suppose that |(z;);| > 2a. Applying the result
from claim 1,

O S |(xt - j:t,CSres)i| S ||(xt - Zit,CSres)HQ S a < 20{ < |(‘rt)z|7

so that
|(Zt,0sres)i| = [(24)i — [(24)i — (Z1,C5res)i|
2 ‘|($t)z| — (2 — i‘t,CSres)iH
= ’(xt)z‘ - ’(xt - i’t,CSres)z’|
> 20— «
= .

We see that if |(z¢);] > 2a, then |(Z¢csres)i| > v, 801 € N,=N,_; U {7 |(Zr.csres)j| > a}.

If [(w¢)i| > 2a for all i € Agaay,, then Ay C Agaay; € Nt; in words, we will detect all
“missing” indices at time ¢, so Nt = N,.

From the above discussion, we see that the event {|(x);] > 2a for all i € Augqy,} is
contained within the event {|(z;);| > 2a for alli € A, | F;}, which in turn is contained
within the event {N; = N; | F;}.

All of the above is still kind of weak in places. It all makes sense in words
and is true, but the math / set theory is kind of wonky.

Our model asserts that the entries (z;); of z; are independent and identically distributed
N (0, (t — tj)agys) random variables. With this in mind, we see that

Pr (Nt N,

Fj> > Pr(|();] > 2a for all i € A, |F;)
> Pr (|(:1:t)

r (|(x) | > 204)] e

[ ==

’ > 2« for all 7 € Aadd,tj)

14



We examine the particular case where ¢t = ¢; + 74¢. In this case,

Sadd
2a
F:) > |2
J) = [ Q (gsys\/(tj+7det) _tj>]
e ()
B Osys/ Tdet

21_87

Pr (th+‘rdet = th+Tdet

where the final inequality is easily verified and follows from the ceiling in the definition of
Taer and the fact that Q is a decreasing function.

If Nt = N, for t = t; + T4er, then the model assumptions of no support deletions and no

support additions until time ¢,4,, in addition to the result of claim 2, imply that N, = N,
for all t € [t; + Taer © tj41 — 1], which is exactly the event E;. Therefore, Pr (E; | F;) =

Pr (Ntﬁmet = Nt; trger Fj> > 1 — €, which completes the proof. O

15



Lemma 2. Assume that {x;} and {y;} follow the signal model above, {to,to+ 1,10 +2,...}
is a discrete set of sampling times, only additions to true support (Ny C Nyi1 for all t), ete.

(SsmaI(A) <1, age=0.
Define the event D = {N, = N, = N, for all t € [t, : t,.]}, where N, is some fired index

set.

At each time t, let &, = T4 gkpes be the KFCS estimate of xy and let 2, = 2 caxr be the
GAKF estimate of ;.

Then given any € > 0 there exists some tps > t. such that for all t € [t : t.w], we have
E[|Z; — 2¢]|3| D] < ¢, i.e., Ty converges to Iy in mean square.

Proof. Throughout, we assume that the event D occurs and ¢ € [t, : t..].

Where possible, we consider variables and parameters only along the support set N,, but
to simplify notation will omit the subscript N,. Thus, v; = ()n,, A = Apmn,, @ = Qn. N,
T = (@)n., S = (J)nvene, K = (K)wopm)s Pip—1 = (Pyge—1)nvon., Pr = (P)n,,n,, and
analogously for 7, jt, f(t, f’t|t—1, and P,.

Note, however, that y;, and w; may be be supported on [1 : n] and are thus not truncated
when they appear; similarly, R is not truncated.

For t > t,, both KFCS and GAKF run the same fixed-dimensional and fixed-parameter
Kalman filter for (z;)y,, but with different initial conditions. Elaborate + possibly com-
bine with first paragraph about DARE stuff below

J—— moved to enhance the flow of the proof

Notice that for ¢t € [t. : t.] our model is a discrete-time time-invariant linear system
with (F,G,H,K) = (I,1,A,I) . We can apply elements of linear system theory discussed
in Section 5 to generate results relating to P;_;.

ISSUE: our system doesn’t match the usual x = Fx + Gu, y = Hx + Ku
model, so does this theory apply?

We see that

P =hF+Q
=(I - KtA)Pt\t—l +Q
= P11+ Q— Py A (AP 1A'+ R)_lAPﬂtfla

which is a discrete algebraic Riccati recursion (DARR) with ' = I, G = I, Q = 0 Jin.|x|N.);
R =02 I,.n, and S = 0. Verify Q, R. Note that ) is constant on [t, @ t.i] since we assume

obs

that D occurs.

Since |N.| < Spax and g, < 1, A = (Ap.ny,w,) is full rank. Therefore, using the results
from Section 5.1, {I, A} is detectable. Further, since QY2 = oI is full rank, {I,Q'/?} is
stabilizable and unit-circle controllable.

16



From the algorithm, P,y = P,_1 + @; = 0 for any t. TRUE? (In theory yes, but
not trivially true, need induction to show P, = 0 (hooray) or point out that P, is
a covariance, hence, PSD.) We need to be more careful here. Technically we are
on t > t,, may or may not affect things.

Therefore, by [2], Lemma 8.7.3, the DARR converges to a positive semi-definite matrix
P,. This implies that K; — K, = PA(APA + 03 Iuxn) ' and J; — J, = (I — K, A).
VERIFY: Q'/? issue — see section on linear systems for explanation

Further, since {I, A} is detectable and {I, @'/} is unit-circle controllable, we can apply
[3], Theorem E.5.1 to conclude that p(I — K, A) = p(J,) < 1.

Since GAKF and KFCS run the same Kalman filter, these results also apply to the GAKF
iterates, i.e. Py — P, Ky — K,, and J; — J,.

Define p = p(J,) and let ¢g = (1 — p)/2. A standard result from linear algebra states
that there exists a matrix norm || - ||, such that || /.||, < p+¢eo = (1 + p)/2 < 1. Further,

by the equivalence of matrix norms on a finite-dimensional space, there exists some constant
c2,p such that || M|y < cy,||M]|, for any matrix M.

Since J; — .J,, there exists some te > to such that for all ¢t > ., HNJtHg < || Jull2 + 1.
Therefore, for any ¢ > to, we have ||.J;[|2 < max{||Jy, |2, | Jot1ll2: - - - [[Jee—1ll2; [[Jull2 + 1},
i.e. there exists some value B; > 0 such that || J;[|; < B, for all ¢. Since [|.J;||2 < oo for all ¢
and ||Ji]|2 < oo, we must also have B; < oco.

By similar arguments, since .J; converges to .J, and F;;_; and f)t|t71 converge to P,, there
exist some 0 < By, Bp, Bp < oo such that ||J||2 < By, ||Py-1l2 < Bp, and ||Py—1|2 < Bp
for all ¢.

Let € > 0 be arbitrary.

The convergence results above and standard analysis techniques can be used to show that
there exists some t. > t, such that for all ¢ > t., the following conditions hold:

[ J ||Kt — Kt”? < g,
o |[Ji— Jill2 < & and

o [[Jillp < Ml 2llp + (1 = p)/4.

* Why do we care if 7. is independent of y? So that we can say ¢, is independent
of y as well?

Problem: NV proof says ;. is independent of 1, , but by definition it’s not. AB draft:
t, — 1. So I agree that we're independent of y; ...y, 1, but we are dependent on y,, ...y,
because 7; = Jixy_1 + Ky, for t > t,. All of this independence stuff needs to be very
carefully worked and verified; also, why do we care?

T— /moved
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Let é; = x; — 2; and é; = x; — Z;. Define diff; = é; — ¢€; and notice that diff; = 2, — Z;.

Let t > t. > t,. By the KFCS with LS algorithm and the model, we see that

€ = Ty — Iy
= (xi1 +w) — (Side1 + Kyyy)
=z + v — ST — Ki(Axy + wy)
=x 1+ v — Sy — KA(x1 + 1) — Ky
= - KAz — iy + (I — KAy, — Ky
= Jy(xi—1 — &4—1) + Sy — Ky
= Jiei1 + Jyvp — Kpwy.

Similarly, using the GAKF algorithm and the model, we can verify that
ét = jtét—l + jtVt - f(twt.
Combining these results yields

diff, = Judiff,_y + (J; — J) (6e—1 + 1) + (K} — K w,.

Let ) .
wp = (Jy — Jp) (€1 + 1) + (K — Kp)wy,

so that diff; = Jidiff;_; + u;. Recursively applying this identity, we see that
diff; = Jidiff,_; + uy
= Jy (Joadiffi—g + we—) +
= JpJpdifty o + Jyup—1 4wy
= Ji i1 (Ji—odiffi_3 + w—o) + Jyus—1 + wy
= JiJi1Jiodifty 3 + S Ji w0 + Jup 1 +

= JpJi1 - Jpodifly, + S Tt o T g

If we define
M= Jedi—1 - Tppr i k<t
I k>t

then we can more compactly write

t
diffy = M, diffy, + Y M, uy.
k=t-+1

18



Therefore, applying the triangle and Cauchy-Schwarz inequalities for expectation and
noting that the matrices {M}} are deterministic,

t
—E HM;Hdifft€+ > My,
k=t-+1

1
2 2

D

SIS

E [||diff||3 | D]

2

t

_ 1 1 -1 1
<E [ M dift, ;| D]+ E [Ju? D] + Y- E[[|Mulf} | D]

k=t-+1
_ 1 1
<E || My} | D] E [jaif, |3 D] +
1 t—1 1 1
E[Jlwll}|D)? + Y- E[[Mil; D] E [Jlul} | D]
k=te+1

1 1
E [||diffy[|3 | D]* < | M ,,|l2 E [||diff,. |3 | D] +

(1 + 3 ||M;||2) max {B [Jlu,|}| D)} @)

l=t.+2
Recall that, for k > t., we have
[ kllp < N Tllp + (X = p)/A< (X +p)/2+ (1= p)/4=(B+p)/4 <1
Let a = (3+ p)/4. Then for t. < k <t,

IMEll2 < o, [ M,

= | JeJe—r - Tillp
< N ellpll e=1llp - - - 1Tkl
[M]l2 < cpat "1 (3)

With this, we see that

t t
<1+ > HMgHQ> < <1+ > czpat_m)

l=t+2 l=tc+2

[e.e]
<max{l,cy,} - Zaﬁ
=0

t
|
(1 + D HM?H?) < max{l, ¢} - T (4)

0=to+2
Let 7 € [t.+1 : t] be arbitrary. Since 7 > t., we have | K, — K,||» < € and || J, — J,||» < e.
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Consider

2

B [Juc D] = [ = J)erms 40 + (. — Koy || D] |

~ 1 ~ 1
<N Jp = Tell2 B [[lér—1 + vell; | D)* + |57 = Ko ll2 E [l || | D]

2

<2 B [[lér1 + v, | D]? + - E [Jlur]}3 | D)
1 1 1 1
E [Juc ;| D)7 <= (E [J&1113 | D)? +E [l 3| D] +E [Jur |} | D]?) (5)

where we have used the triangle and Cauchy-Schwarz inequalities for expectation.

By the properties of the Kalman filter, for any k&, we have

B =E (@ —E& |y vz ve)) @ — E Gy, 520 9) | Y1, 920, Uk
=E [(:Ek — ) (T — 1) ‘ Y1, Y2, - - - ,yk]
=E[ere) | y1, v, - - -5 Yi]
=E[éxé],

where the independence on the last line follows because P, has no dependence on any of
the {y;}, a well-known property of the Kalman filter (and consequence of the algorithm).
Therefore,

E [||&]5 | D] = tr (E & | D])
= E[
= E [tr(&,&,)

Here, we used the fact that the occurrence of D is independent of the value of P, = E [exe}].
Make sure this is legitimate.

We see that
1Pill2 = 1Tk Prp—1ll2 < [1Jkll2ll Prp—1ll2 < BsBp < oo.
Since P, is Hermitian, HIBkHQ = )\max(ﬁk). Therefore,

te(Pe) = ) AN(B) < INdAwax( ) = [Nl Billz < [N.| By Bp < oo,

so there exists some 0 < B < oo such that tr(P;) < B for all k.
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Therefore,
E[|é, ]2 |D] = tr (157_1) < B.

Since D occurs, v, is supported on N, so the covariance of v, = (v;)y, is E[v, 1] =

E v, | D] = 03, In. xn.|- VERIFY this claim. Therefore,

A similar computation proves that E [HwTHg ! D] = no?

obs*
With (5), these results show that

E [HUT”§ | D}% <e <\/§+ \/|N*|U§ys + 4/ no? ) :

obs

Since 7 € [t. + 1 : t] was arbitrary, we conclude that

max {E [ 3] Dﬁ} <e <@+ NA \/nagbs) . (6)

TE[te+1:t]

We have seen that E [||ék||§ |D] < tr(P,) < B for some B and all k; by similar work,

we can conclude that there exists some B such that E [Heng |D] < tr(P) < B for all k.
Therefore, by the triangle inequality for expectation,

E [[le.. — &.|2| D]
1

1
< E[llew.|l3| D]? +E [||é.[I3| D]
E [|diff, |2| D] < B+ B. (7)

E [||diff,. |2 | D]?

Combining (2) with (3), (4), (6), and (7), we see that

E [||dift;[|3 | D]? < cs,0a" (B + B) + Ck,

where C' = max{1,c,} - 1 - (\/E—F \/ I Nl o2 + nagbs>'
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It

Ce
tms = te + lOga N )
{ (CZp(BJFB))—‘

then we see that for all t > £,
1
2

E [|3 — &3] D]* = E [|diff || D] * < 2Ce,

and since C' is constant and ¢ is arbitrary we have obtained our desired result.
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Corollary 1. Assume that the conditions of Lemma 2 hold.

Then given any € and €. there exists some Tgxrp = Tgp(€, Eerry Ni) Such that for all
t € [t + TkF : tu], we have Pr(Hﬁét — i"tH; < Eepr ‘ D) > 1 —e¢e. Note that if t, + Tgr > tex,
then this interval 1s empty and the result is vacuously true.

Proof. Let € > 0 and ¢, > 0 be given and let € < € - £, By Lemma 2, there exists some
tms = tms(€, Ny) such that for all ¢ > t,,

E [||Z; — &3 | D] <& < e e

Let t > t,s. By Markov’s inequality,

ElJé—al3ID) _ & __

561“[' 5err

Pr (”‘%t — i’t”% > Eerr | D)

IN

Define mxp = ts — t. Since t,, is a function of £, which is itself a function of € and &,
we have Tgxp = Tkr (€, €errs Ny ), and for all ¢ > t,,s = t. + TxF,

Pr (Hi‘t — jjt”g < Eerr

D) >1—c¢,

which is our desired result. O
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