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KF-CS: Compressive Sensing on Kalman Filtered
Residual

I. LEMMA AND THEOREM
A. Lemma 1

We begin by stating Lemma 1 which shows two things. First, if accurate initialization is assumed, the noise is bounded,
Smax ≤ S∗∗, αdel = 0 and α is high enough, there are no false detections. If the delay between addition times also satisfies
d > τdet(ε, Sa), where τdet is what we call the “high probability detection delay”, then the following holds. If before tj , the
support was perfectly estimated, then w.p. ≥ 1− ε, all the additions which occurred at tj will get detected by tj +τdet(ε, Sa) <
tj+1.

Lemma 1: Assume that xt follows Signal Model ??. If
1) (initialization (t = 0)) all elements of x0 get correctly detected and there are no false detects, i.e. N̂0 = N0,
2) (measurements) Smax ≤ S∗∗ and ‖w‖2 ≤ ξ,
3) (algorithm) we set αdel = 0 and α2 = B∗ := (C1ξ)

2, where C1 is defined in [][Restricted Isometry Property]
4) (signal model) delay between addition times, d > τdet(ε, Sa),

where τdet(ε, S) :=

⌈
4B∗

σ2
sys[Q−1( (1−ε)1/S

2 )]2

⌉
− 1,

(1)

d·e denotes the greatest integer function and Q(z) :=
∫∞
z

(1/
√

2π)e−x
2/2dx is the Gaussian Q-function,

then
1) at each t, N̂t ⊆ Nt ⊆ Nt+1 and so |∆e,t| = 0
2) at each t, ‖xt − x̂t,CSres‖2 ≤ B∗
3) Pr(Ej |Fj) ≥ 1− ε where Fj := {N̂t = Nt for t = tj − 1} and Ej := {N̂t = Nt, ∀ t ∈ [tj + τdet(ε, S), tj+1 − 1]}.

The initialization assumption is made only for simplicity. It can be easily satisfied by using n0 > n to be large enough. Next
we give another lemma, lemma. 2 which states that if the true support set does not change after a certain time, tnc, and if it
gets correctly detected by a certain time, t∗ ≥ tnc, then KF-CS converges to the genie-KF in mean-square and hence also in
probability.

B. Proof of Lemma 1
With ||w||2 < ξ , from [][Theorem 1.2, Restricted Isometry Property :Candes], if a signal is S-sparse and if S ≤ S∗∗, then,

the error after running the BPDN selector is bounded by B∗.
We will prove the first two claims of lemma 1 by induction method. Consider the base case, when t = 0. The first assumption

says that at t = 0 , all elements of x0 get correctly detected and there is no false detect. So N̂0 = N0. As in signal model
there is no support deletion, only addition process occurs, N0 ⊆ N1 , so N̂0 ⊆ N1 and |∆e,t| = 0 . From the claim 2,
Smax ≤ S∗∗ , ‖w‖2 ≤ ξ and from claim 3, αdel = 0, α2 = B∗ . So from [, Theorem 1.2, Restricted Isometry Property,
Candes] ‖xt − x̂t,CSres‖2 ≤ B∗. So the first two claims are proved for t = 0 .

Now suppose the first two claims are proved for t = t − 1 . Using the first claim for t − 1 , |∆e,t−1| = 0 . Thus βt is
|Nt∪∆e,t−1| = |Nt| sparse. Since |Nt| ≤ Smax and condition 2 holds, we can apply theorem [, Theorem 1.2, Restricted Isometry
Property :Candes] to get ‖βt−β̂t‖2 ≤ B∗. But xt−x̂t,CSres = βt−β̂t and so the second claim follows for t. By setting α =

√
B∗

(condition 3), we ensure that for any index i with (xt)i = 0, (x̂t,CSres)
2
i = ((xt)i−(x̂t,CSres)i)

2 ≤ ‖xt−x̂t,CSres‖2 ≤ B∗ = α2

(no false detects). Using this and Sr = 0, the first claim follows for t. For the third claim, it is easy to see that for any i ∈ ∆,
if, at t, (x̂t)

2
i > α then i will definitely get detected. Now (xt)

2
i = ((xt)i − (x̂t)i)

2 + (x̂t)
2
i + 2((xt)i − (x̂t)i)(x̂t)i . So

if (xt)
2
i > 2α2 + 2B∗ = 4B∗, then i will get detected at t. Consider a t ∈ [tj , tj+1 − 1]. Since Fj holds, so at t = tj ,

∆ = A(j). Also, since αdel = 0, there cannot be false deletions and thus for any t ∈ [tj , tj+1 − 1], |∆| ≤ Sa. Consider
the worst case: no coefficient has got detected until t, i.e. ∆t = A(j) and so |∆t| = Sa. All i ∈ A(j) will definitely get
detected at t if (xt)

2
i > 4B∗ for all i ∈ A(j). From our model, the different coefficients are independent, and for any i ∈ A(j),

(xt)i ∼ N (0, (t− tj)σ2
sys). Thus,

Pr((xt)
2
i > 4B∗, ∀i ∈ A(j) | Fj)

=

(
2Q

(√
4B∗

(t− tj)σ2
sys

))Sa
(2)



Using the first claim, Pr(N̂t = Nt | Fj) is equal to this. Thus for t = tj + τdet(ε, Sa), Pr(N̂t = Nt | Fj) ≥ 1 − ε. Since
there are no false detects; no deletions and no new additions until tj+1, N̂t = Nt for t = tj + τdet implies that Ej occurs. This
proves the third claim.

C. Lemma 2
Lemma 2: Assume that xt follows Signal Model ??; δSmax

< 1; and αdel = 0. Define the event Df := {N̂t = Nt =
N∗, ∀ t ∈ [t∗, t∗∗]}. For a given ε, εerr, there exists a τKF (ε, εerr, N∗) s.t. for all t ∈ [t∗ + τKF , t∗∗], Pr(‖difft‖2 ≤
εerr | Df ) > 1− ε. Clearly if t∗∗ < t∗ + τKF , this is an empty interval.

The proof is similar to what we think should be a standard result for a KF with wrong initial conditions (here, KF-CS
with t = t∗ as the initial time) to converge to a KF with correct initial conditions (here, genie-KF) in mean square. A similar
(actually stronger) result is proved for the continuous time KF in [?]. We could not find an appropriate citation for the discrete
time KF and hence we just give our proof in Appendix III-D. After review, this can be significantly shortened. The proof
involves two parts. First, we use the results from [?] and [?] to show that (a) P ‡t|t−1, P

‡
t ,K

‡
t and Jt := I −K‡tAN∗ , where

P ‡t|t−1 = (Pt|t−1)N∗,N∗ , P
‡
t = (Pt)N∗,N∗ ,K

‡
t = (Kt)N∗,[1:m], converge to steady state values which are the same as those for

the corresponding genie-KF; and (b) the steady state value of Jt, denoted J∗, has spectral radius less than 1 and because of
this, there exists a matrix norm, denoted ‖.‖ρ, s.t. ‖J∗‖ρ < 1. Second, we use (a) and (b) to show that the difference in the
KF-CS and genie-KF estimates, difft, converges to zero in mean square, and hence also in probability (by Markov’s inequality).

D. Proof of Lemma 2
Let x̂t,GAKF denote the genie-aided KF (GA-KF) estimate at t.
Assume that the event Df occurs. Then, for t ∈ [t∗, t∗∗], N̂t = Nt = N∗, i.e. ∆t := Nt \ N̂t−1 = N∗ \N∗ = φ (empty set)

and so x̂t = x̂t,init. Let et , xt − x̂t and ẽt , xt − x̂t,GAKF .
For simplicity of notation we assume in this proof that all variables and parameters are only along N∗, i.e. we let

x̂t ≡ (x̂t)N∗ , et ≡ (et)N∗ , νt ≡ (νt)N∗ , Pt|t−1 ≡ (Pt|t−1)N∗,N∗ , Kt ≡ (Kt)N∗,[1:n]. Let Jt , I − KtAN∗ . Similarly
for x̂t,GAKF , ẽt, P̃t|t−1, K̃t, J̃t. Here P̃t|t−1, K̃t, J̃t are the corresponding matrices for GA-KF.

From (??), for t ∈ [t∗, t∗∗], et, ẽt and difft = et − ẽt satisfy

et = Jtet−1 + Jtνt −Ktwt

ẽt = J̃tẽt−1 + J̃tνt − K̃twt

difft = Jtdifft−1 + (Jt − J̃t)(ẽt−1 + νt) + (K̃t −Kt)wt

(3)

Now we will model our system with the notation used to introduce our problem . The noisy state space model for the kalman
Filter is

xt = xt−1 + νt

yt = Axt + wt (4)

where F ≡ I,G ≡ I, E[νtν
∗
t ] = Q,E[wtw

∗
t ] = R. Here F , G are used in appendix ?? . The state-noise in appendix ??

is denoted as ν to be consistent with our problem formulation. For t > t∗ both KF-CS and GA-KF run the same fixed
dimensional and fixed parameter KF for (xt)N∗ with parameters F ≡ I, Q ≡ (σ2

sysIN∗)N∗,N∗ , A ≡ AN∗ , R ≡ σ2
obsI , but

with different initial conditions. KF-CS uses x̂t∗ , Pt∗+1|t∗ 6= E[et∗+1e
′
t∗+1|y1 . . . yt∗ ] while GA-KF uses the correct initial

conditions, x̂t∗,GAKF , P̃t∗+1|t∗ = E[ẽt∗+1ẽ
′
t∗+1|y1, . . . yt∗ ] Since |N∗| ≤ Smax and δSmax

< 1, A ≡ AN∗ is full rank.We can
rewrite the equ. 32 in the following form

xt = xt−1 +Q1/2ηt

yt = AN∗xt + wt (5)

where ηt is the admissible Gaussian input of unit variance , and wt is the noise of variance R. Here we define G = Q1/2.
G is again from appendix ??. Before we discuss about the solutions of the Discrete Algebraic Riccati equation we will show
how the Riccati equation comes into the picture for our particular Kalman Filter. We observed that

Pt+1|t

= Pt +Q

= (I −KtAN∗)Pt|t−1 +Q

= Pt|t−1 +Q−KtAN∗Pt|t−1

= Pt|t−1 +Q− Pt|t−1A′N∗
(AN∗Pt|t−1A

′
N∗

+R)−1AN∗Pt|t−1

(6)
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So that is how we got our Riccati equation. Now the observability matrix is [AN∗ AN∗I AN∗I
2 . . . AN∗I

n∗−1]′

, where n∗ is the dimension of N∗ . As AN∗ is a matrix of full rank , so our observability matrix must have column rank
and so row rank n∗ . Thus (I, AN∗) is observable. Similarily our controllability matrix [Q1/2 IQ1/2 ...In∗−1Q1/2] is also
of full rank as Q1/2 matrix is full rank. So (I,Q1/2) is controllable. Thus, according to Lemma ??,starting from any initial
condition, Pt+1|t will converge to a positive semi-definite, P∗, which is the unique solution of the discrete algebraic Riccati
equation

Pt+1|t = Pt|t−1 +Q− Pt−1|tA′N∗
[AN∗Pt|t−1A

′
N∗

+R]−1

AN∗Pt|t−1

(7)

Consequently Kt and Jt will also converge to K∗ , P∗AN∗
′(AN∗P∗AN∗

′ + σ2
obsI)−1 and J∗ , I −K∗AN∗ respectively.

For t > t∗, the GA-KF also runs the same KF. Thus, P̃t|t−1, K̃t, J̃t will also converge to P∗, K∗, J∗ respectively.

We define J∗ = I − K∗AN∗ . As the system is controllable and observable we see that the Algebraic Riccati equation
has a positive semi-deifinte solution and the matrix I − K∗AN∗ is stable using Theorem ??. That means as J∗ is stable,
i.e. its spectral radius ρ = ρ(J∗) < 1. Let ε0 = (1 − ρ)/2. By Lemma ??, there exists a matrix norm, denoted ‖.‖ρ, s.t.
‖J∗‖ρ ≤ ρ+ ε0 = (1 + ρ)/2 < 1.

Consider any ε1 < (1 − ρ)/4. Depending upon the value of ε1 we assume that there exists a tε1 s.t. for all t ≥ tε1 ,
‖Kt − K̃t‖ < ε1, ‖Jt − J̃t‖ < ε1 and ‖Jt‖ρ < ‖J∗‖ρ + ε1 < (1 + ρ)/2 + (1 − ρ)/4 = (3 + ρ)/4 < 1. Let name this delay
tε1 − t∗ as τ1, which depends on ε1, N∗ . So we can say that for any t ∈ [t∗+ τ1, t∗∗] all the above inequalities hold . Now, the
last set of undetected elements of N∗ are detected at t∗. Thus at t∗, KF-CS computes a final LS estimate, i.e. x̂t∗ = AN∗

†yt∗ ,
Pt∗ = (A′N∗

AN∗)−1σ2
obs, Kt∗ = (A′N∗

AN∗)−1A′N∗
and Jt∗ = 0 None of these depend on y1 . . . yt∗−1 and hence the future

values of x̂t or of Pt, Jt,Kt etc also do not. Hence tε1 also does not.

Since P̃t|t−1 → P∗, P̃t|t−1 is bounded. Since P̃t = (I − KtAN∗)P̃t|t−1 ≤ P̃t|t−1, P̃t is also bounded, i.e. there exists a
B <∞ s.t. tr(P̃t) < B, ∀t ∈ [t∗, t∗∗].

Now as the event Df occurs in the interval t ∈ [t∗, t∗∗], the error E[ẽtẽ
′
t|y1 . . . yt] = E[ẽtẽ

′
t|y1 . . . yt, Df ]. Since

E[ẽtẽ
′
t|y1 . . . yt] = P̃t = E[ẽtẽ

′
t] (8)

thus

E[‖ẽt‖2|Df ] = tr(P̃t) < B. (9)

Using (31), we get for all t ≥ tε1

difft
= Jtdifft−1 + (Jt − J̃t)(ẽt−1 + νt) +

(K̃t −Kt)wt

= Jt[Jt−1difft−2 + (Jt−1 − J̃t−1)(ẽt−2 +

νt−1) + (K̃t−1 −Kt−1)wt−1] + (Jt − J̃t)(ẽt−1 + νt) +

(K̃t −Kt)wt

= JtJt−1difft−2 + Iut + Jtut−1

= JtJt−1...Jt−(tε1+1)difft−tε1 + Iut + Jtut−1 +

JtJt−1ut−2 + ..(

t∏
k=tε1+1

Jk)utε1

(10)
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where ut = (Jt − J̃t)(ẽt−1 + νt) + (Kt − K̃t)wt Thus, using (31) and using Cauchy-Schwartz for all t ≥ tε1 , we get

E[‖difft‖2|Df ]1/2

≤ ‖Mt,tε1
‖ E[‖difftε1 ‖

2|Df ]1/2

+‖Lt,tε1‖ sup
tε1≤τ≤t

E[‖uτ‖2|Df ]1/2,

where

Mt,tε1
,

t∏
k=tε1+1

Jk,

Lt,tε1 , I + Jt + JtJt−1 + ..

t∏
k=tε1+1

Jk

(11)

Since neither tε1 , nor the matrices Jt or Kt for t > t∗, depend on y1, . . . yt∗ , we do not need to condition the expectation on
y1, . . . yt∗ .

Notice that
1) suptε1≤τ≤t E[‖uτ‖2|Df ]1/2 ≤ ε1(

√
B +

√
|N∗|σ2

sys +
√
nσ2

obs).

2) ‖Mt,tε1
‖ρ ≤

∏t
τ=tε1+1 ‖Jτ‖ρ < at−tε1 with a , (3 + ρ)/4 < 1. Thus ‖Mt,tε1

‖ ≤ cρ,2at−tε1 where cρ,2 is the smallest
real number satisfying ‖M‖ ≤ cρ,2‖M‖ρ, for all size |N∗| square matrices M (holds because of equivalence of norms).

3) ‖Lt,tε1‖ρ ≤ 1 + a+ . . . at−tε1 < 1
(1−a) .

Thus ‖Lt,tε1‖ ≤
cρ,2

(1−a) .
Combining the above facts, for all t ≥ tε1 ,

E[‖difft‖2|Df ]1/2 ≤ cρ,2at−tε1E[‖difftε1 ‖
2|Df ]1/2 + Cε1

(12)

where a := (3 + ρ)/4, C :=
cρ,2
1−a (
√
B +

√
|N∗|σ2

sys +
√
nσ2

obs) and E[‖difftε‖2|Df ]1/2 is bounded as it is finite. Notice that

a < 1. Consider an ε̃ = 2Cε1. It is easy to see that for all t ≥ tε̃/2C +
log(E[‖difftε̃/2C ‖

2|Df ]1/2)+log(2cρ,2)−log ε̃
log(1/a) ,

E[‖difft‖2|Df ]1/2 ≤ ε̃ (13)

Name this delay t− tε as τ2 , which depends on ε1, N∗. So we see that for any t ∈ [t∗ + τ1 + τ2, t∗∗] the mean-square error
is less than ε̃ .

From Markov’s inequality , we have for any t ∈ [t∗ + τ1 + τ2, t∗∗]

P (||difft|| > εerr|Df ) ≤ E[‖difft‖2|Df ]1/2

εerr

≤ ε̃

εerr

So we can say that P (||difft|| > εerr|Df ) ≤ ε where ε = ε̃
εerr

. Now we see that both τ1 and τ2 depends on ε1, N∗. Hence
they will depend on ε,εerr and N∗. So for a given ε and a given εerr there exists a τKF (ε, εerr, N∗) > τ1 + τ2 s.t. for all
t ≥ t∗ + τKF (ε, εerr, N∗), Pr(‖difft‖2 < εerr | Df ) ≥ (1− ε).

E. Theorem 1
The stability result then follows by applying Lemma 2 for each addition time, tj .
Theorem 1 (KF-CS Stability): Assume that xt follows Signal Model ??. Let difft := x̂t − x̂t,GAKF where x̂t,GAKF is the

genie-aided KF estimate and x̂t is the KF-CS estimate. For a given ε, εerr, if the conditions of Lemma 1 hold, and if the delay
between addition times, d > τdet(ε, Sa) + τKF (ε, εerr, Ntj ), where τdet(., .) is defined in (29) in Lemma 1 and τKF (., ., .) in
Lemma 2, then

1) Pr(‖difft‖2 ≤ εerr) > (1 − ε), for all t ∈ [tj + τdet(ε, Sa) + τKF (ε, εerr, Ntj ), tj+1 − 1], for all j = 0, . . . (K − 1),and
for some ε > 0 .

2) Pr(|∆| ≤ Sa and |∆e| = 0, ∀ t) ≥ (1− ε)K for some ε > 0.
3) Pr(|∆| = 0 and |∆e| = 0, ∀ t ∈ [tj + τdet(ε, Sa), tj+1 − 1], ∀ j = 0, . . .K − 1) ≥ (1− ε)K for some ε > 0 .

The proof is given in Appendix III-F. A direct corollary is that after tK−1 KF-CS will converge to the genie-KF in probability.
This is because for t ≥ tK−1, Nt remains constant (tK =∞).
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F. Proof of Theorem 1
The events Ej and Fj are defined in Lemma 1. At the first addition time, t0 = 1, using the initialization condition,

N̂t0−1 = Nt0−1, i.e. F0 holds. Thus, by Lemma 1, Pr(E0) =
(

2Q
(√

4B∗
(τdet)σ2

sys

))Sa
> 1 − ε for some ε > 0 . Let denote

Pr(E0) = 1−ε+δ = 1−ε2 for some δ > 0 . Now Pr(E1) = Pr(E1∩E0)+Pr(E1∩Ec0) = Pr(E1|E0)Pr(E0)+Pr(E1∩Ec0)
. As we get from the Lemma 1, Pr(E1|E0) = Pr(E1|F1) = Pr(E0|F0) = Pr(E0) = 1− ε2 . Now to calculate Pr(E1 ∩Ec0)
we have to think that at time t ∈ [t0 + τdet, t1− 1] not every new indices are detected, but all those indices are detected within
the next detection time, i.e during the time interval t ∈ [t0 + τdet, t2 − 1] all those indices will be detected. And also the new
addition indices will be detected within the detection time t ∈ [t1 + τdet, t1 − 1] .

As every index detection is an independent process so we can conclude that Pr(E1|Ec0) =
(

2Q
(√

4B∗
(d+τdet)σ2

sys

))Sa
×(

2Q
(√

4B∗
(τdet)σ2

sys

))Sa
. Now as d + τdet > τdet so

(
2Q
(√

4B∗
(d+τdet)σ2

sys

))Sa
>
(

2Q
(√

4B∗
(τdet)σ2

sys

))Sa
. Then we have

Pr(E1 ∩ Ec0) = Pr(E1|Ec0)Pr(Ec0) > ε2(1− ε2)2 . Hence Pr(E1) > (1− ε2)2 + ε2(1− ε2)2 = 1− ε2 − ε22 + ε32 . As ε2 is
arbritarily small so we can neglect ε22 and ε32 .That means Pr(E1) > 1−ε2 > 1−ε . Now to prove the same for any time t = tj
we will use the induction method . Let for j−1 , Pr(Ej−1) > 1−ε . So again for some δ1 > 0 , Pr(Ej−1) = 1−ε+δ1 = 1−ε3
and Pr(Ej |Ej−1) = 1− ε2 from Lemma 1. Pr(Ej ∩Ecj−1) = Pr(Ej ∩Ecj−1 ∩Ej−2) +Pr(Ej ∩Ecj−1 ∩Ecj−2) = Pr(Ej ∩
Ecj−1|Ej−2)Pr(Ej−2) + Pr(Ej ∩Ecj−1 ∩Ecj−2) = Pr(Ej |Ecj−1, Ej−2)Pr(Ecj−1|Ej−2)Pr(Ej−2) + Pr(Ej ∩Ecj−1 ∩Ecj−2)
. If we notice the first term we see that Pr(Ej |Ecj−1, Ej−2) = Pr(E1|Ec0) and Pr(Ecj−1|Ej−2) = ε3. We can simi-
larily try to split the second term Pr(Ej ∩ Ecj−1 ∩ Ecj−2) conditioned on the event Ej−3 and so on . Then we have
Pr(Ej) > (1 − ε3)(1 − ε2) + ε3(1 − ε2)2(1 − ε4)+ some positive term, where for some ε4 > 0 , Pr(Ej−2) = 1 − ε4 .
As ε2, ε3 and ε4 are arbitrarily small , so neglecting the higher order of ε2,ε3 and ε4 the above inequality get the following
simplified form : Pr(Ej) > 1− ε2 > 1− ε .

So we observe that Pr(Ej) > 1 − ε for some ε > 0 . The detection delay τdet depends on ε . Lemma 2 gives us
Pr(‖difft‖2 ≤ εerr|Df ) > 1 − ε′ for some ε′ > 0 and Df is the event which is denoted as Df := {N̂t = Nt = N∗, ∀ t ∈
[t∗, t∗∗]}. Assume that Ej occurs and apply Lemma 2 with t∗ = tj + τdet(ε, Sa) and t∗∗ = tj+1 − 1. From Lemma 2
we get Pr(||difft||2 ≤ εerr|Ej) ≥ (1 − ε′) . The kalman Filter delay τKF depends on ε′ and εerr . So combining these
two results we get Pr(||difft||2 ≤ εerr) ≥ Pr(||difft||2 ≤ εerr, Ej) ≥ (1 − ε)(1 − ε′) . Again neglecting the term εε′,
Pr(||difft||2 ≤ εerr) ≥ 1− ε− ε′ . Define ε′′ = ε+ ε′ . Then Pr(||difft||2 ≤ εerr) ≥ 1− ε′′ and also we notice that τdet and
τKF both depend on ε′′ . So the first claim is proved.

Clearly 1 Pr(Ej |E0, E1, . . . Ej−1) = Pr(Ej |Ej−1) = Pr(Ej |Fj). By Lemma 1, Pr(Ej |Fj) ≥ 1− ε. Combining this with
Pr(E0) ≥ 1 − ε, we get Pr(Ej ∩ Ej−1 ∩ · · · ∩ E0) = Pr(E0)Pr(E1|F1) . . . P r(Ej |Fj) ≥ (1 − ε)j+1. The second and the
third claim follow directly from the before-mentioned arguments.

1since Ej = {(xtj+τdet )
2
i > 4B∗, ∀i ∈ ∆tj+τdet} and the sequence of xt’s is a Markov process

5


