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1 Model

At each time t ≥ t0, we have

yt = Axt + wt

xt+1 = xt + νt+1

Here, E[wt] = 0, cov(wt) = E[wtw
′
t] = σ2

obsIn, iid and independent of xt; xt0 = x0 ∼
N (0, σ2

sys,0IN0); and νt ∼ N (0, σ2
sysINt) iid.

yt, wt ∈ Rn, A ∈ Rn×m, xt, νt ∈ Rm.

Time indices are discrete. Make the distinction between sampling times (used) and
continuous time (not used).

. . .

tj tj+1

tj − 1 tj + 1 tj + 2 tj+1 − 1 tj+1 + 1

d

At the addition times tj = t0 + jd for some t0, the support of xt changes: Nt = Ntj for
all t ∈ [tj : tj+1 − 1], and Ntj ⊂ Ntj+1

.
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2 Algorithm – KFCS with LS

This algorithm applies to the case where there are no support deletions.

Issues:

Pt0−1 and Qt – is this an identity of size |Nhat| or is it a full-blown identity
with nonzeros on the diagonals for Nhat?

Is this algorithm transcribed correctly? There are 3 versions of it that I have
(NV original, AB+NV typed draft, and AB handwritten) and all 3 are different.

Look for places to simplify – this is long and contains repeat steps, which is
non-ideal
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Input: σsys, σobs, σsys,0, A, {tj}, {Nt}, {yt}

x̂t0,init = arg minx ‖x‖1 subject to ‖yt0 − Ax‖2 < ξ

N̂t0 = {j : |(x̂t0,init)j| > α}
Pt0−1 = σ2

sys,0IN̂t0

Qt0 = 0
x̂t0−1 = 0

Pt0|t0−1 = Pt0−1 +Qt0

Kt0 = Pt0|t0−1A
′ (APt0|t0−1A

′ + σ2
obsI
)−1

Jt0 = I −Kt0A
Pt0 = Jt0Pt0|t0−1

x̂t0 = Jt0x̂t0−1 +Kt0yt0

for t > t0 do
Qt = σ2

sysIN̂t−1

Pt|t−1 = Pt−1 +Qt

Kt = Pt|t−1A
′ (APt|t−1A

′ + σ2
obsI
)−1

Jt = I −KtA
Pt = JtPt|t−1

x̂t,init = Jtx̂t−1 +Ktyt

yt,res = yt − Ax̂t,init

β̂t = arg minβ ‖β‖1 subject to ‖yt,res − Aβ‖2 < ξ

x̂t,CSres = x̂t,init + β̂t

∆A = {j : |(x̂t,CSres)j| > α}
N̂t = N̂t−1 ∪∆A

if ∆A = ∅ then
x̂t = x̂t,init

else
x̂t = 0
(x̂t)N̂t

= (A[1:n],N̂t
)†yt

Pt = 0m×m

(Pt)N̂t,N̂t
=
[
(A[1:n],N̂t

)′(A[1:n],N̂t
)
]−1

σ2
obsI|N̂t|

end

end
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3 Algorithm – Genie-Aided Kalman Filtering (GAKF)

This algorithm applies to the case where there are no support deletions.

Issues:

Check blue piece below – do we want all-ones, identity of size |DeltaA|, or
identity restricted to DeltaA and zero else?

Input: σsys, σobs, σsys,0, A, {tj}, {Nt}, {yt}

for t ≥ t0 do
if t = t0 then

T = N0

P̃t−1 = σ2
sys,0IT

x̃t−1 = 0

Q̃t = 0

else
T = Nt−1

Q̃t = σ2
sysIT

if t = tj for some j > 0 then
∆A = Nt \Nt−1(
P̃t−1

)
∆A,∆A

= σ2
sysI|∆A|

end

end

P̃t|t−1 = P̃t−1 + Q̃t

K̃t = P̃t|t−1A
′
(
AP̃t|t−1A

′ + σ2
obsI
)−1

J̃t = I − K̃tA

P̃t = J̃tP̃t|t−1

x̃t = J̃tx̃t−1 + K̃tyt
end
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4 Candes RIP – C1 Computation for α

We need to add this as a theorem or something – cite [1] Thm 1.3 and explicitly
give the value of C1 and the commentary below.

THEOREM / RESULT: [1], Theorem 1.3

Suppose y = Ax+ η, | supp(x)| = s, δ2s = δ2s(A) <
√

2− 1, and ‖η‖2 ≤ ξ. Then

x̂ = arg min
z
‖z‖1 subject to ‖y − Az‖2 ≤ ξ

satisfies
‖x− x̂‖2 ≤ C1(s)ξ,

where

C1(s) =
4
√

1 + δ2s

1− (1 +
√

2)δ2s

.

Claim / Note: It can be shown that C1 is an increasing function of δ2s, and δ2s is an
increasing function of s, so C1 is an increasing function of s.

For any support size S in this paper, we will have S ≤ Smax and thus C1(S) ≤ C1(Smax).
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5 Proofs

Lemma 1. Assume that {xt} and {yt} follow the signal model above, {t0, t0 + 1, t0 + 2, . . .}
is a discrete set of sampling times, only additions to true support (Nt ⊆ Nt+1 for all t), etc.

Further assume that

i) The true solution is exactly recovered at the initial time t0: x̂t0 = xt0, so N̂t0 = Nt0 =
N0; Can we relax this to just the true support is recovered?

ii) The maximum support size Smax satisfies Smax ≤ S∗∗ = max{s : δ2s(A) <
√

2− 1};

iii) The observation noise wt is bounded in magnitude: ‖wt‖ < ξ for all t and some ξ > 0;

iv) The addition thresholds αt satisfy αt = α = Cξ for all t, where

C = C(Smax) =
4
√

1 + δ2Smax

1−
(
1 +
√

2
)
δ2Smax

with δ2Smax = δ2Smax(A); and

v) The addition delay d satisfies d > τdet, where the detection delay τdet is defined by

τdet = τdet(α, ε) =


 2α

σsysQ−1
(

(1−ε)1/Sadd

2

)
2  .

Here, Q−1(x) is the inverse of the Gaussian Q-function, Q(x) =
∫∞
x

1√
2π
e−

t2

2 dt.

Then

1) ‖xt − x̂t,CSres‖2 ≤ α for all sampling times t;

2) there are no false support additions: N̂t ⊆ Nt for all sampling times t; and

3) Pr (Ej |Fj) ≥ 1 − ε, where Ej = {N̂t = Nt for all t ∈ [tj + τdet : tj+1 − 1]} and

Fj = {N̂tj−1 = Ntj−1}.
We may want to split claim 3 into its own piece because its proof relies
on the other 2 parts, which are proved separately with induction.

6



Proof. Need to find some way to get Candes Thm 1.3 in here and make the
connection that x̂t,CSres in our notation is x? in his. Also need to point out that
the way we chose α, we have any C1ξ ≤ C1(Smax)ξ = α.

To prove claims 1 and 2, we proceed by induction on the value of t.

Consider the base case, where t = t0. Claim 1 follows from Theorem 1.3 in [1] and
assumptions (ii), (iii), and (iv) (Not immediate – need to connect to Candes as
above), and assumption (i) trivially proves claim 2.

Suppose now that claims 1 and 2 are both true for some time (t− 1). We show that the
claims are true at time t.

First, we verify claim 1 at time t. Let TYPO HERE? yt → yt,res? Can probably
remove after getting algorithm typed up.

βt = xt − x̂t,init

β̂t = arg min
β
‖β‖1 subject to ‖yt,res − Aβ‖2 < ξ

x̂t,CSres = x̂t,init + β̂t,

where x̂t,init and yt,res are defined in the KFCS with LS algorithm and x̂t,init satisfies supp(x̂t,init) =

N̂t−1.

By the induction hypothesis, N̂t−1 ⊆ Nt−1, and by our model assumptions we have
Nt−1 ⊆ Nt. Therefore, supp(βt) ⊆ Nt ∪Nt−1 = Nt, so | supp(βt)| ≤ |Nt| ≤ Smax. With this,
we can apply Theorem 1.3 in [1] to see that ‖βt − β̂t‖2 ≤ α (AGAIN, need to make this
connection). By the definitions of βt and x̂t,CSres, we see that ‖βt − β̂t‖2 = ‖xt − x̂t,CSres‖2,
so claim 1 follows.

Next, we verify claim 2 at time t. Suppose that (xt)i = 0 for some index i, so that
i /∈ supp(xt) = Nt. Since Nt−1 ⊆ Nt, we must also have i /∈ Nt−1; by the induction
hypothesis, this implies that i /∈ N̂t−1.

Applying the result of claim 1,

|(x̂t,CSres)i| = |(xt − x̂t,CSres)i| ≤ ‖xt − x̂t,CSres‖2 ≤ α.

Referring to the algorithm, N̂t = N̂t−1 ∪ {j : |(x̂t,CSres)j| > α}. Since i /∈ N̂t−1 and

|(x̂t,CSres)i| ≤ α, it follows that i /∈ N̂t. Thus if i /∈ Nt, then i /∈ N̂t; equivalently, if

i ∈ N̂t, then i ∈ Nt. Therefore, N̂t ⊆ Nt, which proves claim 2 and completes our induction
proof.
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Now, we prove claim 3. Let ∆t = Nt \ N̂t−1 denote the set of indices of the true support
at time t which have not been detected before time t. Suppose that Fj holds, that is,

N̂tj−1 = Ntj−1.

Since Fj holds, ∆t ⊆ ∆add,tj for all t ∈ [tj : tj+1 − 1].

Let i ∈ ∆t for some t ∈ [tj : tj+1 − 1] and suppose that |(xt)i| > 2α. Applying the result
from claim 1,

0 ≤ |(xt − x̂t,CSres)i| ≤ ‖(xt − x̂t,CSres)‖2 ≤ α < 2α < |(xt)i|,

so that

|(x̂t,CSres)i| = |(xt)i − [(xt)i − (x̂t,CSres)i]|
≥
∣∣|(xt)i| − |(xt − x̂t,CSres)i|

∣∣
= |(xt)i| − |(xt − x̂t,CSres)i|
> 2α− α
= α.

We see that if |(xt)i| > 2α, then |(x̂t,CSres)i| > α, so i ∈ N̂t = N̂t−1 ∪ {j : |(x̂t,CSres)j| > α}.

If |(xt)i| > 2α for all i ∈ ∆add,tj , then ∆t ⊆ ∆add,tj ⊆ N̂t; in words, we will detect all

“missing” indices at time t, so N̂t = Nt.

From the above discussion, we see that the event {|(xt)i| > 2α for all i ∈ ∆add,tj} is
contained within the event {|(xt)i| > 2α for all i ∈ ∆t | Fj}, which in turn is contained

within the event {N̂t = Nt | Fj}.

All of the above is still kind of weak in places. It all makes sense in words
and is true, but the math / set theory is kind of wonky.

Our model asserts that the entries (xt)i of xt are independent and identically distributed
N
(
0, (t− tj)σ2

sys

)
random variables. With this in mind, we see that

Pr(N̂t = Nt | Fj) ≥ Pr (|(xt)i| > 2α for all i ∈ ∆t | Fj)
≥ Pr

(
|(xt)i| > 2α for all i ∈ ∆add,tj

)
= [Pr (|(xt)1| > 2α)]Sadd

=

[
2Q
(

2α

σsys
√
t− tj

)]Sadd

.
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We examine the particular case where t = tj + τdet. In this case,

Pr(N̂tj+τdet = Ntj+τdet | Fj) ≥

[
2Q

(
2α

σsys

√
(tj + τdet)− tj

)]Sadd

=

[
2Q
(

2α

σsys
√
τdet

)]Sadd

≥ 1− ε,

where the final inequality is easily verified and follows from the ceiling in the definition of
τdet and the fact that Q is a decreasing function.

If N̂t = Nt for t = tj + τdet, then the model assumptions of no support deletions and no

support additions until time tj+1, in addition to the result of claim 2, imply that N̂t = Nt

for all t ∈ [tj + τdet : tj+1 − 1], which is exactly the event Ej. Therefore, Pr(Ej | Fj) =

Pr(N̂tj+τdet = Ntj+τdet | Fj) ≥ 1− ε, which completes the proof.
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Lemma 2. Assume that {xt} and {yt} follow the signal model above, {t0, t0 + 1, t0 + 2, . . .}
is a discrete set of sampling times, only additions to true support (Nt ⊆ Nt+1 for all t), etc.

δSmax < 1, αdel = 0.

Define the event D = {N̂t = Nt = N∗ for all t ∈ [t∗ : t∗∗]}, where N∗ is some fixed index
set.

At each time t, let x̂t = x̂t,KFCS be the KFCS estimate of xt and let x̃t = x̂t,GAKF be the
GAKF estimate of xt.

Then given any ε and εerr there exists some τKF = τKF(ε, εerr, N∗) such that for all
t ∈ [t∗ + τKF : t∗∗], we have Pr

(
‖x̃t − x̂t‖2

2 ≤ εerr
∣∣D) > 1 − ε. Note that if t∗ + τKF > t∗∗,

then this interval is empty and the result is vacuously true.

Proof. Throughout, we assume that the event D occurs and t ∈ [t∗ : t∗∗], so that all vectors
are supported on N∗.

For simplicity of notation, we consider all variables and parameters only along the support
set N∗. Thus, νt = (νt)N∗ , A = A[1:n],N∗ , x̂t = (x̂t)N∗ , Kt = (Kt)N∗,[1:n], Pt|t−1 = (Pt|t−1)N∗,N∗ ,

Jt = (Jt)N∗,N∗ , and analogously for x̃t, K̃t, P̃t|t−1, and J̃t.

Let êt = xt − x̂t and ẽt = xt − x̃t. Define difft = êt − ẽt and notice that difft = x̃t − x̂t.

Let t > t∗. By the KFCS with LS algorithm and the model, we see that

êt = xt − x̂t
= (xt−1 + νt)− (Jtx̂t−1 +Ktyt)

= xt−1 + νt − Jtx̂t−1 −Kt(Axt + wt)

= xt−1 + νt − Jtx̂t−1 −KtA(xt−1 + νt)−Ktwt

= (I −KtA)xt−1 − Jtx̂t−1 + (I −KtA)νt −Ktwt

= Jt(xt−1 − x̂t−1) + Jtνt −Ktwt

= Jtêt−1 + Jtνt −Ktwt.

Similarly, using the GAKF algorithm and the model, we can verify that

ẽt = J̃tẽt−1 + J̃tνt − K̃twt.

Combining these results yields

difft = Jtdifft−1 + (Jt − J̃t)(ẽt−1 + νt) + (K̃ −Kt)wt.

[The next group of paragraphs in the writeup is heavy on exposition and can
definitely be shortened. The main point we need to make is that the result from
Hassibi’s book ensures that the matrices Pt|t−1, etc. converge – I don’t think we
really need to give a crash course on control theory here, since this is the only
place the results turn up.]
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