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KF-CS: Compressive Sensing on Kalman Filtered
Residual

A. Notation and Problem Definition

The set operations ∪, ∩, and \ have the usual meanings. T c denotes the complement of T w.r.t. [1,m] := [1, 2, . . .m], i.e.
T c := [1,m] \ T . |T | denotes the size (cardinality) of T .

For a vector, v, and a set, T , vT denotes the |T | length sub-vector containing the elements of v corresponding to the indices
in the set T . ‖v‖k denotes the `k norm of a vector v. If just ‖v‖ is used, it refers to ‖v‖2. For a matrix M , ‖M‖k denotes its
induced k-norm, while just ‖M‖ refers to ‖M‖2. M ′ denotes the transpose of M . For a tall matrix, M , M† := (M ′M)−1M ′.
For symmetric matrices, M1 ≤M2 means that M2−M1 is positive semidefinite. For a fat matrix A, AT denotes the sub-matrix
obtained by extracting the columns of A corresponding to the indices in T . The S-restricted isometry property (RIP) constant,
δS , and the S, S′-restricted orthogonality constant, θS,S′ , are as defined in equations 1.3 and 1.5 of [?] respectively.

For a square matrix, Q, we use (Q)T1,T2
to denote the sub-matrix of Q containing rows and columns corresponding to the

entries in T1 and T2 respectively. I denotes an appropriate sized identity matrix. The m×m matrix IT is defined as

(IT )T,T = I, (IT )T c,[1,m] = 0, (IT )[1,m],T c = 0 (1)

We use 0 to denote a vector or matrix of all zeros of appropriate size. The notation z ∼ N (µ,Σ) means that z is Gaussian
distributed with mean µ and covariance Σ.

Let (zt)m×1 denote the spatial signal at time t and (yt)n×1, with n < m, denote its noise-corrupted observation vector at
t, i.e. yt = Hzt +wt. The signal, zt, is sparse in a given sparsity basis (e.g. wavelet) with orthonormal basis matrix, Φm×m,
i.e. xt , Φ′zt is a sparse vector. We denote its support by Nt and we use St := |Nt| to denote its size. Thus the observation
model is

yt = Axt + wt, A , HΦ, E[wt] = 0, E[wtw
′
t] = σ2

obsI (2)

where E[·] denotes expectation. We assume that A has unit norm columns. The observation noise, wt, is independent identically
distributed (i.i.d.) over t and is independent of xt. Our goal is to recursively estimate xt (or equivalently the signal, zt = Φxt)
using y1, . . . yt. By recursively, we mean, use only yt and the estimate from t− 1, x̂t−1, to compute the estimate at t.

Definition 1 (Define S∗, S∗∗): For A := HΦ,
1) let S∗ denote the largest S for which δS < 1/2,
2) let S∗∗ denote the largest S for which δ2S <

√
2− 1.

Definition 2 (Define x̂t, N̂t): We use x̂t to denote the final estimate of xt at time t and N̂t to denote its support estimate.
Definition 3 (Define T , ∆, ∆e): We use T ≡ Tt := N̂t−1 to denote the support estimate from the previous time. This serves

as an initial estimate of the current support.We use ∆ ≡ ∆t := Nt \ Tt to denote the unknown part of the support at the
current time. We use ∆e ≡ ∆e,t := Tt \ Nt to denote the “erroneous” part of Tt. To keep notation simple, we remove the
subscript t in most places.

I. KALMAN FILTERED MODCS RESIDUAL

A. Signal Model

In this section we will describe a simple Random walk model. We call it as Signal Model 1. This model will help us to
understand the basic KF-ModCS algorithm in the next section. The complete signal model is described in the below :

Signal Model 1: t = t0 is the initial time instant.
1) At t = t0, x0 is S0 sparse with support N0 and (x0)N0 ∼ N (0, σ2

sys,0I). The condition for signal mean to be zero is
not a necessary condition for our algorithm.

2) At time tadd,j = t0 + j ∗ d1, for some d1 > 0, there are Sa number of new additions to the support indices. Every
new addition index also follows a Gaussian distribution with zero mean and variance σ2

sys,0. We pick these new indices
randomly with uniform probability from the set [1,m] \Nt−1, where Nt−1 is the support of the signal at the previous
time instant. Denote the set of indices of the co-efficients added at tadd,j by ∆A,j .

3) At tdel,j = tadd,j + d2, for some d2 > 0 and for all j > 0, there are Sd number of new deletions from the support. We
pick these deletion indices randomly with uniform prbability from the set Nt−1. Denote the set of co-efficients detected
at tdel,j by ∆D,j .

4) The currently non-zero indices of xt, follows an independent Gaussian Random walk model with zero mean and variance
σ2
sys.



5) We limit the maximum size to support set as Smax. Similarily for minimum size, it is Smin.
The above model can be summarized as follows.

|Nt \Nt−1| =
{
Sa if t = tadd,j
0 otherwise

|Nt−1 \Nt| =
{
Sr if t = tdel,j
0 otherwise

x0 ∼ N (0,Π0), where Π0 = σ2
sys,0IN0

νt ∼ N (0,Πt), where Πt = σ2
sysINt

(xt)Nt = (xt−1)Nt + (νt)Nt

(xt)Nct = (νt)Nct = 0 (3)

Discussion 1: In some practical situation the support of the signal often changes very slowly. Keeping that in mind we can
set the values of d1 and d2 large. Another important thing about this particular signal model is that d1 and d2 are constant.
So between two successive additions, or between two successive deletions or between one addition and deletion the time
differences are always constant. But in practical situation these may not happen. So we can make those differences random
while we simulate our algorithm.

B. Giene-Aided Kalman Filter(Ga-KF)

In the Giene-Aided Kalman Filter we have the information about the support of the signal. so in presence of Gaussian Noise
Ga-KF will give us the optimal solution. That is why Ga-KF is our benchmark to compare with. We will often compare our
Kalman Filter Modified Compressed Sensing Result with the Ga-KF result. So before we go into the details of the Kf-ModCS
algorithm lets have a review of the Ga-KF algorithm. First we will give an elaborate description and then we will present the
algorithmic form of the algorithm.
In kalman filter decoding there are some parameters that need to be described first. One important parameter is Pt which is
the covariance of the signal xt updated at time t. Qt is the covariance matrix of the signal νt updated at time t. Suppose at
time t, the support of the signal is Nt and there is no addition or deletion at that time. Then it is a regular kalman filter. We
have some Pt−1, x̂t−1 estimate from the previous time instant. We can evaluate the Qt depending upon the variance of the νt
and the support set size |Nt|. From these data we calculate Pt|t−1, which is Pt|t−1 = Pt−1 + Qt. Once we have Pt|t−1 and
x̂t−1 we can use the following equations to get Pt, x̂t.

Kt = Pt|t−1A
′(APt|t−1A

′ + σ2
obsI)−1

Pt = (I −KtA)Pt|t−1

x̂t = (I −KtA)x̂t−1 +Ktyt (4)

Equations. (4) are the celebrated kalman filter equations which give the optimal solution. We will use these equations again
and again when there is addition or deletion or no support change. These equations will remain same. Only change is in the
pre-updates of Pt|t−1 and x̂t−1.
So first think of the starting of decoding process, i.e. at time t = t0. Initialize x̂t0−1 as all zero vector. At time t0 there are
|N0| number of indices addition with each index is a Gaussian random variable with mean 0 and variance σ2

sys,0. We can
incorporate this information either in Pt0−1 matrix or Qt0 matrix. In either case one of them would be all zero matrix. Lets
update the Pt0−1 matrix with that information beacuse Pt matrix is associated with the signal xt. Then Pt0−1 = σ2

sys,0IN0

and leave Qt0 as all-zero matrix because νt0 is all-zero. So Pt0|t0−1 = Pt0−1 + Qt0 . Now use the Equations. (4) to get Pt0
and x̂t0 .
Now consider the case when additions occur at time tadd,j . The new support set would be Tnew = Nt. And T = N̂t−1 = Nt−1,
∆A = Nt \Nt−1. Let Pt−1 and x̂t−1 are the covariance matrix and the input estimate from the previous time instant. At time
tadd,j actually two things are happening. The first one is that some new indices with mean 0 and variance σ2

sys,0 are added.
The second one is that each of the old indices would be added by a Gaussian random variable with mean 0 and variance σ2

sys.
The first phenomena is captured in the Pt−1 matrix and the second one is captured in the Qt matrix. The updates are :

(Pt−1)4A,4A = σ2
sys,0

Qt = σ2
sysIT

(x̂t−1)4A = 0

Pt|t−1 = Pt−1 +Qt

Now use Equations .(4) to get x̂t and Pt.
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The last scenario is when a deletion occurs. Support set at time t = tdel,j is Tnew = Nt. And T = N̂t−1 = Nt−1,
∆D = Nt−1 \Nt. Then the updates would be

(Pt−1)4D,[1,m] = 0

(Pt−1)[1,m],4D = 0

Qt = σ2
sysITnew

Pt|t−1 = Pt−1 +Qt

(x̂t−1)4D = 0

Finally use the Equations. (4) to get x̂t and Pt.
In the following we will try to present the above algorithm in a compressed and proper form :

GaKF-Algorithm 1:
1) Initialization at time t = t0

• Support = N0.
• Pt−1 = σ2

sys,0IN0
, Qt = 0, x̂t−1 = 0.

• Pt|t−1 = Pt−1 +Qt.
• Use Equations. (4) to get x̂t, Pt.

2) Decoding at time t > t0
for t = t0 + 1 : end
T = Nt−1

a) If t 6= tadd,j and t 6= tdel,j

• Qt = σ2
sysIT .

• Pt|t−1 = Pt−1 +Qt.
• Use Equations. (4) to get x̂t, Pt

b) If t = tadd,j

• ∆A = Nt \Nt−1,
• Qt = σ2

sysIT , (Pt−1)4A,4A = σ2
sys,0

• Pt|t−1 = Pt−1 +Qt,
• Use Equations. (4) to get x̂t, Pt

c) If t = tdel,j

• ∆D = Nt−1 \Nt, Tnew = Nt, Qt = σ2
sysITnew .

• (Pt−1)∆D,[1,m] = 0, (Pt−1)[1,m],∆D
= 0

• Pt|t−1 = Qt + Pt−1, (x̂t−1)∆D
= 0.

• Use Equations. (4) to get x̂t, Pt

C. Kalman Filtered Modified Compressive Sensing

Here in this section we will discuss about the kalman Filtered Modified Compressive Sensing, abbreviated as Kf-ModCS,
for the Signal Model 1. Estimate of addition set is denoted as ∆A = N̂t \ N̂t−1 whereas the estimate of deletion set is denoted
as ∆D = N̂t−1 \ N̂t. And by using T we are actually denoting N̂t−1 as mentioned in the notation. We will see the difference
between Ga-KF and Kf-ModCS is in the size of the support set of the signal. In Ga-KF we know the support but in Kf-ModCS
we have to estimate the support with the help of compressed sensing. After we get the support we will apply Kalman Filter
like we do in Ga-KF.
At time t = t0, we have yt, the measurement matrix A, the variance of signal co-efficients σ2

sys,0, noise variance σ2
obs. But

we do not have any information about Nt0 . So we can’t simply apply kalman filter on yt. For that atleast we have to estimate
the support set. Here compressive sensing will help us. Compressive sensing gives a reconstructed signal using the output and
measurement matrix. Here we use the normal BPDN to compute the CS reconstructed signal . The BPDN algorithm can be
described as

minx||x||1
s.t ||y −Ax||2 < ξ (5)

ξ depends on σ2
obs. Let the CS-reconstructed signal at time t0 is denoted as x̂t0,CSres and N̂t0 is the support estimate using

an addition threshold αt0,add. We will do lot of discussion of how to determine suitable addition threshold in the next section.
But for now let assume we already have the addition threshold. Once we get the support size we will do exactly the same
thing as we do for Ga-KF decoding. Create Pt−1, Qt, x̂t−1 in the same way as Ga-KF. Evaluate Pt and x̂t from there using
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Equations (4).
From the next time instance, as we don’t know the support addition time or deletion time, we depends on the Mod-CS
technique to find if there is any addition or deletion. Assume the support set estimated for ModCS at the previous time
instance is (Tmod)t−1. (Tmod)t−1 can be equal to T = N̂t−1 or it may be different from T . Estimation of (Tmod)t is similar
as T using a different threshold αt,mod. We will discuss the method of finding αt,mod in detail later in other section. Using T ,
σ2
sys first we will calculate Qtmp, which is Qtmp = σ2

sysIT . Then (Ptmp)t|t−1 = Pt−1 + Qtmp. Then compute x̂t,init using
Equations. (4). The residual of yt, ỹt,res is defined as ỹt,res = yt − Ax̂t,init. We will apply Mod-CS on ỹt,res according to
following equation :

minx||(x)T c ||1
s.t ||y −Ax||2 < ξ (6)

which will give us β̂t as output. x̂t,CSres = x̂t,init + β̂t is our reconstructed signal at time t. Now we try to find if there is
any addition in the support by applying the addition threshold αt,add on x̂t,CSres. We denote ∆A to be the set of new indices.
Then the new support set for the signal would be Tdet = T

⋃
∆A. Once we have Pt−1, T , Tdet, x̂t−1 we can easily apply

the kalman Filter technique as we do in Ga-KF. If ∆A is empty we have to apply normal kalman filter or if ∆A is non-empty
we have to apply kalman filter with addition. At the end of this operation we have x̂inter as our reonstructed signal. We have
the deletion threshold αt,del to check if there is any index to be deleted from the set Tdet. The method of finding the deletion
threshold would be discussed in detail in the later section. But for the time being we believe that there is some appropriate
threshold for deletion which determines which indices should be deleted and which should be kept in the support set. In this
way we will get another support set Tnew = Tdet \∆D, where ∆D is the set of indices deleted at time t. If ∆D is an empty
set then we don’t have to do anything and x̂t = x̂inter, Pt would be same as we get during the previuos step. But if ∆t is not
an empty set then we have to be little bit careful during the updating of Pt|t−1. If we see the previous operation we notice that
whether ∆A is empty or not, Pt|t−1 matrix has been updated. So that will be our starting point and we will directly update the
Pt|t−1 and x̂t−1 using ∆D. Then apply the usual kalman filter technique to get x̂t, Pt. The complete algorithm in compressed
form is given below :

Kf-ModCS Algorithm 1:
1) Initialization at time t = t0

• Apply CS on yt0 using equation (5) to get x̂t0,CSres
• Use αt0,add to get Support = N̂t0 .
• Pt−1 = σ2

sys,0IN̂t0
, Qt = 0, x̂t−1 = 0.

• Pt|t−1 = Pt−1 +Qt.
• Use Equations. (4) to get x̂, Pt.

2) Decoding at time t > t0
for t = t0 + 1 : end
• T = N̂t−1

• Qtmp = σ2
sysIT , (Ptmp)t|t−1 = Pt−1 +Qtmp

• Use Equations. (4) to get x̂t,init.
• ỹt,res = yt −Ax̂t,init.
• Apply ModCS on ỹt,res using T to get the output β̂t
• x̂t,CSres = x̂t,init + β̂t
• apply αt,add on x̂t,CSres to measure ∆A

• If ∆A is empty
– Tdet = T .
– Qt = σ2

sysIT .
– Pt|t−1 = Pt−1 +Qt.
– Use Equations. (4) to get x̂inter, Pt

• If ∆A is non-empty
– Tdet = T

⋃
∆A.

– Qt = σ2
sysIT , (Pt−1)4A,4A = σ2

sys,0

– Pt|t−1 = Pt−1 +Qt,
– Use Equations. (4) to get x̂inter, Pt

• Use αt,del on x̂inter to find ∆D from the support set
• If ∆D is empty

– Tnew = Tdet
– x̂t = x̂inter
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• If ∆D is non-empty
– Tnew = Tdet \∆D,
– (Pt|t−1)∆D,[1,m] = 0, (Pt|t−1)[1,m],∆D

= 0
– (x̂t−1)∆D

= 0.
– Use Equations. (4) to get x̂t, Pt

• N̂t = Tnew.

II. KF-MODCS ALGORITHM WITH MORE GENERAL SIGNAL MODEL

In the previous section we have described our Kf-ModCS algorithm with a simple random walk model where we know some
informations about the signal. In our decoding we use those informations like the signal variances of xt and νt. Although we
don’t use any other given information like the sparsity size or the sparsity change rate, the signal model is such that some
informations are implicit. Consider the following signal model equation

xt+1 = (1− λcor)xt + βcorνt+1 (7)

where λcor and βcor are correlation factors which determine how much the signal is corelated with itself over time. In our
signal model. 1 those factors are fixed at 0 and 1. And we use those informations during decoding. But in some practical
situation the scenario can be very bad when we don’t have any knowledge about λcor, βcor, σ2

sys,0, σ2
sys. For those cases our

algorithm should be robust enough to work efficiently. Before we move into the discussion about algorithm lets create a new
signal model.

Signal Model 2: Initial Time is denoted as t0.
1) At t = t0, x0 is S0 sparse with support N0 and (x0)N0

∼ N (0, σ2
sys,0I).

2) At each time t > t0, we calculate Nt and N c
t . We are associating a probability p01 to every indices of N c

t so that some
of the indices become non-zero from 0, and similarily associating a probability p10 to every indices of Nt so that some
indices of Nt become 0.

3) Denote the time indices for addition as tadd and for deletion as tdel.
4) Every new indices getting added at time t, follows a Gaussian Distribution of mean 0 and variance σ2

sys,0.
5) The currently non-zero indices of xt, follows the below update model :

xt = (1− λcor)xt−1 + βcorνt (8)

where (νt)Nt ∼ N (0, σ2
sysI).

A. Ga-KF with Signal Model 2

Ga-KF with Signal Model 2 will not be very much different from Signal Model 1. There are only little changes in the
equations of Kalman Filter. At time t = t0 the update of Pt−1, Qt, x̂t−1 would be exactly same as with Ga-KF with Signal
Model 1. For time t > t0 there are some changes in the updates. Let at time t > t0, the support set is Nt and we have Pt−1,
x̂t−1 from previous time instant. If there is no addition or deletion Ga-KF will follow the below equations :

x̂filter = (1− λcor)x̂t−1

Qt = σ2
sysINt

Pt|t−1 = (1− λcor)2Pt−1 + β2
corQt

After getting Pt|t−1 and x̂filter we can use the following equation to reconstruct x̂t.

Kt = Pt|t−1A
′(APt|t−1A

′ + σ2
obsI)−1

Pt = (I −KtA)Pt|t−1

x̂t = (I −KtA)x̂filter +Ktyt (9)

If there is addition of indices then the kalman filter equation would be :

x̂filter = (1− λcor)x̂t−1

Qt = σ2
sysINt

Pt|t−1 = (1− λcor)2Pt−1 + β2
corQt

(Pt|t−1)4A,4A = σ2
sys,0

Then use equ.(9) to get x̂t, Pt.
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Finally if there is deletion then we will start from Pt|t−1 and x̂filter and modify them according to the deletion set ∆D.

(Pt|t−1)4D,[1,m] = 0

(Pt|t−1)[1,m],4D = 0

(x̂filter)4D = 0

again use equ. (9) to get x̂t. The update equations for this signal model are essentially same as for signal model 1. We see one
difference for different correlation co-efficients. Another minor difference is that addition and deletion of indices can happen
at the same time instant here in signal model 2. So the algorithm can be written in the following form :

GaKF-Algorithm 2:
• Initialization at time t = t0

– Support = N0.
– Pt−1 = σ2

sys,0IN0
, Qt = 0, x̂t−1 = 0.

– Pt|t−1 = Pt−1 +Qt.
– Use Equations. (4) to get x̂t, Pt.

• Decoding at time t > t0
for t = t0 + 1 : end
T = Nt−1

– If t 6= tadd and t 6= tdel

∗ Qt = σ2
sysIT .

∗ Pt|t−1 = (1− λcor)2Pt−1 + β2
corQt.

∗ x̂filter = (1− λcor)x̂t−1

∗ Use Equations. (9) to get x̂t, Pt
– Else If t = tadd

∗ x̂filter = (1− λcor)x̂t−1

∗ Qt = σ2
sysINt

∗ Pt|t−1 = (1− λcor)2Pt−1 + β2
corQt

∗ (Pt|t−1)4A,4A = σ2
sys,0

∗ Use Equations. (9) to get x̂t, Pt
– If t = tdel

∗ (Pt|t−1)4D,[1,m] = 0
∗ (Pt|t−1)[1,m],4D = 0
∗ (x̂filter)4D = 0
∗ Use Equations. (9) to get x̂t, Pt

B. Kf-ModCS With Known Information

Kf-ModCS algorithm with information follows the Ga-KF algorithm in every step with the exception is that the support of
the signal is to be estimated in each time instant. Once we estimate the support set at time t we can atleast take a decision if
there is any addition or deletion or nothing. After that the kalman filter algorithm would be same as Ga-KF.

Kf-ModCS Algorithm 2:
• Initialization at time t = t0

– Apply CS on yt0 using equation (5) to get x̂t0,CSres
– Use αt0,add to get Support = N̂t0 .
– Pt−1 = σ2

sys,0IN̂t0
, Qt = 0, x̂t−1 = 0.

– Pt|t−1 = Pt−1 +Qt.
– Use Equations. (4) to get x̂t, Pt.

• Decoding at time t > t0
for t = t0 + 1 : end

– T = N̂t−1

– Qtmp = σ2
sysIT , (Ptmp)t|t−1 = (1− λcor)2Pt−1 + β2

corQtmp
– x̂tmp,filter = (1− λcor)x̂t−1

– Use Equations. (9) to get x̂t,init.
– ỹt,res = yt −Ax̂t,init.
– Apply ModCS on ỹt,res using T to get the output β̂t
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– x̂t,CSres = x̂t,init + β̂t
– apply αt,add on x̂t,CSres to measure ∆A

– If ∆A is empty
∗ Tdet = T .
∗ Qt = σ2

sysIT .
∗ Pt|t−1 = (1− λcor)2Pt−1 + β2

corQt.
∗ x̂filter = (1− λcor)x̂t−1

∗ Use Equations. (9) to get x̂inter, Pt
– If ∆A is non-empty
∗ Tdet = T

⋃
∆A.

∗ x̂filter = (1− λcor)x̂t−1

∗ Qt = σ2
sysIT

∗ Pt|t−1 = (1− λcor)2Pt−1 + β2
corQt

∗ (Pt|t−1)4A,4A = σ2
sys,0

∗ Use Equations. (9) to get x̂inter, Pt
– Use αt,del on x̂inter to find ∆D from the support set
– If ∆D is empty
∗ Tnew = Tdet
∗ x̂t = x̂inter

– If ∆D is non-empty
∗ Tnew = Tdet \∆D,
∗ (Pt|t−1)4D,[1,m] = 0
∗ (Pt|t−1)[1,m],4D = 0
∗ (x̂filter)4D = 0
∗ Use Equations. (9) to get x̂t, Pt

– N̂t = Tnew

In the above compressed form of the algorithm we use one variable x̂inter which is similar to variable of the same name
defined during Kf-ModCS algorithm 1.

C. Kf-ModCS without Information

When we don’t have any information about the signal model then task is more challenging. We have to estimate the signal
variance at each time instant to run the kalman filter. But for λcor and βcor we will assume them to be 0 and 1 respectively.
That means we are actually assuming the random walk model for Kf-ModCS decoding like we did in Signal Model 1.

1) Estimation of Variance and Mean of xt and νt: Estimates of Mean and Variance of xt and νt changes with time as we
use more and more data as the time progress. Hence with the change in time the estimation would be more perfect. Following
are the assumptions that we use during the estimation:

• Each of the new indices which are added to the support set of xt, at any time instant, follows an i.i.d random distribution
with some mean and variance.

• Each of the non-zero indices of νt is zero mean random variable with some variance. So for νt we don’t have to estimate
the mean.

We will rely mostly on the kalman filter output to estimate the mean and variance. But for some initial estimation we have to
use CS or ModCS output. As we have no data we have to start with CS or ModCS. The estimate from CS data will be used
in the same time instant, whereas the estimate from kalman data will be used in the next time instant.

• Estimation of Mean And Variance for xt : At time t = t0, x̂t0,CSres would be used to measure the mean and the
variance of x̂t0 . Let N̂t0 is the support estimated at time t0. Then

µt0,x =
1

|N̂t0 |
[Σi∈N̂t0

(x̂t0,CSres)i]

σ2
t0,x =

1

|N̂t0 |
[Σi∈N̂t0

(x̂t0,CSres)
2
i ]− (µt0,x)2 (10)

We will use these mean and variance in the kalman Filter update at time t = t0. Now say x̂t0 is the kalman-Filter output
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at the end of time instant t0. Then

µt0+1,x =
1

|N̂t0 |
[Σi∈N̂t0

(x̂t0)i]

σ2
t0+1,x =

1

|N̂t0 |
[Σi∈N̂t0

(x̂t0)2
i ]− (µt0+1,x)2 (11)

Although the above mean and the variance are calculated at the end of time t0 with support estimate N̂t0 they will be
used at t = t0 + 1 when there is any new addition.
Now lets see the situation at time t1 = t0 + 1. If ∆t1,A is the set of new indices added to the support set N̂t0 then the
equations can be written as :

µt0+2,x =
Σi∈N̂t0

(x̂t0)i + Σi∈∆t1,A
(x̂t0+1)i

|N̂t0 |+ |∆t1,A|

σ2
t0+2,x =

Σi∈N̂t0
(x̂t0)2

i + Σi∈∆t1,A
(x̂t0+1)2

i

|N̂t0 |+ |∆t1,A|
− µ2

t0+2,x

(12)

Then at the end of any time t = t0 + k, if set of new indices is denoted by ∆tj ,A for j = 1, 2, ..., k then the general
equation of mean and variance estimate can be written as :

µt0+k+1,x =
Σi∈N̂t0

(x̂t0)i + Σkj=1Σi∈∆tj ,A
(x̂t0+j)i

|N̂t0 |+ Σkj=1|∆tj ,A|

σ2
t0+k+1,x =

Σi∈N̂t0
(x̂t0)2

i + Σkj=1Σi∈∆tj ,A
(x̂t0+j)

2
i

|N̂t0 |+ Σkj=1|∆tj ,A|
−µ2

t0+k+1,x

(13)

• Estimation of Variance of νt : For νt we have to estimate only the variance, as we already assume that the mean is
zero. At time t = t0, ν̂t is all zero. So for t = t0 we don’t have to do anything for ν̂t.
But at time t = t0 + 1, we need to rely on Mod-CS for variance estimation. If we want to do the Initial kalman filter
estimation step before residual-ModCS we need to know the variance of ν̂t0+1. For that at the very begining we need to
apply Mod-CS on yt0+1, which implies that we have to apply ModCS twice at time t0 + 1. That will reduce the speed
of the operation. So we can skip the residual ModCS for t = t0 + 1 and simply apply ModCS on yt0+1, which gives us
x̂t0+1,CSres. Then

ν̂t0+1 = x̂t0+1,CSres − x̂t0
σ2
t0+1,ν =

1

|N̂t0 |

[
Σi∈N̂t0

{(x̂t0+1,CSres)i − (x̂t0)i}2
]

(14)

We will use this variance for the time instant t = t0 + 1 for different kalman filter operations. At the end of the time
instant t = t0 + 1, we will get

σ2
t0+2,ν =

1

|N̂t0 |

[
Σi∈N̂t0

{(x̂t0+1)i − (x̂t0)i}2
]

(15)

Notice that in the above we calculate over the old support set because the support set of ν̂t0+1 at time t0 + 1 is N̂t0 .
Once we get σ2

t0+2,ν we can do the temporary kalman filter operation at time t0 + 2 using this variance.
At the end of time interval t = t0 + 2, the estimation would be

σ2
t0+3,ν =

[
Σi∈N̂t0

{(x̂t0+1)i − (x̂t0)i}2
]

|N̂t0 |+ |N̂t0+1|

+

[
Σi∈N̂t0+1

{(x̂t0+2)i − (x̂t0+1)i}2
]

|N̂t0 |+ |N̂t0+1|
(16)
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Then the general equation for estimation at the end of time interval t = t0 + k + 1,

σ2
t0+k+2,ν =

Σkj=0

[
Σi∈N̂t0+j

{(x̂t0+j+1)i − (x̂t0+j)i}2
]

Σkj=0|N̂t0+j |
(17)

2) Threshold Seletion And simulation: As we analyse our algorithms we see that there are actually two different types of
thresholds calculation, one is addition threshold(αadd) and another is deletion threshold(αdel). To determine all these thresholds
first we will review the threshold determination techniques in the paper ”Time Invariant Error Bounds for Modied-CS
based Sparse Signal Sequence Recovery” by Jinchun Zhan and Namrata Vaswani. So we start with defining xmin,t as
xmin,t = minj∈Nt(|xt|) and x̂min,t = minj∈N̂t−1

(|x̂t|). We know that N̂t−1 is the support estimate at time t = t− 1 .
• αadd :

Addition Threshold Evaluation Method 1: We detect the additional indices by the following method, Let at time t, the
pre-estimated support size T = N̂t−1 and Mod-CS reconstructed output is x̂t,CSres. Then the set of additional indices is
defined as

∆A = {i ∈ [1,m] : |(x̂t,Csres)i| > αadd} \ T

In the above paper the authors have suggested that the αadd in the above equation would be the smallest number such
that, the minimum singular value of the sub-matrix AT∪∆A

is greater than a threshold value. We denote singular value
by ϑ, then the condition is

ϑmin(AT∪∆A
) ≥ fixed value (18)

That fixed value could be any value greater than 0, which can be set depending upon the nature of the simulation.
The authors got the above condition by bounding the error between the actual signal and the ModCS-LS estimate. The
above condition will preserve the rank of the sub-matrix AT∪∆A

. And we are denoting αadd as the infimum of the absolute
value of the new indices.

αadd = infi∈∆A
|(x̂t,CSres)i| if ∆A non-empty

=∞ if ∆A empty (19)

• αadd
Addition Threshold Evaluation Method 2: Now we can slightly modify the above algorithm to make a more random
αadd selection. We bring back the subscript t for αadd. Here also we have to use the ModCS output for detecting the new
indices and calculation of addition threshold. At time t = t0, T = N̂t0−1 = Φ. Apply equ.(18) and equ.(19) to get ∆A

and αt,add. In the equ.(19) the fixed value is set to ϑlow > 0. Let Aj is the j-th column of A. At time t0, we set
ϑlow to a value such that ϑlow ≤ minj ||Aj || ∀j. Then N̂t0 = ∆A can not be an empty set. From the next time instant,
we will follow the below procedures :

1) T = N̂t−1

2) set a new variable ϑhigh such that ϑhigh > ϑlow.
3) Set αadd,tmp = αt−1,add.
4) Calculate ∆A,tmp.

∆A,tmp

= {i ∈ [1,m] : |(x̂t,CSres)i| > αadd,tmp} \ T

5) Tdet,tmp = T ∪∆A,tmp

6) if ϑlow ≤ ϑmin(ATdet,tmp) ≤ ϑhigh
– ∆A = ∆A,tmp

– Tdet = Tdet,tmp
– αt,add = αadd,tmp
– end

7) if ϑlow > ϑmin(ATdet,tmp)

– Get a new ∆A and αt,add using equ.(18) and equ.(19) with fixed value = ϑlow.
– end,

8) if ϑmin(ATdet) > ϑhigh
– Get a new ∆A and αt,add using equ.(18) and equ.(19) with fixed value = ϑhigh−δ, where δ is small positive

value.
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– end,

we can see that this way of estimating the addition threshold is more random.
• Motivation Behind the Method.2: In the first method we have only one parameter that is controlling the set of extra

indices, ∆A. That parameter is the minimum singular value of the submatrix, formed with the columns of A, indexed
by the total support set. Now let at time t = t0 we have set the fixed value to some small value ϑlow so that large
number of indices can be added to the support set N̂t0−1 = Φ. But after time t > t0, we increase the fixed value to a
larger value ϑhigh so that lesser number of indices would be added in the support. But if a situation occurs when number
of addition in the true signal support is large then we don’t have any reverse mechanism to go back to small fixed
value. Here we think our second threshold calculation method is better than previous one. Because in this algorithm
three paramters are actually controlling the ∆add. Two parameters are ϑlow, ϑhigh and the third one is αadd itself. So
two parameters are singular values and the third one is magnitude parameter. We get the initial αadd using ϑlow at time
t = t0. From the next time instant we are using that αadd for calculating ∆A. If the new Tdet created by αadd satisfies
the singular value condition of step.6 then we are keeping αadd same for the next time instant, which is fine because all
our conditions are maintained. If the minimum singular value ϑmin(ATdet) is less than ϑlow our algorithm starts to search
for a higher threshold and ∆A so that the lower bound on the minimum singular value is satisfied. The scenario would be
interesting again when ϑmin > ϑhigh. Which implies that our threshold is too high. Then this method will automatically
adjust the αadd to a lower value by executing the step.8. In that way both the magnitude parameter and the singular value
parameter are influencing each other to get the best estimate of ∆A. Another advantage of this algorithm lies in the fact
that it is faster than the previous one.

• αdel :
Deletion Threshold Evaluation Method 1: Deletion threshold detection is based on the fact that we don’t want to miss
any indices of the signal xt. So if we set αdel < xmin,t as our deletion threshold then no true index will be deleted
because the threshold is less than the minimum value of xt. But in that case we have to know the signal values correctly,
which is not possible. The best we can do is to estimate the minimum value x̂t−1, which is denoted as x̂min,t and then set
the threshold as αdel < x̂min,t. Now the question is how small αdel would be than x̂min,t. In our KF-ModCS decoding
we do the ModCS first, then we detect if any addition occurs or not. Depending on that we apply the kalamn filter based
on the new support size. We denote the output of the kalman filter as x̂inter and the new support set as Tdet in the earlier
section. We want to apply αdel on x̂inter to check deletion of indices. If

αdel = Inf [x̂min,t − ||(xt − x̂inter)Tdet ||∞] (20)

then we can avoid misses in the support. In the above mentioned paper the authors have introduced similar lower bound,

αdel = Inf
[
x̂min,t − ||(xt − x̂LSTdet)Tdet ||∞

]
(21)

where x̂LSTdet is the ADD-LS estimate at time t. They are applying deletion threshold on the Add-LS estimate. Our bound
equ.(20) is inspired from that bound. But there is a problem while evaluating the norm ||(xt − x̂inter)Tdet ||∞. Let us
denote the et as the error xt − x̂inter. Then

et = xt − x̂inter
= xt − [(I −KtA)x̂t−1 +Ktyt]

= xt − (I − ktA)x̂t−1 − kt(Axt + wt)

= (I −KtA)xt − (I −KtA)x̂t−1 −Ktwt

The problem with the last line of the equation is that we can’t simply write xt = xt−1 +νt because there may be addition
or deletion of indices, which makes the recursion formula very difficult to track. That is why we reject that bound. Hence
we will rely on a simple assumption. Let at time t, after we get our new support Tdet we evaluate x̂LSTdet = A†Tdetyt, where
A†Tdet is the pseduo-inverse of ATdet . Now we assume that ||xt− x̂inter|| ≈ ||xt− x̂LSTdet || which will make the calculation
a lot easier. We are applying this heuristic beacuse both x̂inter and x̂LSTdet are evaluated based on the support size Tdet
and with submatrix ATdet . Now if we follow the procedure of evaluation of the bound in the above paper [] we find that

||(xt − x̂LSTdet)Tdet ||∞ ≈ 0.3x̂min,t + ||A†(yt −Ax̂t,CSres)||∞
(22)

which gives us
αdel = Inf [0.7x̂t,min − |A†(yt −Ax̂t,CSres)||∞] (23)

• αdel
Deletion Threshold Evaluation Method 2: If we go back to equ.(20) ||xt − x̂inter|| can get replaced with similar norm
relation. x̂t,CSres is the ModCS output at time t. If we assume that we detect the extra indices correctly then we can
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write ||xt − x̂inter|| ≈ ||xt − x̂t,CSres|| from the stability analysis. From the paper [][Time Invariant Error Bounds for
Modied-CS based Sparse Signal Sequence Recovery], ||xt − x̂t,CSres||∞ ≤ C3x̂min,t, for some C3 < 1. Then,

αdel = (1− C3)x̂min,t (24)

3) Algorithm Revisited: As we described how to estimate the mean and variance or the addition and deletion threshold we
can introduce our algorithm in this section. First we define a new notation for a m-length vector V which is all-zero but 1 in
some indices. For a support set T , the vector is denoted as VT . That means :

VT = 1

VT c = 0

Let at time t = t0, we apply CS on the measurement yt0 and get the output x̂t0,CSres. Apply αt0,add to estimate the
support N̂t0 . Get the mean and variance of (x̂t0,CSres)N̂t0

which are denoted as µt0,x and σ2
t0,x respectively from the equ.(10).

Now update the Pt0−1 matrix as Pt0−1 = σ2
t0,xIN̂t0

. Leave the Qt0 matrix as all-zero one. But for x̂t0−1 now it would be
(x̂t0−1)N̂t0

= µt0,x. So the equations will be

Pt−1 = σ2
t0,xIN̂t0

Qt = 0

x̂t−1 = µt0,xVN̂t0
x̂filter = x̂t−1

Pt|t−1 = Pt−1 +Qt. (25)

After that we will use equation (9) to get x̂t0 and Pt0 . Use equ.(11) to get µt0+1,x and σ2
t0+1,x

At time t > t0, if t = t0 + 1, apply Mod-CS on yt to get a output x̂t,CSres. ν̂t = x̂t,CSres − x̂t−1. There is no initial kalman
filter operation at t = t0 + 1, and hence no residual mod-cs. Use equ.(14) to get the variance of ν̂t0+1 and use that variance
for updating Qt matrix.
At time t > t0 + 1, we use the residual mod-cs technique to improve our result. For that we have to run initial kalman filter
on the support size T = N̂t−1. The kalman filter output is used to evaluate ỹt,res and then we apply residual-ModCS on ỹt,res.
The output of this operation is x̂t,CSres same as for other Kf-ModCS algorithm. On x̂t,CSres we apply the αt,add to find new
addition.
Now we will show how Pt, Qt, x̂t are being updated. Let ∆A is the set of all indices added at time t. If ∆A is an empty set
then we will directly apply the normal kalman filter without addition or deletion with proper Pt|t−1, x̂t−1. The updates are
described in the below:

Qt = σ2
t,νIT

Pt|t−1 = Pt−1 +Qt

x̂filter = x̂t−1 (26)

Then use Equations. (9) to get x̂t. The output vector x̂t of the operation is denoted as x̂inter. On the other hand if ∆A is
non-empty the updates of Pt|t−1 and Qt are

Qt = σ2
t,νIT

Pt|t−1 = Pt−1 +Qt

(Pt|t−1)∆A,∆A
= σ2

t,x

x̂filter = x̂t−1

(x̂filter)∆A
= µt,x (27)

Apply Equations (9) with these Pt|t−1, x̂filter to get the output vector x̂inter.
For the deletion case again we will do the same as we do for other Kf-ModCS algorithm. We apply the deletion threshold
αt,del on x̂inter to find ∆D. Then start with Pt|t−1 and x̂filter and propely update them with ∆D. The update equations are

(Pt|t−1)4D,[1,m] = 0

(Pt|t−1)[1,m],4D = 0

(x̂filter)4D = 0 (28)

Apply Equations. (9) to get the x̂t. So in compressed form the algorithm would be :
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Kf-ModCS Algorithm 3:
• Initialization at time t = t0

– Apply CS on yt0 using equation (5) to get x̂t0,CSres
– Use αadd−Method 1 or Method 2 to get αt0,add.
– Use αt0,add to get Support = N̂t0 .
– Calculate µt0,x and σ2

t0,x using equ.(10)
– Use Equation. (25) to get x̂filter, Pt|t−1

– Use Equations. (9) to get x̂t0 , Pt.
– Calculate µt0+1,x and σ2

t0+1,x using equ.(13)
• Decoding at time t > t0

for t = t0 + 1 : end
1) T = N̂t−1

2) If t = t0 + 1

– Apply ModCS on yt using T to get x̂t,CSres
– ν̂t = x̂t,CSres − x̂t−1

– Use equ.(14) to get σ2
t,ν

3) else
– Qtmp = σ2

t,νIT , x̂tmp = x̂t−1

– (Ptmp)t|t−1 = Pt−1 +Qtmp
– Use Equations. (9) to get x̂t,init.
– ỹt,res = yt −Ax̂t,init.
– Apply ModCS on ỹt,res using T to get β̂t
– x̂t,CSres = x̂t,init + β̂t

4) Use αadd−Method 1 or Method 2 to get αt,add.
5) apply αt,add on x̂t,CSres to measure ∆A

6) If ∆A is empty
– Tdet = T .
– Use Equation. (26) to get x̂filter, Pt|t−1

– Use Equations. (9) to get x̂inter, Pt
7) If ∆A is non-empty

– Tdet = T ∪∆A.
– Use Equation. (27) to get x̂filter, Pt|t−1

– Use Equations. (9) to get x̂inter, Pt
8) Use αdel−Method 1 or Method 2 to get αt,del.
9) Apply αt,del on x̂inter to find ∆D from the support set Tdet

10) If ∆D is empty
– Tnew = Tdet
– x̂t = x̂inter

11) If ∆D is non-empty
– Tnew = Tdet \∆D,
– Use Equation. (28) to get x̂filter, Pt|t−1

– Use Equations. (9) to get x̂t, Pt
12) N̂t = Tnew
13) Use equ.(13) and equ.(17) to get µt+1,x, σ2

t+1,x, σ2
t+1,ν for the next time instant

III. KF-CS ERROR STABILITY

A. Kalman Filter Compressive Sensing

We will discuss the stability result for KF-CS algorithm. If we can prove the stability result for KF-CS that will also be
valid for KF-ModCS algorithm. So first we will present the simplest KF-CS algorithm with Signal Model 1. The algorithm
will be exactly similar as Kf-ModCS 1 with the exception of CS instead of ModCS.

Kf-CS Algorithm 1:
1) Initialization at time t = t0

• Apply CS on yt0 using equation (5) to get x̂t0,CSres
• Use αt0,add to get Support = N̂t0 .
• Pt−1 = σ2

sys,0IN̂t0
, Qt = 0, x̂t−1 = 0.
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• Pt|t−1 = Pt−1 +Qt.
• Use Equations. (4) to get x̂, Pt.

2) Decoding at time t > t0
for t = t0 + 1 : end
• T = N̂t−1

• Qtmp = σ2
sysIT , (Ptmp)t|t−1 = Pt−1 +Qtmp

• Use Equations. (4) to get x̂t,init.
• ỹt,res = yt −Ax̂t,init.
• Apply CS on ỹt,res using equ.(5) to get the output β̂t
• x̂t,CSres = x̂t,init + β̂t
• apply αt,add on x̂t,CSres to measure ∆A

• If ∆A is empty
– Tdet = T .
– Qt = σ2

sysIT .
– Pt|t−1 = Pt−1 +Qt.
– Use Equations. (4) to get x̂inter, Pt

• If ∆A is non-empty
– Tdet = T

⋃
∆A.

– Qt = σ2
sysIT , (Pt−1)4A,4A = σ2

sys,0

– Pt|t−1 = Pt−1 +Qt,
– Use Equations. (4) to get x̂inter, Pt

• Use αt,del on x̂inter to find ∆D from the support set
• If ∆D is empty

– Tnew = Tdet
– x̂t = x̂inter

• If ∆D is non-empty
– Tnew = Tdet \∆D,
– (Pt|t−1)∆D,[1,m] = 0, (Pt|t−1)[1,m],∆D

= 0
– (x̂t−1)∆D

= 0.
– Use Equations. (4) to get x̂t, Pt

• N̂t = Tnew.

B. Kalman Filter Compressive Sensing with Add-Del LS method

Analyzing the KF-CS algorithm of the previous section, which includes the deletion step, is difficult using the approach
that we outline below. Thus, in this section, we will first introduce a new algorithm with LS-initialization ,which we will call
KF-CS-LS. In this method after the support estimation using CS we can use the LS estimation process to get the new x̂t. The
complete algorithm is :

Kf-CS Algorithm 2:
1) Initialization at time t = t0

• Apply CS on yt0 using equation (5) to get x̂t0,CSres
• Use αt0,add to get Support = N̂t0 .
• Pt−1 = σ2

sys,0IN̂t0
, Qt = 0, x̂t−1 = 0.

• Pt|t−1 = Pt−1 +Qt.
• Use Equations. (4) to get x̂, Pt.

2) Decoding at time t > t0
for t = t0 + 1 : end
• T = N̂t−1

• Qtmp = σ2
sysIT , (Ptmp)t|t−1 = Pt−1 +Qtmp

• Use Equations. (4) to get x̂t,init.
• ỹt,res = yt −Ax̂t,init.
• Apply CS on ỹt,res using equ.(5) to get the output β̂t
• x̂t,CSres = x̂t,init + β̂t
• apply αt,add on x̂t,CSres to measure ∆A

• If ∆A is empty
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– Tdet = T .
– Qt = σ2

sysIT .
– Pt|t−1 = Pt−1 +Qt.
– Use Equations. (4) to get x̂inter, Pt

• If ∆A is non-empty
– Tdet = T

⋃
∆A.

– (x̂inter)Tdet = ATdet
†yt

– (x̂inter)T cdet = 0
– (Pt)Tdet,Tdet = (ATdet

′ATdet)
−1σ2

obs

– (Pt)T cdet,[1,m] = 0, (Pt)[1,m],T cdet
= 0

• Use αt,del on x̂inter to find ∆D from the support set
• If ∆D is empty

– Tnew = Tdet
– x̂t = x̂inter

• If ∆D is non-empty
– Tnew = Tdet \∆D,
– (x̂t)Tnew = ATnew

†yt
– (x̂t)T cnew = 0
– (Pt)Tnew,Tnew = (ATnew

′ATnew)−1σ2
obs

– (Pt)T cnew,[1,m] = 0, (Pt)[1,m],T cnew
= 0

• N̂t = Tnew.
Remark 1: Notice that the LS step re-initializes the KF whenever the estimated support changes. This ensures less dependence

of the current error on the past, and makes the stability analysis easier.
Remark 2: For ease of notation, in (??), we write the KF equations for the entire xt. But the algorithm actually runs

a reduced order KF for only (xt)T at time t, i.e. we actually have (x̂t)T c = 0, (Kt)T c,[1:n] = 0, (Pt|t−1)[1,m],T c = 0,
(Pt−1)[1,m],T c = 0, (Pt|t−1)T c,[1,m] = 0, and (Pt−1)T c,[1,m] = 0. For computational speedup, the reduced order KF should be
explicitly implemented.

Remark 3: The KF in KF-CS does not always run with correct model parameters. Thus, even when σ2
sys/σ

2
obs is small, it

is not clear if KF-CS will always outperform LS-CS [?]. This will hold at times when the support is accurately estimated and
the KF has stabilized

Again while analysing the stability of the KF-CS-LS method we assume that there is no deletion to make the analysis
simple. So here we will study the KF-CS without the deletion step, i.e. we set αdel = 0. KF-CS without deletion assumes that
there are few and bounded number of removals and false detects. For simplicity, in this work, we just assume Sr = 0 in Signal
Model 1 and we will select α so that there are zero false detects. Sr = 0 along with the assumption that the maximum sparsity
size is Smax implies that there are only a finite number of addition times, K, i.e. for all t ≥ t[add,K−1], Nt = Nt[add,K−1]

. We
summarize this in the following signal model.

Signal Model 3: Assume Signal Model 1 with Sr = 0. This implies that there are only a finite number of addition times,
tadd,j , j = 0, 1, . . . (K − 1) and K = dSmax−S0

Sa
e. Let tK :=∞.

From now on in the stability discussion, we will drop the subscript {add} and only use integer in the subscript. In this section,
we find sufficient conditions under which, with high probability (w.h.p.), KF-CS for Signal Model 3 and observation model
given by (2) gets to within a small error of the genie-KF for the same system, within a finite delay of the new addition time.
Since the genie-KF error is itself stable w.h.p., as long as δSmax

< 1, this also means that the KF-CS reconstruction error is
stable w.h.p.

Our approach involves two steps. Consider t ∈ [tj , tj+1). First, we find the conditions under which w.h.p. all elements of
the current support, Nt = Ntj get detected before the next addition time, tj+1. Denote the detection delay by τdet. If this
happens, then during [tj + τdet, tj+1), both KF-CS and genie-KF run the same fixed dimensional and fixed parameter KF, but
with different initial conditions. Next, we show that if this interval is large enough, then, w.h.p, KF-CS will stabilize to within
a small error of the genie-KF within a finite delay after tj + τdet. Combining these two results gives our stability result.

We are able to do the second step because, whenever N̂t 6= N̂t−1, the final LS step re-initializes the KF with Pt, x̂t given
by (??). This ensures that the KF-CS estimate, x̂t, and the Kalman gain, Kt, at t + 1 and future times depend on the past
observations only through T := N̂t. Thus, conditioned on the event {N̂t = Nt, ∀ t ∈ [tj + τdet, tj+1)}, there will be no
dependence of either x̂t or of Kt on observations before tj + τdet.

C. The Stability Result
We begin by stating Lemma 1 which shows two things. First, if accurate initialization is assumed, the noise is bounded,

Smax ≤ S∗∗, αdel = 0 and α is high enough, there are no false detections. If the delay between addition times also satisfies
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d > τdet(ε, Sa), where τdet is what we call the “high probability detection delay”, then the following holds. If before tj , the
support was perfectly estimated, then w.p. ≥ 1− ε, all the additions which occurred at tj will get detected by tj +τdet(ε, Sa) <
tj+1.

Lemma 1: Assume that xt follows Signal Model 3. If
1) (initialization (t = 0)) all elements of x0 get correctly detected and there are no false detects, i.e. N̂0 = N0,
2) (measurements) Smax ≤ S∗∗ and ‖w‖2 ≤ ξ,
3) (algorithm) we set αdel = 0 and α2 = B∗ := (C1ξ)

2, where C1 is defined in [][Restricted Isometry Property]
4) (signal model) delay between addition times, d > τdet(ε, Sa),

where τdet(ε, S) :=

⌈
4B∗

σ2
sys[Q−1( (1−ε)1/S

2 )]2

⌉
− 1,

(29)

d·e denotes the greatest integer function and Q(z) :=
∫∞
z

(1/
√

2π)e−x
2/2dx is the Gaussian Q-function,

then
1) at each t, N̂t ⊆ Nt ⊆ Nt+1 and so |∆e,t| = 0
2) at each t, ‖xt − x̂t,CSres‖2 ≤ B∗
3) Pr(Ej |Fj) ≥ 1− ε where Fj := {N̂t = Nt for t = tj − 1} and Ej := {N̂t = Nt, ∀ t ∈ [tj + τdet(ε, S), tj+1 − 1]}.
The proof is given in Appendix B. The initialization assumption is made only for simplicity. It can be easily satisfied by

using n0 > n to be large enough. Next we give another lemma, lemma. 2 which states that if the true support set does not
change after a certain time, tnc, and if it gets correctly detected by a certain time, t∗ ≥ tnc, then KF-CS converges to the
genie-KF in mean-square and hence also in probability.

Lemma 2: Assume that xt follows Signal Model 3; δSmax
< 1; and αdel = 0. Define the event Df := {N̂t = Nt = N∗, ∀ t ∈

[t∗, t∗∗]}. For a given ε, εerr, there exists a τKF (ε, εerr, N∗) s.t. for all t ∈ [t∗ + τKF , t∗∗], Pr(‖difft‖2 ≤ εerr | Df ) > 1− ε.
Clearly if t∗∗ < t∗ + τKF , this is an empty interval.

The proof is similar to what we think should be a standard result for a KF with wrong initial conditions (here, KF-CS
with t = t∗ as the initial time) to converge to a KF with correct initial conditions (here, genie-KF) in mean square. A
similar (actually stronger) result is proved for the continuous time KF in [?]. We could not find an appropriate citation for
the discrete time KF and hence we just give our proof in Appendix C. After review, this can be significantly shortened. The
proof involves two parts. First, we use the results from [?] and [?] to show that (a) P ‡t|t−1, P

‡
t ,K

‡
t and Jt := I −K‡tAN∗ ,

where P ‡t|t−1 = (Pt|t−1)N∗,N∗ , P
‡
t = (Pt)N∗,N∗ ,K

‡
t = (Kt)N∗,[1:m], converge to steady state values which are the same as

those for the corresponding genie-KF; and (b) the steady state value of Jt, denoted J∗, has spectral radius less than 1 and
because of this, there exists a matrix norm, denoted ‖.‖ρ, s.t. ‖J∗‖ρ < 1. Second, we use (a) and (b) to show that the difference
in the KF-CS and genie-KF estimates, difft, converges to zero in mean square, and hence also in probability (by Markov’s
inequality).

The stability result then follows by applying Lemma 2 for each addition time, tj .
Theorem 1 (KF-CS Stability): Assume that xt follows Signal Model 3. Let difft := x̂t − x̂t,GAKF where x̂t,GAKF is the

genie-aided KF estimate and x̂t is the KF-CS estimate. For a given ε, εerr, if the conditions of Lemma 1 hold, and if the delay
between addition times, d > τdet(ε, Sa) + τKF (ε, εerr, Ntj ), where τdet(., .) is defined in (29) in Lemma 1 and τKF (., ., .) in
Lemma 2, then

1) Pr(‖difft‖2 ≤ εerr) > (1 − ε), for all t ∈ [tj + τdet(ε, Sa) + τKF (ε, εerr, Ntj ), tj+1 − 1], for all j = 0, . . . (K − 1),and
for some ε > 0 .

2) Pr(|∆| ≤ Sa and |∆e| = 0, ∀ t) ≥ (1− ε)K for some ε > 0.
3) Pr(|∆| = 0 and |∆e| = 0, ∀ t ∈ [tj + τdet(ε, Sa), tj+1 − 1], ∀ j = 0, . . .K − 1) ≥ (1− ε)K for some ε > 0 .

The proof is given in Appendix D. A direct corollary is that after tK−1 KF-CS will converge to the genie-KF in probability.
This is because for t ≥ tK−1, Nt remains constant (tK =∞).

D. Discussion

Consider a t ∈ [tj , tj+1). Notice that τKF depends on the current support, Nt = Ntj while τdet depends only on the
number of additions at tj , Sa. Theorem 1 says that if n is large enough so that Smax ≤ S∗∗; αdel = 0 (ensures no deletions);
α =

√
B∗ (ensures no false detects); and if the time needed for the current KF to stabilize, τKF (ε, εerr, Ntj ), plus the high

probability detection delay, τdet(ε, Sa), is smaller than d, then w.p. ≥ (1− ε), KF-CS will stabilize to within a small error, εerr,
of the genie-KF before the next addition time, tj+1. If the current τKF is too large, this cannot be claimed. But as long as
τdet(ε, Sa) < d, the unknown support size, |∆| remains bounded by Sa, w.p. ≥ (1− ε)K .

We give our result for the case of zero removals and zero false detects, but the same idea will extend even if |∆e| is just
bounded.
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IV. SIMULATION

In this section we will discuss the simulation results to prove the stability result and then to demonstrate our algorithm with
addition and deletion for simulated data and for real images. The primary performance parameter that we used in all of our
experiments, is denoted as the normalized MSE, which is defined as

NMSE =
||x̂t − xt||2

||xt||2

Here we are getting NMSE for each value of time instant t. Another metric which we used occassionly, is the time-averaged
NMSE, which is defined as

TNMSE =
1

T

T∑
t=1

||x̂t − xt||2

||xt||2

A. Stability Result Simulation

B. Algorithm Demonstration

In this section we simulate out algorithm for the Signal Model 2. Unless otherwise noted, the following parameter settings
are used for all the experiments. When we use the addition threshold method 1 we set the fixed value to 0.6 for time
t = t0 and 0.7 for time t > t0. And when we use the addition threshold method 2 we set the ϑlow to 0.3 and ϑhigh to 0.8 for
time t > t0. For the deletion threshold if we use deletion threshold method 2 we use C3 = 0.5.

APPENDIX

A. Some Definitions and Useful Theorems
In this section we will discuss some useful definitions and theorems . But before we give those defintions let us define a

discrete-time linear time-invariant system. Typically a discrete-time linear time-invariant system is defined in the following
way , which is basically a state-space model. If xi, yi, ui denote the state , output and deterministic control input respectively
at time i then

xi+1 = Fxi +Gui

yi = Axi +Bui, i ≥ i0 (30)

where , xi0 = initial condition at time i0 , F,G,A,B have dimensions n× n, n× q, p× n, p× q , respectively. Likewise ui
is q × 1 and yi is p× 1 . The n-dimensional vector x is called the state of the system.

Controllability : Roughly the concept of controllability denotes the ability to move a system around in its entire configuration
space using only certain admissible inputs.So the controllable conditions are like when the input signal will be able to influence
or control the evolution of each individual entry of the state vector and hence the name controllable for the pair {F,G} [?][Linear
System Book, P.762]. The so-called controllability matrix C is defined as C = [G FG F 2G....Fn−1G]. If C matrix is of
full rank then the system is stated as controllable.

Observability : Observability is basically the dual of the controllability . It is a measure for how well the internal states of a sys-
tem can be inferred with the knowledge of its external outputs. Observability matrix is defined as© = [A′ F ′A′.....(F ′)n−1A′]′

. The system is stated as observable when the © matrix is of full rank [?][Linear System P.764]
Stabilizability : The eigenvalues of the matrix F are sometimes called the modes of the realization (F,G,A,B) .Let λ be

an eigenvalue of the matirx F . In the discrete-time case , a stable mode is one that satisfies |λ| < 1 . For the rest of the
eigenvalues of F the modes are called unstable modes. Now for any pair {F,G} , we classify the modes of F as controllable
or uncontrollable according to the following criterion.
Modes at which rank([λI − FG]) < n , are said to be uncontrollable. Otherwise , they are said to controllable . now a pair
{F,G} will be said to be stabilizable if all its unstable modes are controllable . That is , if all the modes at which the above
rank condition is satisfied are stable modes.[?][Linear System , P763]

Detectibility : F,A will be detectable if , and only if, all the unstable modes will be observable at the output of the
realization.[?][Linear System, p.764].

Now we will extend our noise-less model to a noisy-model and will define the controllability, observability criterion again
for this case. Typically the noisy Kalman-filter model is defined in the following way

xi+1 = Fxi +Gui

yi = Axi + wi, (31)

where ui is called the state-noise and wi is called the measurement noise.
And the variance of u is Q ,variance of w is R .
We also define the covariance between u and w is S. Typically in the kalman filter stability discussion we often assume that
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S = 0 .
Now again the controllability and observability criterions for the above kalman filter are as follows.
Controllability : Here the controllability matrix is again defined as C = [G FG F 2G....Fn−1G]. If C matrix is of full rank
then the system is stated as controllable. [?][Kalman Filter and Extended Kalman Filter , Maria Isabel Ribero , P 24]

Observability : Observability matrix is defined as© = [A′ F ′A′.....(F ′)n−1A′]′ . The system is stated as observable when
the © matrix is of full rank. [?][Kalman Filter and Extended Kalman Filter , Maria Isabel Ribero , P 24].

Now we will derive the algebraic Riccati equation for the kalman filter and will discuss the solution of that Riccati equation.
We will derive the Riccati equation when S = 0 . We observe that the update equations for the kalman filter are .
Prediction Steps : [?][[?][Kalman Filter and Extended Kalman Filter , Maria Isabel Ribero , P 21]

x̂i+1|i = Fx̂i|i

Pi+1|i = FPi|iF
′ +GQG′

And the Filter Steps: [?][Kalman Filter and Extended Kalman Filter , Maria Isabel Ribero , P 21]

x̂i|i = x̂i|i−1 +Ki[yi −Ax̂i|i−1]

Ki = Pi|i−1A
′[APi|i−1A

′ +R]−1

Pi|i = [I −KiA]Pi|i−1

If we combine the above two steps then we get the following equation

Pi+1|i = FPi|i−1F
′ +GQG′ − FKi[APi|i−1A

′ +R]K ′iF
′ (32)

which is basically the discrete Riccati recursive equation.
Now we will se that if the system satisfies some conditions then it will converge to a positive definite solution from any

initial condition. Sometimes we will use the word ”DARE” to denote Discrete Algebraic Riccati Equation.
Lemma 3: (Existence to the solutions to the DARE )[, Kalman Filter and Extended Kalman Filter , Maria Isabel Ribero ,

P 24]: Consider the system dynamics mentioned above and make the following assumptions that
• The matrix Q > 0
• The matrix R > 0.
• The pair {F,G} is controllable.
• The pair {F,A} is observable.

Under above conditions
• The prediction matrix Pi+1|i converges to a constant matrix P̃ which is positive semi-definite.
• P̃ is the unique positive semi-definite solution of the discrete algebraic Riccati equation mentioned above.
• P̃ is independent of the initial condition given the initial covariance matrix is positive semi-definite.
Theorem 2: (Algebraic Riccati Equation) [][Linear Estimation P.783] : Consider the discrete-time Algebraic Riccati Equation

P = FPF ′ +GQG′ − (FPA′)(R+APA′)−1(FPA′)′

Then the following two statements are equivalent.

• {F,A} is detectable and {F,GQ1/2} is controllable.
• The DARE has a stabilizing solution P, i.e, one for which the matrix F − KpA is stable , where Kp = (FPA′)(R +
APA′)−1

When all the eigenvalues of F −KpA lie inside the closed unit disc then we denote F −KpA as stable.
Spectral Radius: The spectral radius of a matrix A ∈ Mn, where Mn is the space of all n × n matrix, is defined as the

non-negative real number ρ(A) = max|λ| : λ ∈ σ(A) , where σ(A) is the collection of all eigenvalues of A . This is just the
radius of the smallest disc centered at the origin in the complex plane that includes all the eigen-values of A.[?][Horn and
Jhonson, P.35]

Lemma 4: ([, Horn and Jhonson P.297, Lemma 5.6.10]) : Let A is a square matrix of size n×n and ε > 0 be given . There
is a matrix norm || ∗ || such that ρ(A) ≤ ||A|| ≤ ρ(A) + ε .

B. Proof of Lemma 1
With ||w||2 < ξ , from [][Theorem 1.2, Restricted Isometry Property :Candes], if a signal is S-sparse and if S ≤ S∗∗, then,

the error after running the BPDN selector is bounded by B∗.
We will prove the first two claims of lemma 1 by induction method. Consider the base case, when t = 0. The first assumption

says that at t = 0 , all elements of x0 get correctly detected and there is no false detect. So N̂0 = N0. As in signal model
there is no support deletion, only addition process occurs, N0 ⊆ N1 , so N̂0 ⊆ N1 and |∆e,t| = 0 . From the claim 2,
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Smax ≤ S∗∗ , ‖w‖2 ≤ ξ and from claim 3, αdel = 0, α2 = B∗ . So from [, Theorem 1.2, Restricted Isometry Property,
Candes] ‖xt − x̂t,CSres‖2 ≤ B∗. So the first two claims are proved for t = 0 .

Now suppose the first two claims are proved for t = t − 1 . Using the first claim for t − 1 , |∆e,t−1| = 0 . Thus βt is
|Nt∪∆e,t−1| = |Nt| sparse. Since |Nt| ≤ Smax and condition 2 holds, we can apply theorem [, Theorem 1.2, Restricted Isometry
Property :Candes] to get ‖βt−β̂t‖2 ≤ B∗. But xt−x̂t,CSres = βt−β̂t and so the second claim follows for t. By setting α =

√
B∗

(condition 3), we ensure that for any index i with (xt)i = 0, (x̂t,CSres)
2
i = ((xt)i−(x̂t,CSres)i)

2 ≤ ‖xt−x̂t,CSres‖2 ≤ B∗ = α2

(no false detects). Using this and Sr = 0, the first claim follows for t. For the third claim, it is easy to see that for any i ∈ ∆,
if, at t, (x̂t)

2
i > α then i will definitely get detected. Now (xt)

2
i = ((xt)i − (x̂t)i)

2 + (x̂t)
2
i + 2((xt)i − (x̂t)i)(x̂t)i . So

if (xt)
2
i > 2α2 + 2B∗ = 4B∗, then i will get detected at t. Consider a t ∈ [tj , tj+1 − 1]. Since Fj holds, so at t = tj ,

∆ = A(j). Also, since αdel = 0, there cannot be false deletions and thus for any t ∈ [tj , tj+1 − 1], |∆| ≤ Sa. Consider
the worst case: no coefficient has got detected until t, i.e. ∆t = A(j) and so |∆t| = Sa. All i ∈ A(j) will definitely get
detected at t if (xt)

2
i > 4B∗ for all i ∈ A(j). From our model, the different coefficients are independent, and for any i ∈ A(j),

(xt)i ∼ N (0, (t− tj)σ2
sys). Thus,

Pr((xt)
2
i > 4B∗, ∀i ∈ A(j) | Fj)

=

(
2Q

(√
4B∗

(t− tj)σ2
sys

))Sa
(33)

Using the first claim, Pr(N̂t = Nt | Fj) is equal to this. Thus for t = tj + τdet(ε, Sa), Pr(N̂t = Nt | Fj) ≥ 1 − ε. Since
there are no false detects; no deletions and no new additions until tj+1, N̂t = Nt for t = tj + τdet implies that Ej occurs. This
proves the third claim.

C. Proof of Lemma 2

Let x̂t,GAKF denote the genie-aided KF (GA-KF) estimate at t.
Assume that the event Df occurs. Then, for t ∈ [t∗, t∗∗], N̂t = Nt = N∗, i.e. ∆t := Nt \ N̂t−1 = N∗ \N∗ = φ (empty set)

and so x̂t = x̂t,init. Let et , xt − x̂t and ẽt , xt − x̂t,GAKF .
For simplicity of notation we assume in this proof that all variables and parameters are only along N∗, i.e. we let

x̂t ≡ (x̂t)N∗ , et ≡ (et)N∗ , νt ≡ (νt)N∗ , Pt|t−1 ≡ (Pt|t−1)N∗,N∗ , Kt ≡ (Kt)N∗,[1:n]. Let Jt , I − KtAN∗ . Similarly
for x̂t,GAKF , ẽt, P̃t|t−1, K̃t, J̃t. Here P̃t|t−1, K̃t, J̃t are the corresponding matrices for GA-KF.

From (??), for t ∈ [t∗, t∗∗], et, ẽt and difft = et − ẽt satisfy

et = Jtet−1 + Jtνt −Ktwt

ẽt = J̃tẽt−1 + J̃tνt − K̃twt

difft = Jtdifft−1 + (Jt − J̃t)(ẽt−1 + νt) + (K̃t −Kt)wt

(34)

Now we will model our system with the notation used to introduce our problem . The noisy state space model for the kalman
Filter is

xt = xt−1 + νt

yt = Axt + wt (35)

where F ≡ I,G ≡ I, E[νtν
∗
t ] = Q,E[wtw

∗
t ] = R. Here F , G are used in appendix A . The state-noise in appendix A

is denoted as ν to be consistent with our problem formulation. For t > t∗ both KF-CS and GA-KF run the same fixed
dimensional and fixed parameter KF for (xt)N∗ with parameters F ≡ I, Q ≡ (σ2

sysIN∗)N∗,N∗ , A ≡ AN∗ , R ≡ σ2
obsI , but

with different initial conditions. KF-CS uses x̂t∗ , Pt∗+1|t∗ 6= E[et∗+1e
′
t∗+1|y1 . . . yt∗ ] while GA-KF uses the correct initial

conditions, x̂t∗,GAKF , P̃t∗+1|t∗ = E[ẽt∗+1ẽ
′
t∗+1|y1, . . . yt∗ ] Since |N∗| ≤ Smax and δSmax

< 1, A ≡ AN∗ is full rank.We can
rewrite the equ. 35 in the following form

xt = xt−1 +Q1/2ηt

yt = AN∗xt + wt (36)

where ηt is the admissible Gaussian input of unit variance , and wt is the noise of variance R. Here we define G = Q1/2.
G is again from appendix A. Before we discuss about the solutions of the Discrete Algebraic Riccati equation we will show
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how the Riccati equation comes into the picture for our particular Kalman Filter. We observed that

Pt+1|t

= Pt +Q

= (I −KtAN∗)Pt|t−1 +Q

= Pt|t−1 +Q−KtAN∗Pt|t−1

= Pt|t−1 +Q− Pt|t−1A
′
N∗(AN∗Pt|t−1A

′
N∗ +R)−1AN∗Pt|t−1

(37)

So that is how we got our Riccati equation. Now the observability matrix is [AN∗ AN∗I AN∗I
2 . . . AN∗I

n∗−1]′ ,
where n∗ is the dimension of N∗ . As AN∗ is a matrix of full rank , so our observability matrix must have column rank and so
row rank n∗ . Thus (I, AN∗) is observable. Similarily our controllability matrix [Q1/2 IQ1/2 ...In∗−1Q1/2] is also of full
rank as Q1/2 matrix is full rank. So (I,Q1/2) is controllable. Thus, according to Lemma 3,starting from any initial condition,
Pt+1|t will converge to a positive semi-definite, P∗, which is the unique solution of the discrete algebraic Riccati equation

Pt+1|t = Pt|t−1 +Q− Pt−1|tA
′
N∗ [AN∗Pt|t−1A

′
N∗ +R]−1

AN∗Pt|t−1

(38)

Consequently Kt and Jt will also converge to K∗ , P∗AN∗
′(AN∗P∗AN∗

′ + σ2
obsI)−1 and J∗ , I −K∗AN∗ respectively.

For t > t∗, the GA-KF also runs the same KF. Thus, P̃t|t−1, K̃t, J̃t will also converge to P∗, K∗, J∗ respectively.
We define J∗ = I − K∗AN∗ . As the system is controllable and observable we see that the Algebraic Riccati equation

has a positive semi-deifinte solution and the matrix I − K∗AN∗ is stable using Theorem 2. That means as J∗ is stable,
i.e. its spectral radius ρ = ρ(J∗) < 1. Let ε0 = (1 − ρ)/2. By Lemma 4, there exists a matrix norm, denoted ‖.‖ρ, s.t.
‖J∗‖ρ ≤ ρ+ ε0 = (1 + ρ)/2 < 1.

Consider any ε1 < (1 − ρ)/4. Depending upon the value of ε1 we assume that there exists a tε1 s.t. for all t ≥ tε1 ,
‖Kt − K̃t‖ < ε1, ‖Jt − J̃t‖ < ε1 and ‖Jt‖ρ < ‖J∗‖ρ + ε1 < (1 + ρ)/2 + (1 − ρ)/4 = (3 + ρ)/4 < 1. Let name this delay
tε1 − t∗ as τ1, which depends on ε1, N∗ . So we can say that for any t ∈ [t∗+ τ1, t∗∗] all the above inequalities hold . Now, the
last set of undetected elements of N∗ are detected at t∗. Thus at t∗, KF-CS computes a final LS estimate, i.e. x̂t∗ = AN∗

†yt∗ ,
Pt∗ = (A′N∗AN∗)

−1σ2
obs, Kt∗ = (A′N∗AN∗)

−1A′N∗ and Jt∗ = 0 None of these depend on y1 . . . yt∗−1 and hence the future
values of x̂t or of Pt, Jt,Kt etc also do not. Hence tε1 also does not.

Since P̃t|t−1 → P∗, P̃t|t−1 is bounded. Since P̃t = (I − KtAN∗)P̃t|t−1 ≤ P̃t|t−1, P̃t is also bounded, i.e. there exists a
B <∞ s.t. tr(P̃t) < B, ∀t ∈ [t∗, t∗∗].

Now as the event Df occurs in the interval t ∈ [t∗, t∗∗], the error E[ẽtẽ
′
t|y1 . . . yt] = E[ẽtẽ

′
t|y1 . . . yt, Df ]. Since

E[ẽtẽ
′
t|y1 . . . yt] = P̃t = E[ẽtẽ

′
t] (39)

thus

E[‖ẽt‖2|Df ] = tr(P̃t) < B. (40)

Using (34), we get for all t ≥ tε1

difft
= Jtdifft−1 + (Jt − J̃t)(ẽt−1 + νt) +

(K̃t −Kt)wt

= Jt[Jt−1difft−2 + (Jt−1 − J̃t−1)(ẽt−2 +

νt−1) + (K̃t−1 −Kt−1)wt−1] + (Jt − J̃t)(ẽt−1 + νt) +

(K̃t −Kt)wt

= JtJt−1difft−2 + Iut + Jtut−1

= JtJt−1...Jt−(tε1+1)difft−tε1 + Iut + Jtut−1 +

JtJt−1ut−2 + ..(

t∏
k=tε1+1

Jk)utε1

(41)
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where ut = (Jt − J̃t)(ẽt−1 + νt) + (Kt − K̃t)wt Thus, using (34) and using Cauchy-Schwartz for all t ≥ tε1 , we get

E[‖difft‖2|Df ]1/2

≤ ‖Mt,tε1
‖ E[‖difftε1 ‖

2|Df ]1/2

+‖Lt,tε1‖ sup
tε1≤τ≤t

E[‖uτ‖2|Df ]1/2,

where

Mt,tε1
,

t∏
k=tε1+1

Jk,

Lt,tε1 , I + Jt + JtJt−1 + ..

t∏
k=tε1+1

Jk

(42)

Since neither tε1 , nor the matrices Jt or Kt for t > t∗, depend on y1, . . . yt∗ , we do not need to condition the expectation on
y1, . . . yt∗ .

Notice that
1) suptε1≤τ≤t E[‖uτ‖2|Df ]1/2 ≤ ε1(

√
B +

√
|N∗|σ2

sys +
√
nσ2

obs).

2) ‖Mt,tε1
‖ρ ≤

∏t
τ=tε1+1 ‖Jτ‖ρ < at−tε1 with a , (3 + ρ)/4 < 1. Thus ‖Mt,tε1

‖ ≤ cρ,2at−tε1 where cρ,2 is the smallest
real number satisfying ‖M‖ ≤ cρ,2‖M‖ρ, for all size |N∗| square matrices M (holds because of equivalence of norms).

3) ‖Lt,tε1‖ρ ≤ 1 + a+ . . . at−tε1 < 1
(1−a) .

Thus ‖Lt,tε1‖ ≤
cρ,2

(1−a) .
Combining the above facts, for all t ≥ tε1 ,

E[‖difft‖2|Df ]1/2 ≤ cρ,2at−tε1E[‖difftε1 ‖
2|Df ]1/2 + Cε1

(43)

where a := (3 + ρ)/4, C :=
cρ,2
1−a (
√
B +

√
|N∗|σ2

sys +
√
nσ2

obs) and E[‖difftε‖2|Df ]1/2 is bounded as it is finite. Notice that

a < 1. Consider an ε̃ = 2Cε1. It is easy to see that for all t ≥ tε̃/2C +
log(E[‖difftε̃/2C ‖

2|Df ]1/2)+log(2cρ,2)−log ε̃

log(1/a) ,

E[‖difft‖2|Df ]1/2 ≤ ε̃ (44)

Name this delay t− tε as τ2 , which depends on ε1, N∗. So we see that for any t ∈ [t∗ + τ1 + τ2, t∗∗] the mean-square error
is less than ε̃ .

From Markov’s inequality , we have for any t ∈ [t∗ + τ1 + τ2, t∗∗]

P (||difft|| > εerr|Df ) ≤ E[‖difft‖2|Df ]1/2

εerr

≤ ε̃

εerr

So we can say that P (||difft|| > εerr|Df ) ≤ ε where ε = ε̃
εerr

. Now we see that both τ1 and τ2 depends on ε1, N∗. Hence
they will depend on ε,εerr and N∗. So for a given ε and a given εerr there exists a τKF (ε, εerr, N∗) > τ1 + τ2 s.t. for all
t ≥ t∗ + τKF (ε, εerr, N∗), Pr(‖difft‖2 < εerr | Df ) ≥ (1− ε).

D. Proof of Theorem 1
The events Ej and Fj are defined in Lemma 1. At the first addition time, t0 = 1, using the initialization condition,

N̂t0−1 = Nt0−1, i.e. F0 holds. Thus, by Lemma 1, Pr(E0) =
(

2Q
(√

4B∗
(τdet)σ2

sys

))Sa
> 1 − ε for some ε > 0 . Let denote

Pr(E0) = 1−ε+δ = 1−ε2 for some δ > 0 . Now Pr(E1) = Pr(E1∩E0)+Pr(E1∩Ec0) = Pr(E1|E0)Pr(E0)+Pr(E1∩Ec0)
. As we get from the Lemma 1, Pr(E1|E0) = Pr(E1|F1) = Pr(E0|F0) = Pr(E0) = 1− ε2 . Now to calculate Pr(E1 ∩Ec0)
we have to think that at time t ∈ [t0 + τdet, t1− 1] not every new indices are detected, but all those indices are detected within
the next detection time, i.e during the time interval t ∈ [t0 + τdet, t2 − 1] all those indices will be detected. And also the new
addition indices will be detected within the detection time t ∈ [t1 + τdet, t1 − 1] .

As every index detection is an independent process so we can conclude that Pr(E1|Ec0) =
(

2Q
(√

4B∗
(d+τdet)σ2

sys

))Sa
×
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(
2Q
(√

4B∗
(τdet)σ2

sys

))Sa
. Now as d + τdet > τdet so

(
2Q
(√

4B∗
(d+τdet)σ2

sys

))Sa
>
(

2Q
(√

4B∗
(τdet)σ2

sys

))Sa
. Then we have

Pr(E1 ∩ Ec0) = Pr(E1|Ec0)Pr(Ec0) > ε2(1− ε2)2 . Hence Pr(E1) > (1− ε2)2 + ε2(1− ε2)2 = 1− ε2 − ε22 + ε32 . As ε2 is
arbritarily small so we can neglect ε22 and ε32 .That means Pr(E1) > 1−ε2 > 1−ε . Now to prove the same for any time t = tj
we will use the induction method . Let for j−1 , Pr(Ej−1) > 1−ε . So again for some δ1 > 0 , Pr(Ej−1) = 1−ε+δ1 = 1−ε3
and Pr(Ej |Ej−1) = 1− ε2 from Lemma 1. Pr(Ej ∩Ecj−1) = Pr(Ej ∩Ecj−1 ∩Ej−2) +Pr(Ej ∩Ecj−1 ∩Ecj−2) = Pr(Ej ∩
Ecj−1|Ej−2)Pr(Ej−2) + Pr(Ej ∩Ecj−1 ∩Ecj−2) = Pr(Ej |Ecj−1, Ej−2)Pr(Ecj−1|Ej−2)Pr(Ej−2) + Pr(Ej ∩Ecj−1 ∩Ecj−2)
. If we notice the first term we see that Pr(Ej |Ecj−1, Ej−2) = Pr(E1|Ec0) and Pr(Ecj−1|Ej−2) = ε3. We can simi-
larily try to split the second term Pr(Ej ∩ Ecj−1 ∩ Ecj−2) conditioned on the event Ej−3 and so on . Then we have
Pr(Ej) > (1 − ε3)(1 − ε2) + ε3(1 − ε2)2(1 − ε4)+ some positive term, where for some ε4 > 0 , Pr(Ej−2) = 1 − ε4 .
As ε2, ε3 and ε4 are arbitrarily small , so neglecting the higher order of ε2,ε3 and ε4 the above inequality get the following
simplified form : Pr(Ej) > 1− ε2 > 1− ε .

So we observe that Pr(Ej) > 1 − ε for some ε > 0 . The detection delay τdet depends on ε . Lemma 2 gives us
Pr(‖difft‖2 ≤ εerr|Df ) > 1 − ε′ for some ε′ > 0 and Df is the event which is denoted as Df := {N̂t = Nt = N∗, ∀ t ∈
[t∗, t∗∗]}. Assume that Ej occurs and apply Lemma 2 with t∗ = tj + τdet(ε, Sa) and t∗∗ = tj+1 − 1. From Lemma 2
we get Pr(||difft||2 ≤ εerr|Ej) ≥ (1 − ε′) . The kalman Filter delay τKF depends on ε′ and εerr . So combining these
two results we get Pr(||difft||2 ≤ εerr) ≥ Pr(||difft||2 ≤ εerr, Ej) ≥ (1 − ε)(1 − ε′) . Again neglecting the term εε′,
Pr(||difft||2 ≤ εerr) ≥ 1− ε− ε′ . Define ε′′ = ε+ ε′ . Then Pr(||difft||2 ≤ εerr) ≥ 1− ε′′ and also we notice that τdet and
τKF both depend on ε′′ . So the first claim is proved.

Clearly 1 Pr(Ej |E0, E1, . . . Ej−1) = Pr(Ej |Ej−1) = Pr(Ej |Fj). By Lemma 1, Pr(Ej |Fj) ≥ 1− ε. Combining this with
Pr(E0) ≥ 1 − ε, we get Pr(Ej ∩ Ej−1 ∩ · · · ∩ E0) = Pr(E0)Pr(E1|F1) . . . P r(Ej |Fj) ≥ (1 − ε)j+1. The second and the
third claim follow directly from the before-mentioned arguments.

1since Ej = {(xtj+τdet )
2
i > 4B∗, ∀i ∈ ∆tj+τdet} and the sequence of xt’s is a Markov process
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