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1 Model

At each time t > ty, we have

Y = Az + wy
Tip1 = T + Vit Can we use ;7
Here, E[w;] = 0, cov(w;) = Elww}] = 02,I,, iid and independent of z;; x;, = xy ~

N(0, 02 01n,); and vy ~ N(0, 02, Iy,) iid.
Y, Wy € Rn’ Ae Rnxm’ Ty, Vy € R™,

Time indices are discrete. Make the distinction between sampling times (used) and
continuous time (not used).

41t +2 -1 | 41
t j+1

At the addition times t; = to + jd for some o, the support of z; changes: N; = Ny, for
all t € [tj : tj+1 — 1], and Nt]. C th+1.



2 Algorithm — KFCS with LS

This algorithm applies to the case where there are no support deletions.
Issues:

P,,—1 and Q; — is this an identity of size |Nhat| or is it a full-blown identity
with nonzeros on diagonal entries corresponding to Nhat

Is this algorithm transcribed correctly? There are 3 versions of it that I have
(NV original, AB+NV typed draft, and AB handwritten) and all 3 are different.

Look for places to simplify — this is long and contains repeat steps, which is
non-ideal



IHPUt: Osysy Oobsy Osys,05 Av {tj}7 {Nt}a {yt}

Tpymit = argmin, ||z||; subject to ||y, — Azl <&
Niy ={J :2|(jto7init)j| > a}
Pto—l = Usys,OINtO
Qto - O
i‘tofl =0
Pto‘tofl = Pto—]. + Qto
—1
Kt() = PtoltO*lA/ (Apto|t071A/ + OngI)
Jto - I — KtoA
Pto = JtQPt0|t0—1
i‘to = Jtoj:tofl + Ktoyto

for t > t; do
Qt = O-SySINt,1

Py—1 = P11 + Qy

Ky = Py A (ARf|t—1A/ + Ugbsf>_1
J,=1—K,A

Py = Ji Py

i"t,init = JiTy1 + Ktyt

yt,res =Yt — Ai‘t,init

By = argming || 5]|1 subject to ||yires — ABl2 <&
Lf;t,CSres - jlf,il’lit + /Bt

AA = {] : ’(it,CSres)j’ > Oé}

Nt - Nt_l U AA

if AA = (Z) then

A

‘ Ty = 'Tt,inlt
else
'Z%t — 0
Pt = Omxm
(Pt)]\A[t,Nt - (A[lzn],Nty(A[l:n},Nt) O-(Q)bsI\Nﬂ
end
end



3 Algorithm — Genie-Aided Kalman Filtering (GAKF)

This algorithm applies to the case where there are no support deletions.
Issues:

Check blue piece below — do we want all-ones, identity of size |DeltaA|, or
identity restricted to DeltaA and zero else?

Input: oy, Oobs, Osys0, A, {t;}, {N:e}, {w}

for t >ty do

if t =ty then

T =N,

Py = Us2yS7o]T

T 1=0

Q=0

else

T =Ny

Qi = UfyS[T

if t =t; for some j > 0 then
Ay = Ny \ Ny

Pt—l) 202 ]A
( AaAa sys*|Aal

end

end

]5t|t—1 =D+ Q

K, = Pt|t71A/ (AIBﬂtflA/ + oﬁbsl> B
Jy=1— KA

B= by

Ty = STy + Ky

end




4 Candes RIP — (; Computation for «

We need to add this as a theorem or something — cite [1] Thm 1.3 and explicitly
give the value of (', and the commentary below.

THEOREM / RESULT: [1], Theorem 1.3
Suppose y = Az + 1, |supp(z)| = s, dos = da5(A) < V2 — 1, and ||n]|2 < &. Then

& = argmin ||z||; subject to ||y — Az||s <&
z

satisfies

e —&]l2 < Ci(s)€,

where

AT ¥ 0,

O = T e

Claim / Note: It can be shown that C} is an increasing function of dos, and da, is an
increasing function of s, so C; is an increasing function of s.

For any support size S in this paper, we will have S < Sy and thus C1(S) < C1(Smax)-



5 Kailath, Sayed, Hassibi — Linear Estimation

5.1 Appendix C, Section 3

Definitions and concepts from system theory.

i = Fyxg + G,
yi = Hiry + K,
Shorthand (F;, G;, H;, K;). PROBLEM: y is tied also to u here instead of some other

variable...
Stable: F is stable if |\;| < 1 for all \; € 0,(F), equivalently, p(F) < 1.

Controllable: {F,G} is controllable if and only if the controllability matrix C =
|G, FG, F?G, ..., F""'G] is full rank n.

Unit-circle Controllable: {F,G} is unit-circle controllable if rank(A — FG) = n at
all unit-circle eigenvalues \ of F'.

P. 502 — unit-circle controllable = there exists X with F'—G K has no unit-circle
eigenvalues. Is this even true? Nontrivial if so.

Stabilizable: {F,G} is stabilizable if and only if rank(A] — FG) = n for all A € 0,(F)
with [A| > 1.

Observable: {F, H} is observable if and only if {F* H*} is controllable, ie. C =
[H*, F*H*, (F*)?H*,..., (F*)""'H*] is full rank n.

Detectable: {F, H} is detectable if and only if {F*, H*} is stabilizable, i.e. rank(Al —
F*H*) =n for all A € 0,(F) with |[\| > 1.

5.2 Chapter 8, section 3
Solutions of a DARE

Section 8.1 — Time-Invariant State-Space Model (p.266)

Tir1 = F(L’Z —+ GUZ
y; = Hx; +v;

Q = cov(u), R = cov(v), S = cov(u,v)
Discrete Algebraic Riccati Equation (DARE):

P = FPF* + GQG* — K,R.K;
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R.= R+ HPH*
K,= (FPH*+GS)R.*

Define F* = F — GSR™'H and Q* = Q — SR™'S*.

Theorem 8.3.1: Assume that I is stable (otherwise, { F, H} is detectable), { F*, GQ*/?}
controllable on the unit circle,

R~ 0.

Q S

Under these conditions, the DARE has a unique solution P such that F' — K,H is stable.
Moreover, this so-called stabilizing solution is positive semi-definite and results in a positive
definite R, = R+ HPH*.

5.3 Chapter 14

Lemma 14.2.1: Consider the zero-initial-condition Riccati recursion and assume {F, H}
detectable and {F, GQ'/?} unit-circle controllable so that the unique stabilizing solution P
exists. Then PP converges to P if and only if {F, GQ'/?} is stabilizable.

I don’t think we’re in the zero-initial-condition case; rather, P’ = o1.

Exercise 14.47 p.546

5.4 Appendix E

(Confirm the statement — p.783)

Theorem E.5.1: Consider the DARE (above). The following are equivalent: (i) {F, H}
is detectable and { F'*, GQ*/?} is controllable on the unit circle; (ii) the DARE has a stabilizing
solution P, i.e., one for which the matrix F' — K,H is stable. Moreover, any such stabilizing
solution is unique and positive semi-definite.



6 Callier / Desoer — Linear System Theory

Model — p. 57 — discrete-time system representation
Trr1 = Aptr + Brug

Yr = Crap + Dyuy

Problem: we have w, instead of D,u,. We can always find an appropriate D,
unless u; = 0, which happens with probability 0, presumably, so it should be
okay?

Time-invariant: (A, B, C, D) constant in time.
(Thms: pp. 293-294)
Theorem 8.d.62.ii Consider a discrete-time time-invariant system representation R; =
[A, B,C, D]. If A and B are real, there exists F' € R™*" such that
0,(A+BF)CD(0,1)={z€C:|z| <1}

if and only if the pair (A, B) is stabilizable.
Theorem 8.d.65.ii Consider a discrete-time time-invariant system representation Ry =
[A, B,C, D]. If C and A are real, there exists L € R"*" such that
op(A+LC) CD(0,1) ={2z€C:|z| <1}

if and only if the pair (C, A) is detectable.

Problem: These theorems are for a time-invariant system. We have time-
invariance on everything except D, due to our wy issue. This may be a non-issue,
but I have no idea.

Translate to (F, G, H, K') notation:

Detectable: {F, H} is detectable if and only if p(F + LH) < 1 for some L.
Stabilizable: {F,G} is stabilizable if and only if p(F 4+ GL) < 1 for some L.
Translate to our problem, F =1, H=A, G =1, Q = 021

Detectable: {I, A} is detectable if and only if p(I + LA) < 1 for some L.
Stabilizable: {I, o4/} is stabilizable if and only if p(I + o4sL) < 1 for some L.



7 Hassibi — PhD Thesis

Results on Riccati equations.

Section 7.3, footnote 1: Def: {F, H} is detectable if there exists a matrix K such that
F — KH is stable.

Linking this with the definition of detectable from KSHLinear:

JdKwithF — K Hstable = detectable = {F*, H*} stabilizable

Lemma 8.7.3 Consider the Riccati recursion with positive semi-definite initial condition

Py = FPF* + GQG" — K, ;Re ;K"

Dy

By =~ 0.

IfQ = 0,R =0, {F, H} is detectable and { F~GSR™'H, GQ—GSR~15*} is stabilizable then
P; converges to the unique positive semi-definite matrix, P, that satisfies the discrete-time
algebraic Riccati equation

P=FPF*+GQG* — (FPH* + GS)(R+ HPH*)"'(FPH* + GS)*.

Thereom 8.7.1 Consider the Riccati recursion

Py = FPF"+ GQG* — K, ;R ; K Py

Dy

where R =0, Q — SR™1S* = 0, {F, H} is detectable and {F — GSR™'H,GQ — GSR™'5*}
is stabilizable. Suppose, moreover, that the initial condition Fj is such that

I + (Pa)*/2PO(Pa)1/2 — 07

where P? is the unique positive semi-definite solution to the dual Riccati recursion. Then
P; converges to the unique positive semi-definite matrix, P, that satisfies the discrete-time
algebraic Riccati equation

P = FPF*+ GQG* — (FPH* + GS)(R+ HPH*)"\(FPH* + GS)*.



8 Proofs

Lemma 1. Assume that {x;} and {y;} follow the signal model above, {to,to+ 1,19 +2,...}
is a discrete set of sampling times, only additions to true support (Ny C Nyiq for allt), etc.

Further assume that

i) The true solution is exactly recovered at the initial time to: &y, = x4, s0 Ny = Ny =
Ny; Can we relax this to just the true support is recovered?

i1) The mazimum support size Sy Satisfies Smazr < Sex = max{s : dos(A) < V2 — 1};
iii) The observation noise wy is bounded in magnitude: ||w:|| < & for allt and some & > 0;

iv) The addition thresholds oy satisfy oy = a = C& for all t, where

4/T+0
C = C(Sma) 02

Tz (14 v2) b2s,.,

with dss,,,. = 0as,,..(A); and

v) The addition delay d satisfies d > Tz, where the detection delay T4 is defined by

2
2x

o)1/,
04y Q1 (UE)T“>

Tdet = Tdet<aa 5) =

Here, Q7'(z) is the inverse of the Gaussian Q-function, Q(z) = [° L =7 dt.
Then

1) ||zt — &t .csresll2 < « for all sampling times t;

2) there are no false support additions: N, C N, for all sampling times t; and

3) Pr(E;|F;) > 1 —¢, where By = {N, = N, for allt € [t; + T4 : tjs1 — 1]} and
Fj = {thfl = thfl}'

We may want to split claim 3 into its own piece because its proof relies
on the other 2 parts, which are proved separately with induction.

10



Proof. Need to find some way to get Candes Thm 1.3 in here and make the
connection that #; csres in our notation is z* in his. Also need to point out that
the way we chose «, we have any (1§ < (1 (Smax)é = a.

To prove claims 1 and 2, we proceed by induction on the value of ¢.

Consider the base case, where ¢ = t;. Claim 1 follows from Theorem 1.3 in [1] and
assumptions (ii), (iii), and (iv) (Not immediate — need to connect to Candes as
above), and assumption (i) trivially proves claim 2.

Suppose now that claims 1 and 2 are both true for some time (¢ — 1). We show that the
claims are true at time ¢.

First, we verify claim 1 at time ¢. Let TYPO HERE? vy, — ¥:,es? Can probably
remove after getting algorithm typed up.

By = x — L¢,init

B = argmin |||y subject t0 [[yzes — ABll> < €
it,CSres = :i't,init + Bt?

where 4 init and y; res are defined in the KFCS with LS algorithm and & in;; satisfies supp(Z imit) =
Nt—l-

By the induction hypothesis, Ny, C N;_1, and by our model assumptions we have
Ni_1 C N;. Therefore, supp(5;) € Ny U Ny_1 = Ny, so |supp(5y)| < [Vy| < Siax- With this,
we can apply Theorem 1.3 in [1] to see that |8, — ]|z < @ (AGAIN, need to make this
connection). By the definitions of 8, and & csres, We see that || — BtHg = ||zt — Tt CSres]|2s
so claim 1 follows.

Next, we verify claim 2 at time ¢. Suppose that (x;); = 0 for some index i, so that
i ¢ supp(x;) = N;. Since Ni—1 € N, we must also have i ¢ N, 1; by the induction
hypothesis, this implies that ¢ ¢ N;_;.

Applying the result of claim 1,
|(j:t,CSres)i| - |($t - jt,CSres)i| S ||xt - i‘t,CSresHQ S «.

Referring to the algorithm, N, = N, U {j : |(@tcsres)j] > a}. Since i ¢ N,_; and
|(Zt.0sres)i| < «, it follows that ¢ ¢ N;. Thus if i ¢ Ny, then i ¢ Ny; equivalently, if
1 € Ny, then ¢ € N;. Therefore, N; C N;, which proves claim 2 and completes our induction
proof.

11



Now, we prove claim 3. Let A; = N, \ Nt—l denote the set of indices of the true support
at time ¢ which have not been detected before time ¢. Suppose that F; holds, that is,
thfl = thfl‘

Since FJ hOldS, At g Aadd,tj for all t € [t] . tj+1 — 1]

Let ¢ € A, for some t € [t; : t;11 — 1] and suppose that |(z;);| > 2a. Applying the result
from claim 1,

O S |(xt - j:t,CSres)i| S ||(xt - Zit,CSres)HQ S a < 20{ < |(‘rt)z|7

so that
|(Zt,0sres)i| = [(24)i — [(24)i — (Z1,C5res)i|
2 ‘|($t)z| — (2 — i‘t,CSres)iH
= ’(xt)z‘ - ’(xt - i’t,CSres)z’|
> 20— «
= .

We see that if |(z¢);] > 2a, then |(Z¢csres)i| > v, 801 € N,=N,_; U {7 |(Zr.csres)j| > a}.

If [(w¢)i| > 2a for all i € Agaay,, then Ay C Agaay; € Nt; in words, we will detect all
“missing” indices at time ¢, so Nt = N,.

From the above discussion, we see that the event {|(x);] > 2a for all i € Augqy,} is
contained within the event {|(z;);| > 2a for alli € A, | F;}, which in turn is contained
within the event {N; = N; | F;}.

All of the above is still kind of weak in places. It all makes sense in words
and is true, but the math / set theory is kind of wonky.

Our model asserts that the entries (z;); of z; are independent and identically distributed
N (0, (t — tj)agys) random variables. With this in mind, we see that

Pr (Nt N,

Fj> > Pr(|();] > 2a for all i € A, |F;)
> Pr (|(:1:t)

r (|(x) | > 204)] e

[ ==

’ > 2« for all 7 € Aadd,tj)

12



We examine the particular case where ¢t = ¢; + 74¢. In this case,

Sadd
2a
F:) > |2
J) = [ Q (gsys\/(tj+7det) _tj>]
e ()
B Osys/ Tdet

21_87

Pr (th+‘rdet = th+Tdet

where the final inequality is easily verified and follows from the ceiling in the definition of
Taer and the fact that Q is a decreasing function.

If Nt = N, for t = t; + T4er, then the model assumptions of no support deletions and no

support additions until time ¢,4,, in addition to the result of claim 2, imply that N, = N,
for all t € [t; + Taer © tj41 — 1], which is exactly the event E;. Therefore, Pr (E; | F;) =

Pr (Ntﬁmet = Nt; trger Fj> > 1 — €, which completes the proof. O

13



Lemma 2. Assume that {x;} and {y;} follow the signal model above, {to,to+ 1,10 +2,...}
is a discrete set of sampling times, only additions to true support (Ny C Nyi1 for all t), ete.

(SsmaI(A) <1, age=0.
Define the event D = {N, = N, = N, for all t € [t, : t,.]}, where N, is some fired index

set.

At each time t, let &, = T4 gkpes be the KFCS estimate of xy and let 2, = 2 caxr be the
GAKF estimate of ;.

Then given any € > 0 there exists some tps > t. such that for all t € [t : t.w], we have
E[|Z; — 2¢]|3| D] < ¢, i.e., Ty converges to Iy in mean square.

Proof. Throughout, we assume that the event D occurs and ¢ € [t, : t,.].

Where possible, we consider variables and parameters only along the support set NV,, but
to simplify notation will omit the subscript N,. Thus, v, = (v)n., A = Apm ., Tt = (T4) N,
Jo = (J)nowv., K = (Ke)n.pm)s Prig—1 = (Pg—1) v, P = (P)n.,n., and analogously for
T, jt, f(t, ]5t|t_1, and P,.

Note, however, that y;, and w; may be be supported on [1 : n] and are thus not truncated
when they appear.

For t > t,, both KFCS and GAKF run the same fixed-dimensional and fixed-parameter
Kalman filter for (z;)y,, but with different initial conditions. Elaborate + possibly com-
bine with first paragraph about DARE stuff below

J—— moved to enhance the flow of the proof

Notice that for ¢ € [t, : t..] our model is a discrete-time time-invariant linear system with
(F,G,H,K) = (I,I,A,I). We can apply elements of linear system theory discussed in
SECTION to generate results relating to P,;_;. As noted above: techncially K is not
time-invariant because of w; not being Ku;, so this may break down.

We see that

P =P+ Q
= - KA)Py1+Q
=Ppy1+Q— Py 1A (AP 1A'+ R)_]"Apﬂt—l,
which is a discrete algebraic Riccati recursion (DARR) with F =1, G =1, Q = azysf N

R = 02 IL,xn, and S = 0. Verify Q, R. Note that  and R are fixed in time since we
assume that D occurs.

Since |N,| < Smax and dg,,. < 1, A = (Apy,n,) is full rank. Need to link this to
detectability.

Since oy > 0, QY2 = 01 is full rank, where Q2 denotes the matrix square root of
Q. We see that the matrix L = ———2—T satisfies p(I + o4IL) = p [( L >I} < 1, so

Usys+1 Usys+1

14



{1,041} is stabilizable. Previously had thought we need oy # 1 (see the rank
definition - rank of a 0 matrix is never n), but I think it cleaned itself up...

Point out Fy_; = 0.

Therefore, by HASSIBI PHD RESULT, the DARR converges to a positive semi-
definite matrix P,. This implies that K; — K, = P,A(APA + R)™! and J; — J, =
(I — K,A). Further, by LINEAR THM E.5.1, p(J,) < 1.

Since GAKF and KFCS run the same Kalman filter, these results also apply to the GAKF
iterates, i.e. Py — Py, Ky — K, and J; — J,.

Let p = p(J,) and let g = (1 — p)/2. A standard result from linear algebra states that
there exists a matrix norm || - ||, such that ||J,||, < p+eo = (14 p)/2 < 1. Further, by the
equivalence of matrix norms on a finite-dimensional space, there exists some constant c,»
such that || M|, < c,2||M]|2 for any matrix M.

Let € > 0 be arbitrary.

The convergence results above and standard analysis techniques can be used to show that
there exists some t. > t, such that for all £ > t., the following conditions hold:

o |K,— K2 <c¢;

o ||, — Ji|l2 <&

o [ 7, < el + (1= p)/4;

o ||7lla < || Ju]l2 + 1; and + added this for bounding tr(P,)
o | Pyioalla < |Pull2 + 1. « added this for bounding tr(P;)

Point out that ¢, is independent of y...

Problem: NV proof says ;. is independent of 1, , but by definition it’s not. AB draft:
t, — 1. So I agree that we're independent of y; ...y, 1, but we are dependent on y;, ...y
because ¥, = Jy2;_1 + Ky, for t > t,. All of this independence stuff needs to be very
carefully worked and verified.

T— /moved

Let é; = x; — 2; and é; = x; — Z;. Define diff; = é; — ¢€; and notice that diff; = 2, — Z;.
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Let t > t. > t.. By the KFCS with LS algorithm and the model, we see that

€t = Ty — Ty
= (xr-1 +w) — (Side1 + Kyye)
=1+ v — Sy — Ky(Ary + wy)
=21 + 1 — S — KeA(wey + 1) — Kawy
= - KAz — i + (I — KAy — Ky
= Ji(xo1 — 1) + Sy — Ky
= Jiéi_1 + Sy — Kpwy.

Similarly, using the GAKF algorithm and the model, we can verify that
ét = jtét—l + jtVt - f(twt.
Combining these results yields

dlfft = Jtdiﬁt_l + (Jt - jt)<ét—1 + Vt) + (Kt - Kt)wt.

Let uy = (J; — jt)(ét_l + ) + (f(t — Ky)wy, so that diff, = Jdiff,_; + w,;. Recursively
applying this identity, we see that
diff, = J,diff,_; + wy
= Jy (S diffy o 4+ wpy) +
= JpJyadifty o + Jue—1 +
= Jp i1 (Jr—odiffy 5 + ws—o) + Jyup—q + uy
= JiJi1Jpodifly_3 + i S qup—o + Jyue1 4wy

= JtJt—l tee JtE_Hdifftg + JtJt—l cee Jt5+2ut5+1 + ..+ Jtut_l -+ Uyg.

If we define M} = J;Jy—1 -+ Jpy1Jy for k < t, then we can more compactly write

t—1
dlfft = Mfg+1diﬁt€ + Ut -+ Z M/f:-i—luk'

k=te+1

Therefore, applying the triangle and Cauchy-Schwarz inequalities for expectation and

16



noting that the matrices {M}} are deterministic,

=

t—1 2 2
1
E [|diff,|2|D]? = E HMinifftJUﬁ > Miu |D
k=t.+1 9

t 1
2

-1

¢ 2

E ([l
k=te+1

2 2|
D|* +E [l | D] +

<E [||M},dift, ||}

D)

<E [ M 3| D] E it )3 | D]+

. t—1 . )
E [HutHg ‘ D|® + Z E [”MEHHE D} g [Hung | Nk
k=te+1
< ”Mfs+1H2 E [Hdifftg 3 ‘D] 24

D=

t—1
<1+ > HM;iHIIz) _max {E([Jul;|D]"}.

k=to+1
Recall that, for £ > t., we have
[kl < W Allp + (1 =p)/4 < (T+p)/2+ (1= p)/d=(B+p)/4 <1,
Let a = (3+ p)/4. Then

ML, = 1 Jedee1 -+~ Tl
< [ Jellpll Fe=1llp - - - 1 Tkl

—k+1
<a”t
so || MLz < ¢,2a"*1. With this, we see that

t—1 t—1
<1+ Z ||M,i+1|]2> < <1+ Z Cp,2atk>

k=t.+1 k=t.+1

oo
<max{l,c,2} - Z at
=0

1
1l—a

=max{l,¢c,2} -

Let 7 € [t.+1 : t] be arbitrary. Since 7 > t., we have | K, — K.||» < € and || J, — J,||2 < e.
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Consider

2

B el )} = & i = 26010+ & s D]

<N Jr = Jell2 B [[lér—1 + vell; [ D)? + |7 — Ko ll2 E [y ||3 | D] ?

2

<e E[l|ér—1 + ]3| D]* +e-E[|lw]3|D]?
1 1 1
<& (E[lel3|D]* +E [l ]3| D] +E [, ]3| D] ),
where we have used the triangle and Cauchy-Schwarz inequalities for expectation.

By the properties of the Kalman filter, for any k&, we have

P =E (@ —E& |y vz ve)) @ — E Ty, 920 u) | 91,920, Uk
=E [(:%k — ) (T — 1) ‘ Y1, Y2, - - - ,yk]
= E[exe), | y1, y2, - - - 5 Yi]
= Eerey]

where the independence on the last line follows because Pj has no dependence on any of
the {y;}, a well-known property of the Kalman filter (and consequence of the algorithm).
Therefore,

Here, we used the fact that the occurrence of D is independent of the value of P, = E [exe}].
Make sure this is legitimate.

Suppose that k& > t.. Then
1Pell = [k Papp-alle < [1ellzll Pl < (1Tl + D[ Pllz + 1) < oo
Since P, is Hermitian, HIBkHQ = )\max(ﬁk). Therefore,
tr(Pe) = Y A(Be) < [Nl Amax(Be) = N[l Bell < [Na] (| Tell2 + D(( P2 + 1) < oo,
so there exists some B > 0 such that tr(f’k) < B for all k > t.. PROBLEM: B is no

longer technically independent of ., in fact, choice of {. was done so that B can
be expressed. This affects C' down the line and may affect the conclusion.
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Since (7 — 1) > t., we can combine these results to see that

E[llé 13| D] = tr (P1) < B.

Recall that v, = (v;)n, and cov(v;) = E [v,1.] is independent of D. Elaborate why?

!
Notice that

A similar computation proves that E [|jw. |5 | D] = no?,.

We now see that
E (lul | D) <= (VB + \/Ilo, + uad, ).

Since 7 € [t. + 1 : t] was arbitrary, we conclude that

e (B[l D1} <e (VB -+ \/INJog, + \fnd, ).

TE[te+1:t] R

Combining these results with reference prev equations...., we see that

1

1
E [||diff[|3 | D]? < ¢p0a'"E [||diff,. |3 | D]* + Ce,
where C' = max{1,¢,2} - 7 - (\/E + 4/ | NeloZ s + nagbs>.

1
Problem: why is E[||diff;_||2| D]? finite? NV ignores it, and AB says ”because they're
finite,” which needs more explanation. Moving on, assume it’s finite.

If
tms = ta + loga . 1 ’
¢poE [||diff, |13 | D]

then we see that for all ¢ > ¢,

E [l — &3 | D]* = E[|diff 3] D]* < 2Ce,

and since C' is constant (B technically not constant) and ¢ is arbitrary we have obtained
our desired result. O
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Corollary 1. Assume that the conditions of Lemma 2 hold.

Then given any € and €. there exists some Tgxrp = Tgp(€, Eerry Ni) Such that for all
t € [t + TkF : tu], we have Pr(Hﬁét — i"tH; < Eepr ‘ D) > 1 —e¢e. Note that if t, + Tgr > tex,
then this interval 1s empty and the result is vacuously true.

Proof. Let € > 0 and ¢, > 0 be given and let € < € - £, By Lemma 2, there exists some
tms = tms(€, Ny) such that for all ¢ > t,,

E [||Z; — &3 | D] <& < e e

Let t > t,s. By Markov’s inequality,

ElJé—al3ID) _ & __

561“[' 5err

Pr (”‘%t — i’t”% > Eerr | D)

IN

Define mxp = ts — t. Since t,, is a function of £, which is itself a function of € and &,
we have Tgxp = Tkr (€, €errs Ny ), and for all ¢ > t,,s = t. + TxF,

Pr (Hi‘t — jjt”g < Eerr

D) >1—c¢,

which is our desired result. O
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