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1 Model

At each time t ≥ t0, we have

yt = Axt + wt

xt+1 = xt + νt+1 Can we use νt?

Here, E[wt] = 0, cov(wt) = E[wtw
′
t] = σ2

obsIn, iid and independent of xt; xt0 = x0 ∼
N (0, σ2

sys,0IN0); and νt ∼ N (0, σ2
sysINt) iid.

yt, wt ∈ Rn, A ∈ Rn×m, xt, νt ∈ Rm.

Time indices are discrete. Make the distinction between sampling times (used) and
continuous time (not used).

. . .

tj tj+1

tj − 1 tj + 1 tj + 2 tj+1 − 1 tj+1 + 1

d

At the addition times tj = t0 + jd for some t0, the support of xt changes: Nt = Ntj for
all t ∈ [tj : tj+1 − 1], and Ntj ⊂ Ntj+1

.
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2 Algorithm – KFCS with LS

This algorithm applies to the case where there are no support deletions.

Issues:

Pt0−1 and Qt – is this an identity of size |Nhat| or is it a full-blown identity
with nonzeros on diagonal entries corresponding to Nhat

Is this algorithm transcribed correctly? There are 3 versions of it that I have
(NV original, AB+NV typed draft, and AB handwritten) and all 3 are different.

Look for places to simplify – this is long and contains repeat steps, which is
non-ideal
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Input: σsys, σobs, σsys,0, A, {tj}, {Nt}, {yt}

x̂t0,init = arg minx ‖x‖1 subject to ‖yt0 − Ax‖2 < ξ

N̂t0 = {j : |(x̂t0,init)j| > α}
Pt0−1 = σ2

sys,0IN̂t0

Qt0 = 0
x̂t0−1 = 0

Pt0|t0−1 = Pt0−1 +Qt0

Kt0 = Pt0|t0−1A
′ (APt0|t0−1A

′ + σ2
obsI
)−1

Jt0 = I −Kt0A
Pt0 = Jt0Pt0|t0−1

x̂t0 = Jt0x̂t0−1 +Kt0yt0

for t > t0 do
Qt = σ2

sysIN̂t−1

Pt|t−1 = Pt−1 +Qt

Kt = Pt|t−1A
′ (APt|t−1A

′ + σ2
obsI
)−1

Jt = I −KtA
Pt = JtPt|t−1

x̂t,init = Jtx̂t−1 +Ktyt

yt,res = yt − Ax̂t,init

β̂t = arg minβ ‖β‖1 subject to ‖yt,res − Aβ‖2 < ξ

x̂t,CSres = x̂t,init + β̂t

∆A = {j : |(x̂t,CSres)j| > α}
N̂t = N̂t−1 ∪∆A

if ∆A = ∅ then
x̂t = x̂t,init

else
x̂t = 0
(x̂t)N̂t

= (A[1:n],N̂t
)†yt

Pt = 0m×m

(Pt)N̂t,N̂t
=
[
(A[1:n],N̂t

)′(A[1:n],N̂t
)
]−1

σ2
obsI|N̂t|

end

end
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3 Algorithm – Genie-Aided Kalman Filtering (GAKF)

This algorithm applies to the case where there are no support deletions.

Issues:

Check blue piece below – do we want all-ones, identity of size |DeltaA|, or
identity restricted to DeltaA and zero else?

Input: σsys, σobs, σsys,0, A, {tj}, {Nt}, {yt}

for t ≥ t0 do
if t = t0 then

T = N0

P̃t−1 = σ2
sys,0IT

x̃t−1 = 0

Q̃t = 0

else
T = Nt−1

Q̃t = σ2
sysIT

if t = tj for some j > 0 then
∆A = Nt \Nt−1(
P̃t−1

)
∆A,∆A

= σ2
sysI|∆A|

end

end

P̃t|t−1 = P̃t−1 + Q̃t

K̃t = P̃t|t−1A
′
(
AP̃t|t−1A

′ + σ2
obsI
)−1

J̃t = I − K̃tA

P̃t = J̃tP̃t|t−1

x̃t = J̃tx̃t−1 + K̃tyt
end
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4 Candes RIP – C1 Computation for α

We need to add this as a theorem or something – cite [1] Thm 1.3 and explicitly
give the value of C1 and the commentary below.

THEOREM / RESULT: [1], Theorem 1.3

Suppose y = Ax+ η, | supp(x)| = s, δ2s = δ2s(A) <
√

2− 1, and ‖η‖2 ≤ ξ. Then

x̂ = arg min
z
‖z‖1 subject to ‖y − Az‖2 ≤ ξ

satisfies
‖x− x̂‖2 ≤ C1(s)ξ,

where

C1(s) =
4
√

1 + δ2s

1− (1 +
√

2)δ2s

.

Claim / Note: It can be shown that C1 is an increasing function of δ2s, and δ2s is an
increasing function of s, so C1 is an increasing function of s.

For any support size S in this paper, we will have S ≤ Smax and thus C1(S) ≤ C1(Smax).
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5 Kailath, Sayed, Hassibi – Linear Estimation

5.1 Appendix C, Section 3

Definitions and concepts from system theory.

xi+1 = Fixi +Giui

yi = Hixi +Kiui

Shorthand (Fi, Gi, Hi, Ki). PROBLEM: y is tied also to u here instead of some other
variable...

Stable: F is stable if |λi| < 1 for all λi ∈ σp(F ), equivalently, ρ(F ) < 1.

Controllable: {F,G} is controllable if and only if the controllability matrix C =
[G,FG,F 2G, . . . , F n−1G] is full rank n.

Unit-circle Controllable: {F,G} is unit-circle controllable if rank(λI − FG) = n at
all unit-circle eigenvalues λ of F .

P. 502 – unit-circle controllable ≡ there exists K with F−GK has no unit-circle
eigenvalues. Is this even true? Nontrivial if so.

Stabilizable: {F,G} is stabilizable if and only if rank(λI − FG) = n for all λ ∈ σp(F )
with |λ| ≥ 1.

Observable: {F,H} is observable if and only if {F ∗, H∗} is controllable, i.e. C =
[H∗, F ∗H∗, (F ∗)2H∗, . . . , (F ∗)n−1H∗] is full rank n.

Detectable: {F,H} is detectable if and only if {F ∗, H∗} is stabilizable, i.e. rank(λI −
F ∗H∗) = n for all λ ∈ σp(F ) with |λ| ≥ 1.

5.2 Chapter 8, section 3

Solutions of a DARE

Section 8.1 – Time-Invariant State-Space Model (p.266)

xi+1 = Fxi +Gui

yi = Hxi + vi

Q = cov(u), R = cov(v), S = cov(u, v)

Discrete Algebraic Riccati Equation (DARE):

P = FPF ∗ +GQG∗ −KpReK
∗
p
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Re = R +HPH∗

Kp = (FPH∗ +GS)R−1
e

Define F s = F −GSR−1H and Qs = Q− SR−1S∗.

Theorem 8.3.1: Assume that F is stable (otherwise, {F,H} is detectable), {F s, GQs/2}
controllable on the unit circle, [

Q S
S∗ R

]
� 0, R � 0.

Under these conditions, the DARE has a unique solution P such that F − KpH is stable.
Moreover, this so-called stabilizing solution is positive semi-definite and results in a positive
definite Re = R +HPH∗.

5.3 Chapter 14

Lemma 14.2.1: Consider the zero-initial-condition Riccati recursion and assume {F,H}
detectable and {F,GQ1/2} unit-circle controllable so that the unique stabilizing solution P
exists. Then P 0

i converges to P if and only if {F,GQ1/2} is stabilizable.

I don’t think we’re in the zero-initial-condition case; rather, P 0 = σI.

Exercise 14.4? p.546

5.4 Appendix E

(Confirm the statement – p.783)

Theorem E.5.1: Consider the DARE (above). The following are equivalent: (i) {F,H}
is detectable and {F s, GQs/2} is controllable on the unit circle; (ii) the DARE has a stabilizing
solution P , i.e., one for which the matrix F −KpH is stable. Moreover, any such stabilizing
solution is unique and positive semi-definite.
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6 Callier / Desoer – Linear System Theory

Model – p. 57 – discrete-time system representation

xk+1 = Akxk +Bkuk

yk = Ckxk +Dkuk

Problem: we have wk instead of Dkuk. We can always find an appropriate Dk

unless uk = 0, which happens with probability 0, presumably, so it should be
okay?

Time-invariant: (A,B,C,D) constant in time.

(Thms: pp. 293–294)

Theorem 8.d.62.ii Consider a discrete-time time-invariant system representation Rd =
[A,B,C,D]. If A and B are real, there exists F ∈ Rni×n such that

σp(A+BF ) ⊂ D(0, 1) = {z ∈ C : |z| < 1}

if and only if the pair (A,B) is stabilizable.

Theorem 8.d.65.ii Consider a discrete-time time-invariant system representation Rd =
[A,B,C,D]. If C and A are real, there exists L ∈ Rn×no such that

σp(A+ LC) ⊂ D(0, 1) = {z ∈ C : |z| < 1}

if and only if the pair (C,A) is detectable.

Problem: These theorems are for a time-invariant system. We have time-
invariance on everything except Dk due to our wk issue. This may be a non-issue,
but I have no idea.

Translate to (F,G,H,K) notation:

Detectable: {F,H} is detectable if and only if ρ(F + LH) < 1 for some L.

Stabilizable: {F,G} is stabilizable if and only if ρ(F +GL) < 1 for some L.

Translate to our problem, F = I, H = A, G = I, Q = σ2
sysI:

Detectable: {I, A} is detectable if and only if ρ(I + LA) < 1 for some L.

Stabilizable: {I, σsysI} is stabilizable if and only if ρ(I + σsysL) < 1 for some L.
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7 Hassibi – PhD Thesis

Results on Riccati equations.

Section 7.3, footnote 1: Def: {F,H} is detectable if there exists a matrix K such that
F −KH is stable.

Linking this with the definition of detectable from KSHLinear:

∃KwithF −KHstable ≡ detectable ≡ {F ∗, H∗}stabilizable

Lemma 8.7.3 Consider the Riccati recursion with positive semi-definite initial condition

Pi+1 = FPiF
∗ +GQG∗ −Kp,iRe,iK

∗
p,i , P0 � 0.

IfQ � 0, R � 0, {F,H} is detectable and {F−GSR−1H,GQ−GSR−1S∗} is stabilizable then
Pi converges to the unique positive semi-definite matrix, P , that satisfies the discrete-time
algebraic Riccati equation

P = FPF ∗ +GQG∗ − (FPH∗ +GS)(R +HPH∗)−1(FPH∗ +GS)∗.

Thereom 8.7.1 Consider the Riccati recursion

Pi+1 = FPiF
∗ +GQG∗ −Kp,iRe,iK

∗
p,i , P0

where R � 0, Q− SR−1S∗ � 0, {F,H} is detectable and {F −GSR−1H,GQ−GSR−1S∗}
is stabilizable. Suppose, moreover, that the initial condition P0 is such that

I + (P a)∗/2P0(P a)1/2 � 0,

where P a is the unique positive semi-definite solution to the dual Riccati recursion. Then
Pi converges to the unique positive semi-definite matrix, P , that satisfies the discrete-time
algebraic Riccati equation

P = FPF ∗ +GQG∗ − (FPH∗ +GS)(R +HPH∗)−1(FPH∗ +GS)∗.
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8 Proofs

Lemma 1. Assume that {xt} and {yt} follow the signal model above, {t0, t0 + 1, t0 + 2, . . .}
is a discrete set of sampling times, only additions to true support (Nt ⊆ Nt+1 for all t), etc.

Further assume that

i) The true solution is exactly recovered at the initial time t0: x̂t0 = xt0, so N̂t0 = Nt0 =
N0; Can we relax this to just the true support is recovered?

ii) The maximum support size Smax satisfies Smax ≤ S∗∗ = max{s : δ2s(A) <
√

2− 1};

iii) The observation noise wt is bounded in magnitude: ‖wt‖ < ξ for all t and some ξ > 0;

iv) The addition thresholds αt satisfy αt = α = Cξ for all t, where

C = C(Smax) =
4
√

1 + δ2Smax

1−
(
1 +
√

2
)
δ2Smax

with δ2Smax = δ2Smax(A); and

v) The addition delay d satisfies d > τdet, where the detection delay τdet is defined by

τdet = τdet(α, ε) =


 2α

σsysQ−1
(

(1−ε)1/Sadd

2

)
2  .

Here, Q−1(x) is the inverse of the Gaussian Q-function, Q(x) =
∫∞
x

1√
2π
e−

t2

2 dt.

Then

1) ‖xt − x̂t,CSres‖2 ≤ α for all sampling times t;

2) there are no false support additions: N̂t ⊆ Nt for all sampling times t; and

3) Pr (Ej |Fj) ≥ 1 − ε, where Ej = {N̂t = Nt for all t ∈ [tj + τdet : tj+1 − 1]} and

Fj = {N̂tj−1 = Ntj−1}.
We may want to split claim 3 into its own piece because its proof relies
on the other 2 parts, which are proved separately with induction.
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Proof. Need to find some way to get Candes Thm 1.3 in here and make the
connection that x̂t,CSres in our notation is x? in his. Also need to point out that
the way we chose α, we have any C1ξ ≤ C1(Smax)ξ = α.

To prove claims 1 and 2, we proceed by induction on the value of t.

Consider the base case, where t = t0. Claim 1 follows from Theorem 1.3 in [1] and
assumptions (ii), (iii), and (iv) (Not immediate – need to connect to Candes as
above), and assumption (i) trivially proves claim 2.

Suppose now that claims 1 and 2 are both true for some time (t− 1). We show that the
claims are true at time t.

First, we verify claim 1 at time t. Let TYPO HERE? yt → yt,res? Can probably
remove after getting algorithm typed up.

βt = xt − x̂t,init

β̂t = arg min
β
‖β‖1 subject to ‖yt,res − Aβ‖2 < ξ

x̂t,CSres = x̂t,init + β̂t,

where x̂t,init and yt,res are defined in the KFCS with LS algorithm and x̂t,init satisfies supp(x̂t,init) =

N̂t−1.

By the induction hypothesis, N̂t−1 ⊆ Nt−1, and by our model assumptions we have
Nt−1 ⊆ Nt. Therefore, supp(βt) ⊆ Nt ∪Nt−1 = Nt, so | supp(βt)| ≤ |Nt| ≤ Smax. With this,
we can apply Theorem 1.3 in [1] to see that ‖βt − β̂t‖2 ≤ α (AGAIN, need to make this
connection). By the definitions of βt and x̂t,CSres, we see that ‖βt − β̂t‖2 = ‖xt − x̂t,CSres‖2,
so claim 1 follows.

Next, we verify claim 2 at time t. Suppose that (xt)i = 0 for some index i, so that
i /∈ supp(xt) = Nt. Since Nt−1 ⊆ Nt, we must also have i /∈ Nt−1; by the induction
hypothesis, this implies that i /∈ N̂t−1.

Applying the result of claim 1,

|(x̂t,CSres)i| = |(xt − x̂t,CSres)i| ≤ ‖xt − x̂t,CSres‖2 ≤ α.

Referring to the algorithm, N̂t = N̂t−1 ∪ {j : |(x̂t,CSres)j| > α}. Since i /∈ N̂t−1 and

|(x̂t,CSres)i| ≤ α, it follows that i /∈ N̂t. Thus if i /∈ Nt, then i /∈ N̂t; equivalently, if

i ∈ N̂t, then i ∈ Nt. Therefore, N̂t ⊆ Nt, which proves claim 2 and completes our induction
proof.
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Now, we prove claim 3. Let ∆t = Nt \ N̂t−1 denote the set of indices of the true support
at time t which have not been detected before time t. Suppose that Fj holds, that is,

N̂tj−1 = Ntj−1.

Since Fj holds, ∆t ⊆ ∆add,tj for all t ∈ [tj : tj+1 − 1].

Let i ∈ ∆t for some t ∈ [tj : tj+1 − 1] and suppose that |(xt)i| > 2α. Applying the result
from claim 1,

0 ≤ |(xt − x̂t,CSres)i| ≤ ‖(xt − x̂t,CSres)‖2 ≤ α < 2α < |(xt)i|,

so that

|(x̂t,CSres)i| = |(xt)i − [(xt)i − (x̂t,CSres)i]|
≥
∣∣|(xt)i| − |(xt − x̂t,CSres)i|

∣∣
= |(xt)i| − |(xt − x̂t,CSres)i|
> 2α− α
= α.

We see that if |(xt)i| > 2α, then |(x̂t,CSres)i| > α, so i ∈ N̂t = N̂t−1 ∪ {j : |(x̂t,CSres)j| > α}.

If |(xt)i| > 2α for all i ∈ ∆add,tj , then ∆t ⊆ ∆add,tj ⊆ N̂t; in words, we will detect all

“missing” indices at time t, so N̂t = Nt.

From the above discussion, we see that the event {|(xt)i| > 2α for all i ∈ ∆add,tj} is
contained within the event {|(xt)i| > 2α for all i ∈ ∆t | Fj}, which in turn is contained

within the event {N̂t = Nt | Fj}.

All of the above is still kind of weak in places. It all makes sense in words
and is true, but the math / set theory is kind of wonky.

Our model asserts that the entries (xt)i of xt are independent and identically distributed
N
(
0, (t− tj)σ2

sys

)
random variables. With this in mind, we see that

Pr(N̂t = Nt | Fj) ≥ Pr (|(xt)i| > 2α for all i ∈ ∆t | Fj)
≥ Pr

(
|(xt)i| > 2α for all i ∈ ∆add,tj

)
= [Pr (|(xt)1| > 2α)]Sadd

=

[
2Q
(

2α

σsys
√
t− tj

)]Sadd

.
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We examine the particular case where t = tj + τdet. In this case,

Pr(N̂tj+τdet = Ntj+τdet | Fj) ≥

[
2Q

(
2α

σsys

√
(tj + τdet)− tj

)]Sadd

=

[
2Q
(

2α

σsys
√
τdet

)]Sadd

≥ 1− ε,

where the final inequality is easily verified and follows from the ceiling in the definition of
τdet and the fact that Q is a decreasing function.

If N̂t = Nt for t = tj + τdet, then the model assumptions of no support deletions and no

support additions until time tj+1, in addition to the result of claim 2, imply that N̂t = Nt

for all t ∈ [tj + τdet : tj+1 − 1], which is exactly the event Ej. Therefore, Pr(Ej | Fj) =

Pr(N̂tj+τdet = Ntj+τdet | Fj) ≥ 1− ε, which completes the proof.
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Lemma 2. Assume that {xt} and {yt} follow the signal model above, {t0, t0 + 1, t0 + 2, . . .}
is a discrete set of sampling times, only additions to true support (Nt ⊆ Nt+1 for all t), etc.

δSmax(A) < 1, αdel = 0.

Define the event D = {N̂t = Nt = N∗ for all t ∈ [t∗ : t∗∗]}, where N∗ is some fixed index
set.

At each time t, let x̂t = x̂t,KFCS be the KFCS estimate of xt and let x̃t = x̂t,GAKF be the
GAKF estimate of xt.

Then given any ε and εerr there exists some τKF = τKF(ε, εerr, N∗) such that for all
t ∈ [t∗+ τKF : t∗∗], we have Pr

(
‖x̃t − x̂t‖2

2 ≤ εerr
∣∣D) > 1−ε. [There is an upper-bound

condition on ε, detailed in the proof – may want to say ”ε small enough,” or
say ”given any εerr and any ε small enough.”] Note that if t∗ + τKF > t∗∗, then this
interval is empty and the result is vacuously true.

Proof. Throughout, we assume that the event D occurs and t ∈ [t∗ : t∗∗], so that all vectors
are supported on N∗. Not true – only x and various others are. y and w are not,
could be supported on 1 through n. Point this out.

We consider all variables and parameters only along the support set N∗, but for simplicity
of notation we will leave off the subscript N∗ where possible. Thus, νt = (νt)N∗ , A = A[1:n],N∗ ,
x̂t = (x̂t)N∗ , Kt = (Kt)N∗,[1:n], Pt|t−1 = (Pt|t−1)N∗,N∗ , Jt = (Jt)N∗,N∗ , and analogously for x̃t,

K̃t, P̃t|t−1, and J̃t.

For t > t∗, both KFCS and GAKF run the same fixed-dimensional and fixed-parameter
Kalman filter for (xt)N∗ , but with different initial conditions. Elaborate + possibly com-
bine with first paragraph about DARE stuff below

↓———— moved to enhance the flow of the proof

Notice that for t ∈ [t∗ : t∗∗] our model is a discrete-time time-invariant linear system with
(F,G,H,K) = (I, I, A, I) . We can apply elements of linear system theory discussed in
SECTION to generate results relating to Pt|t−1. As noted above: techncially K is not
time-invariant because of wt not being Kut, so this may break down.

We see that

Pt+1|t = Pt +Q

= (I −KtA)Pt|t−1 +Q

= Pt|t−1 +Q− Pt|t−1A
′(APt|t−1A

′ +R)−1APt|t−1,

which is a discrete algebraic Riccati recursion (DARR) with F = I, G = I, Q = σ2
sysIN∗ ,

R = σ2
obsI, and S = 0. Verify Q, R. Note that Q and R are fixed in time since we assume

that D occurs.

Since |N∗| ≤ Smax and δSmax < 1, A = (A[1:n],N∗) is full rank. Need to link this to
detectability.
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Since σsys > 0, Q1/2 = σsysI is full rank, where Q1/2 denotes the matrix square root of

Q. We see that the matrix L = − 1
σsys+1

I satisfies ρ(I + σsysIL) = ρ
[(

1
σsys+1

)
I
]
< 1, so

{I, σsysI} is stabilizable. Previously had thought we need σsys 6= 1 (see the rank
definition - rank of a 0 matrix is never n), but I think it cleaned itself up...

Therefore, by HASSIBI PHD RESULT, the DARR converges to a positive semi-
definite matrix P?. This implies that Kt → K? = P?A

′(AP?A
′ + R)−1 and Jt → J? =

(I −K?A). Further, by LINEAR THM E.5.1, ρ(J?) < 1.

Since GAKF and KFCS run the same Kalman filter, these results also apply to the GAKF
iterates, i.e. P̃t|t−1 → P?, K̃t → K?, and J̃t → J?.

Let ρ = ρ(J?) and let ε0 = (1 − ρ)/2. A standard result from linear algebra states that
there exists a matrix norm ‖ · ‖ρ such that ‖J?‖ρ ≤ ρ+ ε0 = (1 + ρ)/2 < 1. Further, by the
equivalence of matrix norms on a finite-dimensional space, there exists some constant cρ,2
such that ‖M‖ρ ≤ cρ,2‖M‖2 for any matrix M .

Let 0 < ε < (1−ρ)/4 be arbitrary. – Here is our upper bound on ε. – –UPDATE:
This isn’t ε anymore. Figure out how the bound affects things.–

The convergence of Kt and K̃t to the common limit of K? implies that there exists some
τKε such that for all t ≥ τKε , ‖Kt − K̃t‖2 < ε. Similarly, there exists some τJε for which
‖Jt − J̃t‖2 < ε for all t ≥ τJε , and there exists some τRε such that ‖Jt‖ρ < ‖J?‖ρ + ε for all
t ≥ τRε . Let tε ≥ max{τKε , τJε , τRε }; then for all t ≥ tε, we have ‖Kt−K̃t‖2 < ε, ‖Jt−J̃t‖2 < ε,
and ‖Jt‖ρ < ‖J?‖ρ + ε = (1 + ρ)/2 + ε < (1 + ρ)/2 + (1 − ρ)/4 = (3 + ρ)/4 < 1. This
is verbose, and probably unnecessarily so; this result is obvious. Can probably
stick with something closer to the original, below.

The convergence results above and standard analysis techniques can be used to show that
there exists some tε > t∗ such that for all t ≥ tε, we have ‖Kt − K̃t‖2 < ε, ‖Jt − J̃t‖2 < ε,
and ‖Jt‖ρ ≤ ‖J?‖ρ + ε < (1 + ρ)/2 + (1− ρ)/4 = (3 + ρ)/4 < 1.

Point out that tε is independent of y...

Problem: NV proof says x̂t∗ is independent of yt∗ , but by definition it’s not. AB draft:
t∗ − 1. So I agree that we’re independent of y1 . . . yt∗−1, but we are dependent on yt∗ . . . yt
because x̂t = Jtx̂t−1 +Ktyt for t > t∗. All of this independence stuff needs to be very
carefully worked and verified.

Pt|t−1 bounded...?

↑———— /moved

Let êt = xt − x̂t and ẽt = xt − x̃t. Define difft = êt − ẽt and notice that difft = x̃t − x̂t.
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Let t > tε > t∗. By the KFCS with LS algorithm and the model, we see that

êt = xt − x̂t
= (xt−1 + νt)− (Jtx̂t−1 +Ktyt)

= xt−1 + νt − Jtx̂t−1 −Kt(Axt + wt)

= xt−1 + νt − Jtx̂t−1 −KtA(xt−1 + νt)−Ktwt

= (I −KtA)xt−1 − Jtx̂t−1 + (I −KtA)νt −Ktwt

= Jt(xt−1 − x̂t−1) + Jtνt −Ktwt

= Jtêt−1 + Jtνt −Ktwt.

Similarly, using the GAKF algorithm and the model, we can verify that

ẽt = J̃tẽt−1 + J̃tνt − K̃twt.

Combining these results yields

difft = Jtdifft−1 + (Jt − J̃t)(ẽt−1 + νt) + (K̃t −Kt)wt.

Let ut = (Jt − J̃t)(ẽt−1 + νt) + (K̃t − Kt)wt, so that difft = Jtdifft−1 + ut. Recursively
applying this identity, we see that

difft = Jtdifft−1 + ut

= Jt (Jt−1difft−2 + ut−1) + ut

= JtJt−1difft−2 + Jtut−1 + ut

= JtJt−1 (Jt−2difft−3 + ut−2) + Jtut−1 + ut

= JtJt−1Jt−2difft−3 + JtJt−1ut−2 + Jtut−1 + ut
...

= JtJt−1 · · · Jtε+1difftε + JtJt−1 · · · Jtε+2utε+1 + . . .+ Jtut−1 + ut.

If we define M t
k = JtJt−1 · · · Jk+1Jk for k ≤ t, then we can more compactly write

difft = M t
tε+1difftε + ut +

t−1∑
k=tε+1

M t
k+1uk.

Therefore, applying the triangle and Cauchy-Schwarz inequalities for expectation and
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noting that the matrices {M t
k} are deterministic,

E
[
‖difft‖2

2

∣∣D] 1
2 = E

∥∥∥∥∥M t
tε+1difftε + ut +

t−1∑
k=tε+1

M t
k+1uk

∥∥∥∥∥
2

2

∣∣∣∣∣∣D
 1

2

≤ E
[∥∥M t

tε+1difftε
∥∥2

2

∣∣∣D] 1
2

+ E
[
‖ut‖2

2

∣∣D] 1
2 +

t−1∑
k=tε+1

E
[∥∥M t

k+1uk
∥∥2

2

∣∣∣D] 1
2

≤ E
[∥∥M t

tε+1

∥∥2

2

∣∣∣D] 1
2 E
[
‖difftε‖

2
2

∣∣D] 1
2 +

E
[
‖ut‖2

2

∣∣D] 1
2 +

t−1∑
k=tε+1

E
[∥∥M t

k+1

∥∥2

2

∣∣∣D] 1
2 E
[
‖uk‖2

2

∣∣D] 1
2

≤ ‖M t
tε+1‖2 E

[
‖difftε‖

2
2

∣∣D] 1
2 +(

1 +
t−1∑

k=tε+1

‖M t
k+1‖2

)
max

τ∈[tε+1:t]

{
E
[
‖uτ‖2

2

∣∣D] 1
2

}
.

Let a = (3 + ρ)/4 and recall that ‖Jk‖ρ ≤ a < 1 for any k ≥ tε. This implies that

‖M t
k‖ρ = ‖JtJt−1 · · · Jk‖ρ
≤ ‖Jt‖ρ‖Jt−1‖ρ · · · ‖Jk‖ρ
≤ at−k+1,

so ‖M t
k‖2 ≤ cρ,2a

t−k+1. With this, we see that(
1 +

t−1∑
k=tε+1

‖M t
k+1‖2

)
≤

(
1 +

t−1∑
k=tε+1

cρ,2a
t−k

)

≤ max{1, cρ,2} ·
∞∑
`=0

a`

= max{1, cρ,2} ·
1

1− a
.

Let τ ∈ [tε + 1 : t] be arbitrary and consider

E
[
‖uτ‖2

2

∣∣D] 1
2 = E

[∥∥∥(Jτ − J̃τ )(ẽτ−1 + ντ ) + (K̃τ −Kτ )wτ

∥∥∥2

2

∣∣∣∣D] 1
2

≤ ‖Jτ − J̃τ‖2 E
[
‖ẽτ−1 + ντ‖2

2

∣∣D] 1
2 + ‖K̃τ −Kτ‖2 E

[
‖wτ‖2

2

∣∣D] 1
2

< ε · E
[
‖ẽτ−1 + ντ‖2

2

∣∣D] 1
2 + ε · E

[
‖wτ‖2

2

∣∣D] 1
2

≤ ε
(
E
[
‖ẽτ−1‖2

2

∣∣D] 1
2 + E

[
‖ντ‖2

2

∣∣D] 1
2 + E

[
‖wτ‖2

2

∣∣D] 1
2

)
,
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where we have used the triangle and Cauchy-Schwarz inequalities for expectation and the
fact that τ > tε. More detail to emphasize this is the bound on J and K?

Recall that ντ = (ντ )N∗ and cov(ντ , ντ ) = E [ντν
′
τ ] is independent of D. Elaborate why?

Notice that

E
[
‖ντ‖2

2

∣∣D] = tr (E [ν ′τντ |D])

= E [tr(ν ′τντ ) |D]

= E [tr(ντν
′
τ ) |D]

= tr (E [ντν
′
τ |D])

= tr (E [ντν
′
τ ])

= tr
(
σ2

sysI|N∗|×|N∗|
)

= |N∗|σ2
sys.

A similar computation proves that E
[
‖wτ‖2

2

∣∣D] = nσ2
obs. Recalling that E

[
‖ẽτ‖2

2

∣∣D] < B
verify < or ≤, we have

E
[
‖uτ‖2

2

∣∣D] 1
2 < ε

(√
B +

√
|N∗|σ2

sys +
√
nσ2

obs

)
.

Since τ ∈ [tε + 1 : t] was arbitrary, we conclude that

max
τ∈[tε+1:t]

{
E
[
‖uτ‖2

2

∣∣D] 1
2

}
< ε

(√
B +

√
|N∗|σ2

sys +
√
nσ2

obs

)
.

Combining these results with reference prev equations...., we see that

E
[
‖difft‖2

2

∣∣D] 1
2 < cρ,2a

t−tεE
[
‖difftε‖2

2

∣∣D] 1
2 + Cε,

where C = max{1, cρ,2} · 1
1−a ·

(√
B +

√
|N∗|σ2

sys +
√
nσ2

obs

)
.

Problem: why is E [‖difftε‖2
2 |D]

1
2 bounded? NV ignores it, and AB says ”because

they’re finite,” which needs more explanation. Moving on, assume it’s finite / bounded.

If

tms = tε + loga

(
Cε

cρ,2E [‖difftε‖2
2 |D]

1
2

)
,

then we see that for all t ≥ tms,

E
[
‖x̃t − x̂t‖2

2

∣∣D] 1
2 = E

[
‖difft‖2

2

∣∣D] 1
2 < 2Cε,

and since ε can be chosen arbitrarily small we conclude that x̂t converges to x̃t in mean
square.
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FIX THE REST OF THIS PROOF! We’ll need to go through and change all the ε
to some other symbol, then change X to ε, then add more detail.

Now, by Markov’s inequality, for all t ≥ tms,

Pr
(
‖x̃t − x̂t‖2

2 > εerr

∣∣D) ≤ E [‖x̃t − x̂t‖2
2 |D]

εerr

<
4C2ε2

εerr

.

Given any X > 0, choose ε =
√
X·εerr
2C

. Then

Pr
(
‖x̃t − x̂t‖2

2 ≤ εerr

∣∣D) < 1−X

for all t ≥ tms = t∗ + τKF.
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