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1 Model

Major change: time indexing redone to match NV original. t0 is now the first
addition and we assume there’s an initial (t0 − 1) step.

At each time t ≥ (t0 − 1) (do we have a yt0−1?), we have

yt = Axt + wt

xt+1 = xt + νt+1

Here, E[wt] = 0, cov(wt) = E[wtw
′
t] = R = σ2

obsIn×n, iid and independent of xt; xt0−1 ∼
N (0, σ2

sys,0INt0−1); and νt ∼ N (0, σ2
sysINt) iid. for t ≥ t0

yt, wt ∈ Rn, A ∈ Rn×m, xt, νt ∈ Rm.

Time indices are discrete. Make the distinction between sampling times (used) and
continuous time (not used).

Update picture?

. . .

tj tj+1

tj − 1 tj + 1 tj + 2 tj+1 − 1 tj+1 + 1

d

For j ≥ 0, we have the addition times {tj}. The initial time is t = (t0 − 1). At the
addition times tj = t0 + jd, the support of xt changes: Nt = Ntj for all t ∈ [tj : tj+1 − 1],
and Ntj ⊂ Ntj+1

.
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2 Algorithm – KFCS with LS

This algorithm applies to the case where there are no support deletions.

Issues:

Pt0−1 and Qt – is this an identity of size |Nhat| or is it a full-blown identity
with nonzeros on diagonal entries corresponding to Nhat

Is this algorithm transcribed correctly? There are 3 versions of it that I have
(NV original, AB+NV typed draft, and AB handwritten) and all 3 are different.

Look for places to simplify – this is long and contains repeat steps, which is
non-ideal

2



Needs to be redone for the new timescale
Input: σsys, σobs, σsys,0, A, {tj}, {Nt}, {yt}

x̂t0,init = arg minx ‖x‖1 subject to ‖yt0 − Ax‖2 < ξ

N̂t0 = {k : |(x̂t0,init)k| > α}
Pt0−1 = σ2

sys,0IN̂t0

Qt0 = 0
x̂t0−1 = 0

Pt0|t0−1 = Pt0−1 +Qt0

Kt0 = Pt0|t0−1A
′ (APt0|t0−1A

′ + σ2
obsI
)−1

Jt0 = I −Kt0A
Pt0 = Jt0Pt0|t0−1

x̂t0 = Jt0x̂t0−1 +Kt0yt0

for t > t0 do
Qt = σ2

sysIN̂t−1

Pt|t−1 = Pt−1 +Qt

Kt = Pt|t−1A
′ (APt|t−1A

′ + σ2
obsI
)−1

Jt = I −KtA
Pt = JtPt|t−1

x̂t,init = Jtx̂t−1 +Ktyt

yt,res = yt − Ax̂t,init

β̂t = arg minβ ‖β‖1 subject to ‖yt,res − Aβ‖2 < ξ

x̂t,CSres = x̂t,init + β̂t

∆A = {k : |(x̂t,CSres)k| > α}
N̂t = N̂t−1 ∪∆A

if ∆A = ∅ then
x̂t = x̂t,init

else
x̂t = 0
(x̂t)N̂t

= (A[1:n],N̂t
)†yt

Pt = 0m×m

(Pt)N̂t,N̂t
=
[
(A[1:n],N̂t

)′(A[1:n],N̂t
)
]−1

σ2
obsI|N̂t|

end

end
Algorithm 1: Kalman-Filtered Compressed Sensing (KFCS)
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3 Algorithm – Genie-Aided Kalman Filtering (GAKF)

This algorithm applies to the case where there are no support deletions.

Issues:

Check blue piece below – do we want all-ones, identity of size |DeltaA|, or
identity restricted to DeltaA and zero else?

Needs to be redone for the new timescale
Input: σsys, σobs, σsys,0, A, {tj}, {Nt}, {yt}

for t ≥ t0 do
if t = t0 then

T = N0

P̃t−1 = σ2
sys,0IT

x̃t−1 = 0

Q̃t = 0

else
T = Nt−1

Q̃t = σ2
sysIT

if t = tj for some j > 0 then
∆A = Nt \Nt−1(
P̃t−1

)
∆A,∆A

= σ2
sysI|∆A|

end

end

P̃t|t−1 = P̃t−1 + Q̃t

K̃t = P̃t|t−1A
′
(
AP̃t|t−1A

′ + σ2
obsI
)−1

J̃t = I − K̃tA

P̃t = J̃tP̃t|t−1

x̃t = J̃tx̃t−1 + K̃tyt
end

Algorithm 2: Genie-Aided Kalman Filter (GAKF)
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4 Candes RIP – C1 Computation for α

[1], Theorem 1.3: Suppose y = Ax + η, | supp(x)| = s, δ2s = δ2s(A) <
√

2 − 1, and
‖η‖2 ≤ ξ. Then

x̂ = arg min
z
‖z‖1 subject to ‖y − Az‖2 ≤ ξ

satisfies
‖x− x̂‖2 ≤ C1(s)ξ,

where

C1(s) =
4
√

1 + δ2s

1− (1 +
√

2)δ2s

.

Claim / Note: It can be shown that C1 is an increasing function of δ2s, and δ2s is an
increasing function of s, so C1 is an increasing function of s.

For any support size s in this paper, we will have s ≤ Smax and thus C1(s) ≤ C1(Smax).
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5 Linear Systems Theory

5.1 Definitions

We present some basic definitions from linear systems theory. These can be found in [3],
Appendix C. Throughout, let F,G,H ∈ Rn×n.

A matrix F is stable if ρ(F ) < 1.

The pair {F,G} is controllable if the matrix [G,FG, . . . , F n−1G] is full rank n. An
equivalent characterization of controllability is that rank([λI−F, G]) = n for all eigenvalues
λ of F .

The pair {F,G} is stabilizable if rank([λI − F, G]) = n for all eigenvalues λ of F with
|λ| ≥ 1.

The pair {F,H} is detectable if and only if {F ′, H ′} is stabilizable.

Consider the case where F = I. Then λ = 1 is the only eigenvalue of F = F ′ and the
matrix [λI − F, G] = [0, G] has rank n if and only if G has rank n. Therefore, if G is full
rank, then {I,G} is controllable and stabilizable. Additionally, since rank(H) = rank(H ′),
we can use the same argument to conclude that {I,H} is detectable if H is full rank.

5.2 Theoretical Results

Here we present two important theoretical results from linear systems theory.

The general form of a discrete-time algebraic Riccati equation (DARE) is

P = FPF ′ +GQG′ − (FPH ′ +GS)(R +HPH ′)−1(FPH ′ +GS)′, (1)

where P, F,G,H,Q,R, S ∈ Rn×n.

[2], Theorem 7.5.1.b: Consider the DARE (1), where {F,H} is detectable and[
Q S
S ′ R

]
� 0.

If, in addition, {F −GSR−1H,GQ−GSR−1S ′} is stabilizable, then the DARE always has
a unique Hermitian and positive semi-definite stabilizing solution P such that F −KpH is
stable, where Kp = (FPH ′ +GS)(R +HPH ′)−1.

The general form of a discrete-time algebraic Riccati recursion (DARR) is

Pi+1 = FPiF
′ +GQG′ −Kp,iRe,iK

′
p,i, i ≥ 0 (2)

where Kp,i = (FPiH
′+GS)(R+HPiH

′)−1, Re,i = R+HPiH
′, and {Pk}, F,G,H,Q,R, S ∈

Rn×n.
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[2], Lemma 8.7.3: Consider the Riccati recursion (2) with positive semi-definite initial
condition P0 � 0. If Q � 0, R � 0, {F,H} is detectable and {F−GSR−1H, GQ−GSR−1S ′}
is stabilizable then Pi converges to the unique positive semi-definite matrix, P , that satisfies
the discrete-time algebraic Riccati equation (1).
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6 Proofs

Lemma 1. Assume that {xt} and {yt} follow the signal model above, {t} is a discrete set
of sampling times, only additions to true support (Nt ⊆ Nt+1 for all t), etc.

Further assume that

i) The true solution is exactly recovered at the initial time t = (t0 − 1): x̂t0−1 = xt0−1,
so N̂t0−1 = Nt0−1; Can we relax this to just the true support is recovered?

ii) The maximum support size Smax satisfies Smax ≤ S∗∗ = max{s : δ2s(A) <
√

2− 1};

iii) The observation noise wt is bounded in magnitude: ‖wt‖2 < ξ for all t and some
ξ > 0;

iv) The addition thresholds αt satisfy αt = α = Cξ for all t, where

C = C(Smax) =
4
√

1 + δ2Smax

1−
(
1 +
√

2
)
δ2Smax

with δ2Smax = δ2Smax(A); and

v) The addition delay d satisfies d > τdet, where the detection delay τdet is defined by

τdet = τdet(α, ε) =


 2α

σsysQ−1
(

(1−ε)1/Sadd

2

)
2

− 1

 .
Here, Q−1(x) is the inverse of the Gaussian Q-function, Q(x) =

∫∞
x

1√
2π
e−

t2

2 dt.

Then

1) ‖xt − x̂t,CSres‖2 ≤ α for all sampling times t ≥ (t0 − 1);

2) There are no false support additions: N̂t ⊆ Nt for all t ≥ (t0 − 1); and

3) For any j ≥ 0, Pr (Ej |Fj) ≥ 1−ε, where Ej = {N̂t = Nt for all t ∈ [tj+τdet : tj+1−1]},
Fj = {N̂tj−1 = Ntj−1}, and ε > 0 is arbitrary.
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Proof. Need to find some way to get Candes Thm 1.3 in here and make the
connection that x̂t,CSres in our notation is x? in his. Also need to point out that
the way we chose α, we have any C1ξ ≤ C1(Smax)ξ = α.

To prove claims 1 and 2, we proceed by induction on the value of t.

Consider the base case, where t = (t0 − 1). Claim 1 follows from [1], Theorem 1.3
and assumptions (ii), (iii), and (iv) (Not immediate – need to connect to Candes as
above), and assumption (i) trivially proves claim 2.

Suppose now that claims 1 and 2 are both true for some time (t− 1). We show that the
claims are true at time t.

First, we verify claim 1 at time t. Referring to Algorithm 1, we have

βt = xt − x̂t,init

β̂t = arg min
β
‖β‖1 subject to ‖yt,res − Aβ‖2 < ξ

x̂t,CSres = x̂t,init + β̂t,

where supp(x̂t,init) = N̂t−1.

By the induction hypothesis, N̂t−1 ⊆ Nt−1, and by our model assumptions we have
Nt−1 ⊆ Nt. Therefore, supp(βt) ⊆ Nt ∪Nt−1 = Nt, so | supp(βt)| ≤ |Nt| ≤ Smax. With this,
we can apply [1], Theorem 1.3 to see that ‖βt − β̂t‖2 ≤ α (AGAIN, need to make this
connection). By the definitions of βt and x̂t,CSres, we see that ‖βt − β̂t‖2 = ‖xt − x̂t,CSres‖2,
so claim 1 follows.

Next, we verify claim 2 at time t. Suppose that (xt)i = 0 for some index i, so that
i /∈ supp(xt) = Nt. Since Nt−1 ⊆ Nt, we must also have i /∈ Nt−1; by the induction
hypothesis, this implies that i /∈ N̂t−1.

Applying the result of claim 1,

|(x̂t,CSres)i| = |(xt − x̂t,CSres)i| ≤ ‖xt − x̂t,CSres‖2 ≤ α.

Referring to Algorithm 1, N̂t = N̂t−1∪{k : |(x̂t,CSres)k| > α}. Since i /∈ N̂t−1 and |(x̂t,CSres)i| ≤
α, it follows that i /∈ N̂t. Thus if i /∈ Nt, then i /∈ N̂t; equivalently, if i ∈ N̂t, then i ∈ Nt.
Therefore, N̂t ⊆ Nt, which proves claim 2 and completes our induction proof.
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Now, we prove claim 3. Let ∆t = Nt \ N̂t−1 denote the set of indices of the true support
at time t which have not been detected before time t. Fix j ≥ 0 and suppose that Fj holds,

that is, N̂tj−1 = Ntj−1.

Since Fj holds, ∆t ⊆ ∆add,tj for all t ∈ [tj : tj+1 − 1].

Let i ∈ ∆t for some t ∈ [tj : tj+1 − 1] and suppose that |(xt)i| > 2α. Applying the result
from claim 1,

0 ≤ |(xt − x̂t,CSres)i| ≤ ‖xt − x̂t,CSres‖2 ≤ α < 2α < |(xt)i|,

so that

|(x̂t,CSres)i| =
∣∣(xt)i − [(xt)i − (x̂t,CSres)i]

∣∣
≥
∣∣|(xt)i| − |(xt − x̂t,CSres)i|

∣∣
= |(xt)i| − |(xt − x̂t,CSres)i|
> 2α− α
= α.

We see that if |(xt)i| > 2α, then |(x̂t,CSres)i| > α, so i ∈ N̂t = N̂t−1 ∪ {k : |(x̂t,CSres)k| > α}.
If |(xt)i| > 2α for all i ∈ ∆add,tj , then ∆t ⊆ ∆add,tj ⊆ N̂t; in words, we will detect all

“missing” indices at time t, so N̂t = Nt.

From the above discussion, we see that the event {|(xt)i| > 2α for all i ∈ ∆add,tj} is
contained within the event {|(xt)i| > 2α for all i ∈ ∆t | Fj}, which in turn is contained

within the event {N̂t = Nt | Fj}.
All of the above is still kind of weak in places. It all makes sense in words

and is true, but the math / set theory is kind of wonky.

Our model asserts that the entries (xt)i for i ∈ ∆add,tj are independent and identically
distributed N

(
0, (t− tj + 1)σ2

sys

)
random variables. With this in mind, we see that

Pr
(
N̂t = Nt

∣∣∣Fj

)
≥ Pr (|(xt)i| > 2α for all i ∈ ∆t |Fj)

≥ Pr
(
|(xt)i| > 2α for all i ∈ ∆add,tj

)
= [Pr (|(xt)k| > 2α)]Sadd , k ∈ ∆add,tj arbitrary

=

[
2Q
(

2α

σsys

√
t− tj + 1

)]Sadd

.
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We examine the particular case where t = tj + τdet. In this case,

Pr
(
N̂tj+τdet = Ntj+τdet

∣∣∣Fj

)
≥
[

2Q
(

2α

σsys

√
(tj + τdet + 1)− tj

)]Sadd

=

[
2Q
(

2α

σsys

√
τdet + 1

)]Sadd

≥ 1− ε,

where the final inequality is easily verified and follows from the ceiling in the definition of
τdet and the fact that Q is a decreasing function.

If N̂t = Nt for t = tj + τdet, then the model assumptions of no support deletions and no

support additions until time tj+1, in addition to the result of claim 2, imply that N̂t = Nt

for all t ∈ [tj + τdet : tj+1 − 1], which is exactly the event Ej. Therefore, Pr (Ej |Fj) =

Pr
(
N̂tj+τdet = Ntj+τdet

∣∣∣Fj

)
≥ 1− ε, which completes the proof.
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Lemma 2. Assume that {xt} and {yt} follow the signal model above, {t} is a discrete set
of sampling times, only additions to true support (Nt ⊆ Nt+1 for all t), etc.

δSmax(A) < 1, αdel = 0.

Define the event D = {N̂t = Nt = N∗ for all t ∈ [t∗ : t∗∗]}, where N∗ is some fixed index
set.

At each time t, let x̂t = x̂t,KFCS be the KFCS estimate of xt (Algorithm 1) and let
x̃t = x̃t,GAKF be the GAKF estimate of xt (Algorithm 2).

Then given any ε > 0 there exists some tms ≥ t∗ such that for all t ∈ [tms : t∗∗], we have
E [‖x̃t − x̂t‖2

2 |D] < ε, i.e., x̂t converges to x̃t in mean square.

Proof. Throughout, we assume that the event D occurs and t ∈ [t∗ : t∗∗].

Where possible, we consider variables and parameters only along the support set N∗, but
to simplify notation will omit the subscript N∗. Thus, νt = (νt)N∗ , A = A[1:n],N∗ , Q = QN∗,N∗ ,
x̂t = (x̂t)N∗ , Jt = (Jt)N∗,N∗ , Kt = (Kt)N∗,[1:n], Pt|t−1 = (Pt|t−1)N∗,N∗ , Pt = (Pt)N∗,N∗ , and

analogously for x̃t, J̃t, K̃t, P̃t|t−1, and P̃t.

Note, however, that yt and wt may be be supported on [1 : n] and are thus not truncated
when they appear; similarly, R is not truncated.

For t > t∗, both KFCS and GAKF run the same fixed-dimensional and fixed-parameter
Kalman filter for (xt)N∗ , but with different initial conditions. Elaborate...

↓———— moved to enhance the flow of the proof

Suppose that t ∈ [t∗ : t∗∗]. We see that

Pt+1|t = Pt +Q

= (I −KtA)Pt|t−1 +Q

= Pt|t−1 +Q− Pt|t−1A
′(APt|t−1A

′ +R)−1APt|t−1,

which is a discrete algebraic Riccati recursion (2) with F = I, G = I, Q = σ2
sysI|N∗|×|N∗| � 0,

R = σ2
obsIn×n � 0, and S = 0. Verify Q, R – goes back to the algorithm issues. Note

that Q is constant on [t∗ : t∗∗] since we assume that D occurs.

Since |N∗| ≤ Smax and δSmax < 1, A = (A[1:n],N∗) is full rank. Therefore, using the
results from Section 5.1, {I, A} is detectable. Further, since Q = σ2

sysI is full rank, {I,Q} is
stabilizable.

Referring to the algorithm (which one?), we see that P0 = Pt0−1 = σ2
sys,0I � 0. is

this even true? Need to get the algorithms and model set up correctly. I think
we want the initial step to be Pt0|t0−1 = σ2

sys,0I + Qt0 � 0, but the two algorithms
disagree on what Qt0 is.

Therefore, by [2], Lemma 8.7.3, the DARR converges to a positive semi-definite matrix P?
which satisfies the corresponding DARE. This implies that Kt → K? = P?A

′(AP?A
′ +R)−1
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and Jt → J? = (I −K?A). Further, by [2], Theorem 7.5.1.b, ρ(J?) = ρ(I −K?A) < 1.

Since GAKF and KFCS run the same Kalman filter, these results also apply to the GAKF
iterates, i.e. P̃t|t−1 → P?, K̃t → K?, and J̃t → J?.

Define ρ = ρ(J?) and let ε0 = (1 − ρ)/2. A standard result from linear algebra states
that there exists a matrix norm ‖ · ‖ρ such that ‖J?‖ρ ≤ ρ + ε0 = (1 + ρ)/2 < 1. Further,
by the equivalence of matrix norms on a finite-dimensional space, there exists some constant
c2,ρ such that ‖M‖2 ≤ c2,ρ‖M‖ρ for any matrix M .

Since J̃t → J?, there exists some tc ≥ t0 such that for all t ≥ tc, ‖J̃t‖2 < ‖J?‖2 + 1.
Therefore, for any t ≥ t0, we have ‖J̃t‖2 ≤ max{‖J̃t0‖2, ‖J̃t0+1‖2, . . . , ‖J̃tc−1‖2, ‖J?‖2 + 1},
i.e. there exists some value B̃J > 0 such that ‖J̃t‖2 < B̃J for all t. Since ‖J̃t‖2 <∞ for all t
and ‖J?‖2 <∞, we must also have B̃J <∞.

By similar arguments, since Jt converges to J? and Pt|t−1 and P̃t|t−1 converge to P?, there

exist some 0 < BJ , BP , B̃P <∞ such that ‖Jt‖2 < BJ , ‖Pt|t−1‖2 < BP , and ‖P̃t|t−1‖2 < B̃P

for all t.

Let ε > 0 be arbitrary.

The convergence results above and standard analysis techniques can be used to show that
there exists some tε > t∗ such that for all t ≥ tε, all of the following conditions hold:

• ‖Kt − K̃t‖2 < ε;

• ‖Jt − J̃t‖2 < ε; and

• ‖Jt‖ρ ≤ ‖J?‖ρ + (1− ρ)/4.

? Why do we care if tε does not depend on y?

Problem: NV proof says x̂t∗ is independent of yt∗ , but by definition it’s not. AB draft:
t∗ − 1. So I agree that we’re independent of y1 . . . yt∗−1, but we are dependent on yt∗ . . . yt
because x̂t = Jtx̂t−1 +Ktyt for t > t∗. All of this independence stuff needs to be very
carefully worked and verified; also, why do we care? I think x̂ is useless here, it
does not affect the choice of tε.

Attempted fix: Examining the algorithms, we see that Kt, K̃t, Jt, J̃t, Pt|t−1 and P̃t|t−1

do not depend on {yk}, hence, neither do K?, J?, and P?. It follows that tε also does not
depend on {yk}.
↑———— /moved

Let êt = xt − x̂t and ẽt = xt − x̃t. Define difft = êt − ẽt and notice that difft = x̃t − x̂t.
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Let t > tε > t∗. By Algorithm 1 and the model, we see that

êt = xt − x̂t
= (xt−1 + νt)− (Jtx̂t−1 +Ktyt)

= xt−1 + νt − Jtx̂t−1 −Kt(Axt + wt)

= xt−1 + νt − Jtx̂t−1 −KtA(xt−1 + νt)−Ktwt

= (I −KtA)xt−1 − Jtx̂t−1 + (I −KtA)νt −Ktwt

= Jt(xt−1 − x̂t−1) + Jtνt −Ktwt

= Jtêt−1 + Jtνt −Ktwt.

Similarly, using Algorithm 2 and the model, we can verify that

ẽt = J̃tẽt−1 + J̃tνt − K̃twt.

Combining these results yields

difft = Jtdifft−1 + (Jt − J̃t)(ẽt−1 + νt) + (K̃t −Kt)wt.

Let
ut = (Jt − J̃t)(ẽt−1 + νt) + (K̃t −Kt)wt,

so that difft = Jtdifft−1 + ut. Recursively applying this identity, we see that

difft = Jtdifft−1 + ut

= Jt (Jt−1difft−2 + ut−1) + ut

= JtJt−1difft−2 + Jtut−1 + ut

= JtJt−1 (Jt−2difft−3 + ut−2) + Jtut−1 + ut

= JtJt−1Jt−2difft−3 + JtJt−1ut−2 + Jtut−1 + ut
...

= JtJt−1 · · · Jtε+1difftε + JtJt−1 · · · Jtε+2utε+1 + . . .+ Jtut−1 + ut.

If we define

M t
k =

{
JtJt−1 · · · Jk+1Jk k ≤ t

I k > t

then we can more compactly write

difft = M t
tε+1difftε +

t∑
k=tε+1

M t
k+1uk.
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Therefore, applying the triangle and Cauchy-Schwarz inequalities for expectation and
noting that the matrices {M t

k} are deterministic,

E
[
‖difft‖2

2

∣∣D] 1
2 = E

∥∥∥∥∥M t
tε+1difftε +

t∑
k=tε+1

M t
k+1uk

∥∥∥∥∥
2

2

∣∣∣∣∣∣D
 1

2

≤ E
[∥∥M t

tε+1difftε
∥∥2

2

∣∣∣D] 1
2

+ E
[
‖ut‖2

2

∣∣D] 1
2 +

t−1∑
k=tε+1

E
[∥∥M t

k+1uk
∥∥2

2

∣∣∣D] 1
2

≤ E
[∥∥M t

tε+1

∥∥2

2

∣∣∣D] 1
2 E
[
‖difftε‖2

2

∣∣D] 1
2 +

E
[
‖ut‖2

2

∣∣D] 1
2 +

t−1∑
k=tε+1

E
[∥∥M t

k+1

∥∥2

2

∣∣∣D] 1
2 E
[
‖uk‖2

2

∣∣D] 1
2

E
[
‖difft‖2

2

∣∣D] 1
2 ≤ ‖M t

tε+1‖2 E
[
‖difftε‖2

2

∣∣D] 1
2 +(

1 +
t∑

`=tε+2

‖M t
`‖2

)
max

τ∈[tε+1:t]

{
E
[
‖uτ‖2

2

∣∣D] 1
2

}
. (3)

Recall that, for k ≥ tε, we have

‖Jk‖ρ ≤ ‖J?‖ρ + (1− ρ)/4 ≤ (1 + ρ)/2 + (1− ρ)/4 = (3 + ρ)/4 < 1.

Let a = (3 + ρ)/4. Then for tε ≤ k ≤ t,

‖M t
k‖2 ≤ c2,ρ‖M t

k‖ρ
= ‖JtJt−1 · · · Jk‖ρ
≤ ‖Jt‖ρ‖Jt−1‖ρ · · · ‖Jk‖ρ

‖M t
k‖2 ≤ c2,ρa

t−k+1. (4)

With this, we see that (
1 +

t∑
`=tε+2

‖M t
`‖2

)
≤
(

1 +
t∑

`=tε+2

c2,ρa
t−`+1

)

≤ max{1, c2,ρ} ·
∞∑
`=0

a`(
1 +

t∑
`=tε+2

‖M t
`‖2

)
≤ max{1, c2,ρ} ·

1

1− a . (5)

Let τ ∈ [tε+1 : t] be arbitrary. Since τ > tε, we have ‖K̃τ−Kτ‖2 < ε and ‖J̃τ−Jτ‖2 < ε.
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Consider

E
[
‖uτ‖2

2

∣∣D] 1
2 = E

[∥∥∥(Jτ − J̃τ )(ẽτ−1 + ντ ) + (K̃τ −Kτ )wτ

∥∥∥2

2

∣∣∣∣D] 1
2

≤ ‖Jτ − J̃τ‖2 E
[
‖ẽτ−1 + ντ‖2

2

∣∣D] 1
2 + ‖K̃τ −Kτ‖2 E

[
‖wτ‖2

2

∣∣D] 1
2

< ε · E
[
‖ẽτ−1 + ντ‖2

2

∣∣D] 1
2 + ε · E

[
‖wτ‖2

2

∣∣D] 1
2

E
[
‖uτ‖2

2

∣∣D] 1
2 ≤ ε

(
E
[
‖ẽτ−1‖2

2

∣∣D] 1
2 + E

[
‖ντ‖2

2

∣∣D] 1
2 + E

[
‖wτ‖2

2

∣∣D] 1
2

)
, (6)

where we have used the triangle and Cauchy-Schwarz inequalities for expectation.

By the properties of the Kalman filter, for any k, we have

P̃k = E
[
(x̃k − E [x̃k | y1, y2, . . . , yk]) (x̃k − E [x̃k | y1, y2, . . . , yk])

′ ∣∣ y1, y2, . . . , yk
]

= E
[
(x̃k − xk) (x̃k − xk)′

∣∣ y1, y2, . . . , yk
]

= E [ẽkẽ
′
k | y1, y2, . . . , yk]

= E [ẽkẽ
′
k] ,

where the independence on the last line follows because P̃k has no dependence on any of
the {yi}, a well-known property of the Kalman filter (and consequence of the algorithm).
Therefore,

E
[
‖ẽk‖2

2

∣∣D] = tr (E [ẽ′kẽk |D])

= E [tr(ẽ′kẽk) |D]

= E [tr(ẽkẽ
′
k) |D]

= tr (E [ẽkẽ
′
k |D])

= tr (E [ẽkẽ
′
k])

= tr
(
P̃k

)
.

Here, we used the fact that the occurrence of D is independent of the value of P̃k = E [eke
′
k].

Make sure this is legitimate.

We see that

‖P̃k‖2 = ‖J̃kP̃k|k−1‖2 ≤ ‖J̃k‖2‖P̃k|k−1‖2 < B̃JB̃P <∞,

where we recall that ‖P̃k|k−1‖2 < B̃P and ‖J̃k‖2 < B̃J . Since P̃k is Hermitian, ‖P̃k‖2 =

λmax(P̃k). Therefore,

tr(P̃k) =
∑
i

λi(P̃k) ≤ |N∗|λmax(P̃k) = |N∗|‖P̃k‖2 < |N∗|B̃JB̃P <∞,

so there exists some 0 < B̃ <∞ such that tr(P̃k) < B̃ for all k.
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Therefore,

E
[
‖ẽτ−1‖2

2

∣∣D] = tr
(
P̃τ−1

)
< B̃.

Since D occurs, ντ is supported on N∗, so the covariance of ντ = (ντ )N∗ is E[ντν
′
τ ] =

E [ντν
′
τ |D] = σ2

sysI|N∗|×|N∗|. VERIFY this claim. Therefore,

E
[
‖ντ‖2

2

∣∣D] = tr (E [ν ′τντ |D])

= E [tr(ν ′τντ ) |D]

= E [tr(ντν
′
τ ) |D]

= tr (E [ντν
′
τ |D])

= tr
(
σ2

sysI|N∗|×|N∗|
)

= |N∗|σ2
sys.

A similar computation proves that E
[
‖wτ‖2

2

∣∣D] = nσ2
obs.

With (6), these results show that

E
[
‖uτ‖2

2

∣∣D] 1
2 < ε

(√
B̃ +

√
|N∗|σ2

sys +
√
nσ2

obs

)
.

Since τ ∈ [tε + 1 : t] was arbitrary, we conclude that

max
τ∈[tε+1:t]

{
E
[
‖uτ‖2

2

∣∣D] 1
2

}
< ε

(√
B̃ +

√
|N∗|σ2

sys +
√
nσ2

obs

)
. (7)

We have seen that E
[
‖ẽk‖2

2

∣∣D] < tr(P̃k) < B̃ for some B̃ and all k; by similar work,

we can conclude that there exists some B such that E
[
‖ek‖2

2

∣∣D] < tr(Pk) < B for all k.
Therefore, by the triangle inequality for expectation,

E
[
‖difftε‖2

2

∣∣D] 1
2 = E

[
‖etε − ẽtε‖2

2

∣∣D] 1
2

≤ E
[
‖etε‖2

2

∣∣D] 1
2 + E

[
‖ẽtε‖2

2

∣∣D] 1
2

E
[
‖difftε‖2

2

∣∣D] 1
2 < B + B̃. (8)

Combining (3) with (4), (5), (7), and (8), we see that

E
[
‖difft‖2

2

∣∣D] 1
2 < c2,ρa

t−tε(B + B̃) + Cε,

where C = max{1, c2,ρ} · 1
1−a ·

(√
B̃ +

√
|N∗|σ2

sys +
√
nσ2

obs

)
.
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If

tms = tε +

⌈
loga

(
Cε

c2,ρ(B + B̃)

)⌉
,

then we see that for all t ≥ tms,

E
[
‖x̃t − x̂t‖2

2

∣∣D] 1
2 = E

[
‖difft‖2

2

∣∣D] 1
2 < 2Cε,

and since C is constant and ε is arbitrary we have obtained our desired result.
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Corollary 1. Assume that the conditions of Lemma 2 hold.

Then given any ε and εerr there exists some τKF = τKF(ε, εerr, N∗) such that for all
t ∈ [t∗ + τKF : t∗∗], we have Pr

(
‖x̃t − x̂t‖2

2 ≤ εerr
∣∣D) > 1 − ε. Note that if t∗ + τKF > t∗∗,

then this interval is empty and the result is vacuously true.

Proof. Let ε > 0 and εerr > 0 be given and let ε̃ ≤ ε · εerr. By Lemma 2, there exists some
tms = tms(ε̃, N∗) such that for all t ≥ tms,

E
[
‖x̃t − x̂t‖2

2

∣∣D] < ε̃ ≤ ε · εerr.

Let t ≥ tms. By Markov’s inequality,

Pr
(
‖x̃t − x̂t‖2

2 > εerr

∣∣D) ≤ E [‖x̃t − x̂t‖2
2 |D]

εerr

<
ε̃

εerr

≤ ε.

Define τKF = tms − t∗. Since tms is a function of ε̃, which is itself a function of ε and εerr,
we have τKF = τKF(ε, εerr, N∗), and for all t ≥ tms = t∗ + τKF,

Pr
(
‖x̃t − x̂t‖2

2 < εerr

∣∣D) > 1− ε,

which is our desired result.
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Theorem 1. Assume that the conditions of Lemma 1 and Lemma 2 hold. Recall def of
Ej and Fj?

Let ε > 0, εerr > 0 be given.

Let τdet = τdet(α, ε) be as in Lemma 1.

Choose d > τdet + maxj{τKF(ε, εerr, Ntj)}.

1) Given any j ∈ [0 : K − 1], Pr (‖x̃t − x̂t‖2
2 ≤ εerr) > (1 − ε)j+2 for all t ∈ [tj + τdet +

τKF(ε, εerr, Ntj) : tj+1 − 1].

2) Pr (|∆t| ≤ Sadd and |∆e| = 0 for all t ≥ t0) ≥ (1− ε)K

3) Pr (For all j ∈ [0 : K − 1], |∆t| = 0 and |∆e| = 0 for all t ∈ [tj + τdet : tj+1 − 1])
≥ (1− ε)K

Proof. We first show by induction that Pr(Ej) ≥ (1− ε)j+1 for all j ≥ 0.

Consider the base case, where j = 0. By assumption, N̂t0−1 = Nt0−1, so F0 occurs. We
have

Pr(E0) = Pr (E0 |F0) ≥ 1− ε
by Lemma 1, which proves the base case.

Now assume that the claim is true for j = (k − 1) for some k ≥ 1, that is, Pr(Ek−1) ≥
(1− ε)k. Consider

Pr(Ek) = Pr(Ek ∩ Ek−1) + Pr(Ek ∩ (Ek−1)c)

≥ Pr(Ek ∩ Ek−1)

= Pr (Ek |Ek−1) Pr(Ek−1)

= Pr (Ek |Fk) Pr(Ek−1) WHY is this true?

≥ (1− ε)(1− ε)k

= (1− ε)k+1,

where we applied Lemma 1 to conclude that Pr (Ek |Fk) ≥ 1−ε. Therefore, by the principle
of mathematical induction, we conclude that

Pr(Ej) ≥ (1− ε)j+1

for all j ≥ 0.

Fix j ∈ [0 : K − 1].

Choosing t∗ = tj + τdet and t∗∗ = tj+1 − 1, the event D = {N̂t = Nt = N∗ for all t ∈ [t∗ :

t∗∗]} is identically the event Ej = {N̂t = Nt for all t ∈ [tj + τdet : tj+1− 1]}. Corollary 1 thus
yields

Pr
(
‖x̃t − x̂t‖2

2 ≤ εerr

∣∣Ej

)
> 1− ε
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for all t ∈ [tj + τdet + τKF(ε, εerr, Ntj) : tj+1 − 1].

Note that since d > τdet +τKF(ε, εerr, Ntj) for all j, the interval [tj+τdet +τKF(ε, εerr, Ntj) :
tj+1 − 1] is nonempty.

For any t ∈ [tj + τdet + τKF : tj+1 − 1], we see that

Pr
(
‖x̃t − x̂t‖2

2 ≤ εerr

)
= Pr

(
{‖x̃t − x̂t‖2

2 ≤ εerr} ∩ Ej

)
+ Pr

(
{‖x̃t − x̂t‖2

2 ≤ εerr} ∩ (Ej)
c
)

≥ Pr
(
{‖x̃t − x̂t‖2

2 ≤ εerr} ∩ Ej

)
= Pr

(
‖x̃t − x̂t‖2

2 ≤ εerr

∣∣Ej

)
Pr(Ej)

> (1− ε)(1− ε)j+1

= (1− ε)j+2,

which verifies the first claim.

I think that the third claim’s probability equals the one below. Either way,
we need this.

Pr(E0 ∩ E1 ∩ . . . ∩ EK−1) = Pr(E0)Pr (E1 |E0) Pr (E2 |E0 ∩ E1) · · ·Pr

(
EK−1

∣∣∣∣∣
K−1⋂
j=0

Ej

)
= Pr(E0)Pr (E1 |E0) Pr (E2 |E1) · · ·Pr (EK−1 |EK−2)

= Pr(E0)Pr (E1 |F1) Pr (E2 |F2) · · ·Pr (EK−1 |FK−1)

≥ (1− ε)K

Stuff to verify:

Pr (Ej |Ej−1) = Pr (Ej |Fj): if Ej−1 happens, then Fj definitely happens, but not seeing
why these are equal yet.

Markov property used on {Ej}: justification

Second claim: the event seems to be a superset of the event E0∩ . . .∩EK−1, so obviously
the probability is bigger than (1− ε)K .
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