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1 Model

Major change: time indexing redone to match NV original. t; is now the first
addition and we assume there’s an initial (¢, — 1) step.

At each time t > (to — 1) (do we have a y;, 17), we have

Yy = Axy + wy
Tip1 = Ty + Vg1
Here, E[w;] = 0, cov(w;) = Elww,] = R = 02 Lyxn, iid and independent of x;; x4, 1 ~
N(0,02 0In,,_,); and v, ~ N (0,02, 1,) iid. for t >t

Yy, wy € R", A€ RV™ x, v, € R™.

Time indices are discrete. Make the distinction between sampling times (used) and

continuous time (not used).

Update picture?

o T
Lj ti+1

For j > 0, we have the addition times {¢;}. The initial time is ¢ = (t, — 1). At the
addition times ¢; = to + jd, the support of x, changes: Ny = Ny, for all t € [t; : t;11 — 1],
and th - th+1‘



2 Algorithm — KFCS with LS

This algorithm applies to the case where there are no support deletions.
Issues:

P,,—1 and Q; — is this an identity of size |Nhat| or is it a full-blown identity
with nonzeros on diagonal entries corresponding to Nhat

Is this algorithm transcribed correctly? There are 3 versions of it that I have
(NV original, AB+NV typed draft, and AB handwritten) and all 3 are different.

Look for places to simplify — this is long and contains repeat steps, which is
non-ideal



Needs to be redone for the new timescale
Inplﬂ:: Osys; Oobsy Osys,05 Aa {tj}7 {Nt}a {yt}

Tt = argmin, ||z||; subject to |y, — Ax|ls < &
Nig = {k < [(&1mic)s| > a}

FBry1 = Uszys,OINto

Qi =0

Ty—1 =0

Pigito—1 = Prg—1 + Q4

Kiy = Piojtg 1A' (AP, 1A'+ 02, 1)

Ty =1 — K, A

Py = Jiy Prglte—1

Tyy = JioTio—1 + Ko Yto

for t >ty do
Qt = O-SQyS]Nt,1

Pt|t—1 = Ptfl + Qt
-1
Kt = Pt|t_1A/ (Apt|t—1A/ + Uzbsl)
J=1—-KA
Py = JiPyi
Tt init = Jele—1 + Ky
Yeres = Yt — A:it,init
By = argming || 5]|1 subject to ||yt es — ABl2 < &
i.t,CSres = :i't,init + Bt
AA = {k : |(j\7t,CSres)k| > Oé}
Nt = Ntfl U AA
if Ay =0 then

‘ Tt = Tt,init

else
.ft - 0
(@) g, = (Apy ) 9
Pt = Omxm
—1
(Pt>]\7t,]<7t = (A[lzn],Nt),(A[lzn},Nt) UgbsI\Nﬂ
end
end

Algorithm 1: Kalman-Filtered Compressed Sensing (KFCS)



3 Algorithm — Genie-Aided Kalman Filtering (GAKF)

This algorithm applies to the case where there are no support deletions.

Issues:

Check blue piece below — do we want all-ones, identity of size |DeltaA|, or
identity restricted to DeltaA and zero else?

Needs to be redone for the new timescale
Input: Usys; Oobs) o-sys,()a A, {tj}7 {Nt}a {yt}

for t >ty do

if t = t;, then

T - NO

Ptfl = 052y570[T

(%tfl = O

Q=0

else

T'= N

Q= UgySIT

if t =t; for some j > 0 then
Ag = Ny \ Ny

]5,5,1) =02 Ia
( AaAa sys*|Aal
end

end

Py—1 = P11 + Qy

B j B -1
Kt = F)t|t—1A/ (Apt|t—1A/ + O-(Q)bsl>
J=1—KA

P, = {tRf|t—1 .

.f't = thlvftfl —+ Ktyt

end

Algorithm 2: Genie-Aided Kalman Filter (GAKF)



4 Candes RIP — (; Computation for «

[1], Theorem 1.3: Suppose y = Az + 7, |supp(z)| = s, 625 = 02s(A) < V2 — 1, and
Inll2 < € Then
& = argmin ||z||; subject to ||y — Az||s <&

satisfies

|z — 2]z < Ci(s)E,
where
44/1 + 09y

A = T Ve

Claim / Note: It can be shown that C} is an increasing function of dos, and o, is an
increasing function of s, so C; is an increasing function of s.

For any support size s in this paper, we will have s < Sy and thus C(s) < C1(Smax)-



5 Linear Systems Theory

5.1 Definitions

We present some basic definitions from linear systems theory. These can be found in [3],
Appendix C. Throughout, let F,G, H € R"*".

A matrix F' is stable if p(F') < 1.

The pair {F,G} is controllable if the matrix [G, FG,..., F""'G] is full rank n. An
equivalent characterization of controllability is that rank([A] — F, G]) = n for all eigenvalues
Aof F.

The pair {F, G} is stabilizable if rank([A\] — F, G]) = n for all eigenvalues A\ of F' with
AL

The pair {F, H} is detectable if and only if {F’, H'} is stabilizable.

Consider the case where F' = I. Then A = 1 is the only eigenvalue of F' = F’ and the
matrix (A — F, G] = [0, G] has rank n if and only if G has rank n. Therefore, if G is full
rank, then {I, G} is controllable and stabilizable. Additionally, since rank(H) = rank(H’),
we can use the same argument to conclude that {I, H} is detectable if H is full rank.

5.2 Theoretical Results

Here we present two important theoretical results from linear systems theory.
The general form of a discrete-time algebraic Riccati equation (DARE) is
P=FPF +GQG — (FPH +GS)(R+ HPH')""(FPH' + GS), (1)
where P, F,G,H,Q, R, S € R™".
[2], Theorem 7.5.1.b: Consider the DARE (1), where {F, H} is detectable and
FEE

If, in addition, {F — GSR™'H,GQ — GSR™'5'} is stabilizable, then the DARE always has
a unique Hermitian and positive semi-definite stabilizing solution P such that F' — K, H is
stable, where K, = (FPH' + GS)(R+ HPH')™".

The general form of a discrete-time algebraic Riccati recursion (DARR) is

Py = FPF +GQG — K,;R. ;K]

D)

i>0 2)

where K,,; = (FP,H' +GS)(R+ HP,H')™', R.; = R+ HP,H', and {P:}, F,G,H,Q, R, S €
RTLXTL.



[2], Lemma 8.7.3: Consider the Riccati recursion (2) with positive semi-definite initial
condition Py = 0. If Q = 0, R > 0, {F, H} is detectable and {F—GSR™'H, GQ—GSR™'S'}
is stabilizable then P; converges to the unique positive semi-definite matrix, P, that satisfies
the discrete-time algebraic Riccati equation (1).



6 Proofs
Lemma 1. Assume that {x;} and {y:} follow the signal model above, {t} is a discrete set
of sampling times, only additions to true support (Ny C Nyyq for all t), ete.

Further assume that

i) The true solution is exactly recovered at the initial time t = (to — 1): Tty-1 = X451,
50 Nyy—1 = Nyy—1; Can we relax this to just the true support is recovered?

i1) The mazimum support size Sy Satisfies Smazr < Sex = max{s : dos(A) < V2 — 1};

ii) The observation noise wy is bounded in magnitude: ||wl|s < & for all t and some

£€>0;

iv) The addition thresholds oy satisfy oy = a = C& for all t, where

41+
C = C(Smaa) 02

T 1= (1+2) as,...

with dss,, .. = 0as,,..(A); and

v) The addition delay d satisfies d > Tz, where the detection delay T4 is defined by

2

200
Tdet = Tdet(a7 5) = -1

—e)1/S,
UsysQ_l ((1 6)2 dd>

Here, Q' (x) is the inverse of the Gaussian Q-function, Q(x) =

Then

1) |lzy — 2t csresll2 < « for all sampling times t > (to — 1);
2) There are no false support additions: Ny C Ny for all t > (tg —1); and

3) Foranyj >0, Pr(E;|F;) > 1—¢, where By = {Nt = N, for all t € [tj+7ae : tj1—1]},
F; = {Nt]-—l = Nt]._l}, and € > 0 is arbitrary.



Proof. Need to find some way to get Candes Thm 1.3 in here and make the
connection that #; csres in our notation is z* in his. Also need to point out that
the way we chose «, we have any (1§ < (1 (Smax)é = a.

To prove claims 1 and 2, we proceed by induction on the value of ¢.

Consider the base case, where ¢t = (o — 1). Claim 1 follows from [1], Theorem 1.3
and assumptions (ii), (iii), and (iv) (Not immediate — need to connect to Candes as
above), and assumption (i) trivially proves claim 2.

Suppose now that claims 1 and 2 are both true for some time (¢ — 1). We show that the
claims are true at time ¢.

First, we verify claim 1 at time t. Referring to Algorithm 1, we have

5t = Tt — Tt init

Bt = argmﬁin |BIlx subject to ||ytres — ABl2 < &
ﬁ:t,CSres = :i't,init + Bb

where supp (i) = Ni_1.

By the induction hypothesis, Ny, C N;_1, and by our model assumptions we have
N;_1 C N;. Therefore, supp(5;) € Ny U Ny_1 = Ny, so |supp(5:)| < |N¢| < Smax- With this,
we can apply [1], Theorem 1.3 to see that ||3; — f]|z < o (AGAIN, need to make this
connection). By the definitions of 8, and Z; cgres, We see that || — ,@tHg = ||zt — Tt CSres]|2s
so claim 1 follows.

Next, we verify claim 2 at time ¢. Suppose that (x;); = 0 for some index i, so that
i ¢ supp(x;) = N;. Since Ni—1 € N;, we must also have i ¢ N;_1; by the induction
hypothesis, this implies that ¢ ¢ N;_;.

Applying the result of claim 1,
|<£t,CSres>z’| - |<$t - i't,CSres)i| S ||mt - fi't,CSresHQ S .

Referring to Algorithm 1, N, = Nt_lu{k :|(Z¢.csres k| > @} Sincei ¢ N,_; and |(Z+.csres)i] <
a, it follows that i ¢ N,. Thus if i ¢ Ny, then i ¢ Ny; equivalently, if i € IV;, then i € N;.
Therefore, N; C N;, which proves claim 2 and completes our induction proof.



Now, we prove claim 3. Let A; = N, \ Nt—l denote the set of indices of the true support
at time ¢ which have not been detected before time ¢. Fix j > 0 and suppose that F; holds,
that iS, th,1 = thfl.

Since FJ hOldS, At g Aadd,tj for all t € [t] . tj+1 — 1]

Let ¢ € A, for some t € [t; : t;11 — 1] and suppose that |(z;);| > 2a. Applying the result
from claim 1,

O S |(xt - j:t,CSres)i| S ||xt - jt,CSres||2 S a < 20[ < |(xt)z|7

so that
(24, csves)i| = | () — (&4,08res)i) |
“ ) | - | (2 —l‘tcsms)
= [(z4)il = [(2¢ = &4,08res)i]
> 20—«
=aq.

We see that if |(z¢);| > 2a, then |(Z;csres)i| > o, 801 € Ny =N, ;U {k = |(Zt,c80es)k] > a}.
If [(w¢)i| > 2a for all i € Agaay,, then Ay C Agaay; € Nt; in words, we will detect all
“missing” indices at time ¢, so Nt = N,.

From the above discussion, we see that the event {|(x);] > 2a for all i € Augqy,} is
contained within the event {|(z;);| > 2a for alli € A, | F;}, which in turn is contained
within the event {N; = N; | F;}.

All of the above is still kind of weak in places. It all makes sense in words
and is true, but the math / set theory is kind of wonky.

Our model asserts that the entries (z;); for i € Aaddt are independent and identically
distributed A (0, (¢t — t; + 1)o Sys) random variables. With this in mind, we see that

Pr <Nt = Nt

FJ.) > Pr(|(24);] > 2 for all i € A, |F;)
> Pr (\(:U )il > 2a for all ¢ € Aadd,tj)
r([(z)e] > 2a)]%9, ke Auad,; arbitrary

ol

Sadd

10



We examine the particular case where ¢t = ¢; + 74¢. In this case,

Sadd
2c
Fi) > |2
J) - [ Q (gsys\/(tj—}—’rdet—f—l) —t]>]

%20 Sadd
= (2 I —
|: Q<szs\/7—det+1):|

>1—c¢,

Pr (th+7det = th+‘rdet

where the final inequality is easily verified and follows from the ceiling in the definition of
Taer and the fact that Q is a decreasing function.

If N, =N, for t = tj + Tdet, then the model assumptions of no support deletions and no
support additions until time ¢;;,, in addition to the result of claim 2, imply that N, = N,
for all t € [t; + Taet © tj41 — 1], which is exactly the event E;. Therefore, Pr (E; | F;) =

Pr (Ntﬁmet = Ni; trge, Fj> > 1 — €, which completes the proof. O

11



Lemma 2. Assume that {x;} and {y;} follow the signal model above, {t} is a discrete set
of sampling times, only additions to true support (Ny C Nyiq for all t), etc.

(Ssmaz(A) <1, age =0.

Define the event D = {N, = N, = N, for all t € [t, : t,,]}, where N, is some fired index

set.

At each time t, let Ty = Ty xpes be the KFCS estimate of x¢ (Algorithm 1) and let
Ty = Ty, gakr be the GAKF estimate of x, (Algorithm 2).

Then given any € > 0 there exists some tp,s > t. such that for all t € [t : ], we have
E[|Z; — 2¢]|3| D] < ¢, i.e., &y converges to Ty in mean square.

Proof. Throughout, we assume that the event D occurs and ¢ € [t, : t..].

Where possible, we consider variables and parameters only along the support set N,, but
to simplify notation will omit the subscript N,. Thus, v; = ()n,, A = Apmn,, @ = Qn. N,
T = (@)n., S = (J)nvene, K = (K)wopm)s Pip—1 = (Pyge—1)nvon., Pr = (P)n,,n,, and
analogously for 7, jt, f(t, f’t|t—1, and P,.

Note, however, that y;, and w; may be be supported on [1 : n] and are thus not truncated
when they appear; similarly, R is not truncated.

For t > t,, both KFCS and GAKF run the same fixed-dimensional and fixed-parameter
Kalman filter for (z;)y,, but with different initial conditions. Elaborate...

J—— moved to enhance the flow of the proof

Suppose that t € [t, : t..]. We see that

P =P+ Q
= - KtA)Pt\t—l +Q
=Pjy1+Q— Py 1A (AP 1A'+ R)_lA})ﬂtfla

which is a discrete algebraic Riccati recursion (2) with F' =1, G = I, Q = 02 Iin.|x|n.) > 0,
R=02% I,., = 0,and S = 0. Verify Q, R — goes back to the algorithm issues. Note

obs
that @ is constant on [t. : t..] since we assume that D occurs.

Since |N,| < Smax and dg,,.. < 1, A = (Ap.yw,) is full rank. Therefore, using the
results from Section 5.1, {I, A} is detectable. Further, since Q = 02,1 is full rank, {I,Q} is
stabilizable.

Referring to the algorithm (which one?), we see that Py = P,,_1 = 02,,] > 0. is
this even true? Need to get the algorithms and model set up correctly. I think
we want the initial step to be P 1 = Ogyslof + @y, = 0, but the two algorithms

disagree on what (), is.

Therefore, by [2], Lemma 8.7.3, the DARR converges to a positive semi-definite matrix P,
which satisfies the corresponding DARE. This implies that K; — K, = PLA' (AP, A"+ R)™!

12



and J; — J, = (I — K, A). Further, by [2], Theorem 7.5.1.b, p(J,) = p(I — K, A) < 1.

Since GAKF and KFCS run the same Kalman filter, these results also apply to the GAKF
iterates, i.e. Py — P, Ky — K, and J; — J,.

Define p = p(J,) and let ¢ = (1 — p)/2. A standard result from linear algebra states
that there exists a matrix norm || - ||, such that || /||, < p+¢eo = (1 + p)/2 < 1. Further,
by the equivalence of matrix norms on a finite-dimensional space, there exists some constant
c2,p such that || M|y < ¢g,||M]|, for any matrix M.

Since J, — J,, there exists some te > o such that for all ¢t > ¢, ||~J~t||2 < | ell2 + 1.
Therefore, for any ¢ > to, we have ||J;[|2 < max{||Jy, |2, [|tor1ll2; - - - [[ St ll2; [[Jull2 + 1},
i.e. there exists some value B; > 0 such that ||Ji[|; < By for all ¢. Since || J;||2 < oo for all ¢
and ||J,|l2 < oo, we must also have B; < co.

By similar arguments, since .J; converges to J, and Fy;_; and ﬁ’ﬂt_l converge to P,, there
exist some 0 < By, Bp, Bp < oo such that ||J||2 < By, ||Pyi-1ll2 < Bp, and ||Py—1]]2 < Bp
for all ¢.

Let € > 0 be arbitrary.

The convergence results above and standard analysis techniques can be used to show that
there exists some t. > t, such that for all ¢ > ¢., all of the following conditions hold:

L] ||Kt — Kt”? <g;
o [|Ji = Jil|l2 < & and

o [Iell, < [[ Ll + (1 = p)/4.

* Why do we care if . does not depend on y?

Problem: NV proof says Z;, is independent of y,, , but by definition it’s not. AB draft:
t, — 1. So I agree that we're independent of y; ...y, 1, but we are dependent on y;, ... y;
because T; = JiT;_1 + Ky, for t > t,. All of this independence stuff needs to be very
carefully worked and verified; also, why do we care? I think z is useless here, it
does not affect the choice of ..

Attempted fix: Examining the algorithms, we see that K, K, Jy, Ji, Py;—1 and ]5t|t_1
do not depend on {y;}, hence, neither do K, J,, and P,. It follows that ¢. also does not
depend on {y}.

T——  /moved

A

Let é; = x; — 2; and é; = x; — Z;. Define diff; = é; — ¢&; and notice that diff; = 7, — Z;.

13



Let t > t. > t,. By Algorithm 1 and the model, we see that
€t = Ty — Ty
= (x4 + 1) — (SiZ—1 + Koyr)
=1+ v — Syt — K(Azy + wy)
=21 + 1 — S — KeA(wey + 1) — Kawy
= - KAz — i + (I — KAy — Ky
= Jy(z4—1 — Ty1) + Sy — Ky
= Jies1 + Jiwy — Kywy.

Similarly, using Algorithm 2 and the model, we can verify that
ét = jtét—l + jtVt - f(twt.
Combining these results yields

dlfft = Jtdiﬁt_l + (Jt - jt)<ét—1 + Vt) + (Kt - Kt)wt.

Let ) 3
w = (Jy — Jp) (€1 + 1) + (K — Ky)wy,

so that diff, = J;diff,_; + u;. Recursively applying this identity, we see that
diff; = Jdiff,_; + wy
= Jp (S diffy o + wp1) +
= JyJiadifty o + Jue—1 +
= Ji i1 (Ji—odiffi_3 + w—2) + Jyus—1 + wy
= JpJi1Jyodifty 3 + Sy w0 + Jpup—y 4 uy

= JtJt—l cee Jt€+1diﬁt6 + JtJt—l cee Jts+2uts+1 + ...+ Jtut_l -+ Uz.

If we define
M — Jedi—1 - Tppr i k<t
I k>t

then we can more compactly write

t
diffy = M, diffy, + Y My, up

k=t:.+1

14



Therefore, applying the triangle and Cauchy-Schwarz inequalities for expectation and
noting that the matrices {M}} are deterministic,

t
—E HM;Hdifft€+ > My,
k=t-+1

1
2 2

D

SIS

E [||diff||3 | D]

2

t

_ 1 1 -1 1
<E [ M dift, ;| D]+ E [Ju? D] + Y- E[[|Mulf} | D]

k=t-+1
_ 1 1
<E || My} | D] E [jaif, |3 D] +
1 t—1 1 1
E[Jlwll}|D)? + Y- E[[Mil; D] E [Jlul} | D]
k=te+1

1 1
E [||diffy[|3 | D]* < | M ,,|l2 E [||diff,. |3 | D] +

(1 + Y ||M;||2) max {B [Jlu,|}| D)} 3)

l=t.+2
Recall that, for k > t., we have
[ kllp < N Tllp + (X = p)/A< (X +p)/2+ (1= p)/4=(B+p)/4 <1
Let a = (3+ p)/4. Then for t. < k <t,

IMEll2 < o, [ M,

= | JeJe—r - Tillp
< N ellpll e=1llp - - - 1Tkl
[M]l2 < cpat "1 (4)

With this, we see that

t t
<1+ > HMgHQ> < <1+ > czpat_m)

l=t+2 l=tc+2

[e.e]
<max{l,cy,} - Zaﬁ
=0

t
1
(1 + D HM?H?) < max{l, ¢} - T (5)

0=to+2
Let 7 € [t.+1 : t] be arbitrary. Since 7 > t., we have | K, — K,||» < € and || J, — J,||» < e.

15



Consider

2 3
D)

2

~ 1 ~ 1
< ”JT - JTHQ E [HéT—l + V—ng ‘ D] *+ HKT - KTHQ E [Hang } D] ’

E [Ju. |2 | D]} =E U\(JT )t v) ¢ (R — K,

1 1
<e-Efllé-1+ vl ‘ D]? +¢-E [||w7|]§ | D]>
E [lurll3 | D]? <& (E [llé-113| D] * +E [Jull3 | D] * +E [Jlw- ;| D)) , (6)
where we have used the triangle and Cauchy-Schwarz inequalities for expectation.

By the properties of the Kalman filter, for any k, we have

P =E[(@ —E@ |y vz - ) @ — ElEelye vz - ue)) | 90,020 0]
=E [(j“ck — ) (Tg —[Ek>/’y17y2,...,yk]
=E[e; [y1, 92, - U]
= E[é,6,],

where the independence on the last line follows because P, has no dependence on any of
the {y;}, a well-known property of the Kalman filter (and consequence of the algorithm).
Therefore,

Here, we used the fact that the occurrence of D is independent of the value of P, = E lexel.].
Make sure this is legitimate.

We see that
1Pell2 = [T Papp—rllz < 1kl )| Peper|l2 < BsBp < oo,

where we recall that ||Pys_illa < Bp and [|Jy|la < By. Since By is Hermitian, ||Py|, =
Amax(Px). Therefore,

tr(Py) = Z/\z(pk) < | N Amax(Br) = [NuJ|| Pell2 < |N.|B;Bp < o0,

so there exists some 0 < B < oo such that tr(P,) < B for all k.

16



Therefore,
E[|é, ]2 |D] = tr (157_1) < B.

Since D occurs, v, is supported on N, so the covariance of v, = (v;)y, is E[v, 1] =

E v, | D] = 03, In. xn.|- VERIFY this claim. Therefore,

A similar computation proves that E [HwTHg ! D] = no?

obs*
With (6), these results show that

E [HUT”§ | D}% <e <\/§+ \/|N*|U§ys + 4/ no? ) :

obs

Since 7 € [t. + 1 : t] was arbitrary, we conclude that

max {E [ 3] Dﬁ} <e <@+ NA \/nagbs) . (7)

TE[te+1:t]

We have seen that E [||ék||§ |D] < tr(P,) < B for some B and all k; by similar work,

we can conclude that there exists some B such that E [Heng |D] < tr(P) < B for all k.
Therefore, by the triangle inequality for expectation,

E [[le.. — &.|2| D]
1

1
< E[llew.|l3| D]? +E [||é.[I3| D]
E [|diff, |2| D] < B+ B. (8)

E [||diff,. |2 | D]?

Combining (3) with (4), (5), (7), and (8), we see that

E [||dift;[|3 | D]? < cs,0a" (B + B) + Ck,

where C' = max{1,c,} - 1 - (\/E—F \/ I Nl o2 + nagbs>'

17



It

Ce
tms = te + lOga N )
{ (CZp(BJFB))—‘

then we see that for all t > £,
1
2

E [|3 — &3] D]* = E [|diff || D] * < 2Ce,

and since C' is constant and ¢ is arbitrary we have obtained our desired result.

18



Corollary 1. Assume that the conditions of Lemma 2 hold.

Then given any € and €. there exists some Tgxrp = Tgp(€, Eerry Ni) Such that for all
t € [t + TkF : tu], we have Pr(Hﬁét — i"tH; < Eepr ‘ D) > 1 —e¢e. Note that if t, + Tgr > tex,
then this interval 1s empty and the result is vacuously true.

Proof. Let € > 0 and ¢, > 0 be given and let € < € - £, By Lemma 2, there exists some
tms = tms(€, Ny) such that for all ¢ > t,,

E [||Z; — &3 | D] <& < e e

Let t > t,s. By Markov’s inequality,

ElJé—al3ID) _ & __

561“[' 5err

Pr (”‘%t — i’t”% > Eerr | D)

IN

Define mxp = ts — t. Since t,, is a function of £, which is itself a function of € and &,
we have Tgxp = Tkr (€, €errs Ny ), and for all ¢ > t,,s = t. + TxF,

Pr (Hi‘t — jjt”g < Eerr

D) >1—c¢,

which is our desired result. O
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Theorem 1. Assume that the conditions of Lemma 1 and Lemma 2 hold. Recall def of
E; and F;?
Let € > 0, €. > 0 be given.
Let Tger = Taer(r, €) be as in Lemma 1.
Choose d > Tge; + max;{Txr(€, €crr, Ni;) }-
1) Given any j € [0 K —=1], Pr(|2; — 243 < €err) > (1 — €)™ for all t € [t; + Tager +
7—KF(g Eerrs th> Sljtl — 1]
2) Pr(|Ay < Saaq and |Al| =0 for allt > ty) > (1 —¢)¥
3) Pr(Forall j € [0: K —1], |A =0 and |Ac| =0 for allt € [t; + Tger = tj41 — 1))
> (1-¢)F
Proof. See also comments at the end of this section for an alternate derivation.
We first show by induction that Pr(E;) > (1 —&)’*! for all j > 0.

Consider the base case, where j = 0. By assumption, Nto,l = Nyy—1, so Fo occurs. We

have
PI‘(E()) = Pr (EO | Fo) Z 1—¢

by Lemma 1, which proves the base case.
Now assume that the claim is true for j = (k — 1) for some k > 1, that is, Pr(Eyx_1) >
(1 —¢)*. Consider
PI‘(Ek> = PI‘(Ek N Ek 1) + PI‘(Ek N (Ekfl)c)
> PI‘(Ek N Ek 1)
=Pr (Ek‘Ek 1)PI’<Ek 1)
= Pr (Ex |Fyx) Pr(Ex_1) WHY is this true?
> (1-e)l-e)f
=(1—¢e)",
where we applied Lemma 1 to conclude that Pr (Ey | Fy) > 1—¢. Therefore, by the principle
of mathematical induction, we conclude that

Pr(E;) > (1 - )"’

for all 7 > 0.
Fix je[0: K —1].
Choosing t, = t; + Tqet and t, = tj11 — 1, the event D = {Nt = N, for all t € [t,

t«} is identically the event E; = {Nt = N, for all t € [t; + Taet : tj+1 — 1]} Corollary 1 thus

yields
Pr (|, — &3 < € | Ej) > 1—¢
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for all ¢t € [t; + Taet + TkF (€, €err, Nt;) : i1 — 1]
Note that since d > Tet +TkF (€, err, Ny;) for all j, the interval [t 4 Taet +7xr (€, €err, Ny,)
tj+1 — 1] is nonempty.

For any t € [t; + Taet + Tkr © tj4+1 — 1], we see that

Pr (|2 — &l < o) = Pr ({[|Z — 2013 < cen} N Ey) +Pr ({7 — @ll3 < e} N (Ey)°)
> Pr ({12 — &3 < can} NE;)
= Pr (|7 — &[5 < con | Ey) Pr(E;)
> (1-e)(1—e)"

= (1—¢e)*2,

which verifies the first claim.

I think that the third claim’s probability equals the one below. Either way,
we need this.

K

")

PI'(EO N El N...N EK—I) = PI'(E())PI' (El | Eo) Pr (E2 | EO N El) ---Pr (EK—I
7=0

Second claim: the event seems to be a superset of the event EyN...NEg_1, so obviously
the probability is bigger than (1 — €)% using the result above.

Stuff to verify:

Pr (E; | Ej_1) = Pr(E; | F;): if E;_; happens, then F; definitely happens, but not seeing
why these are equal yet.

Markov property used on {E;}: justification

* x x See next page for proposed fix / work.
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Proposed work to get around all of these issues (very rough):

From Lemma 1, we have Nt C N, for all t, and the model assumptions yield N, C N,
for all t. Therefore,

E_] = {Nt = Nt fOI' all t e [t] + Tdet - tj+1 — 1]} = {th+7det = th+7det}'

Also from Lemma 1,
Pr (|(mt].+7det)i| > 2« for all 7 € Aadd,tj) >1—c.
From Lemma 1, if the event F; = {th,l = Ny, 1} occurs, then Ay C Augqy, for all
te [tj : tj+1 — 1]

Notice that F; C E;_4, i.e. if E;_; occurs, then Fj occurs. Similarly, F; C ﬂf;g Ey.
Therefore, if any of these events occur, then A; € Ayqqy, for all ¢ € [t : ¢ — 1].

Now,

Ej - {th-i-Tdct - th+Tdct} - {|(i‘tj+7'dct7csres)k| >« for all k € Atj-i-Tdcc}‘

e i—1
Conditioning E; on any of F;, E;_4, or ﬂi:o Ey forces Atheret C Aaddﬂfj'
We have seen that if |(24,1+,.,)i| > 2c for any i, then |(Z¢,1r,., ,CSres)i| > @, 507 € Ny ry,.

Therefore, if (24,47, )i| > 2c for all i € Auqay,, then |(Ty,4n,, csres)i| > a for all i €
At trgers 80 Nijtryee = Nijirye,» 16 Ej occurs.

We conclude that (for any 7)
Pr(E;|Fj) > 1 -«

Pr (EJ ’Ej,1> > 1—¢
j—1
Pr (Ej ﬂEk> >1—¢
k=0

With this, we can correct the induction proof which yields Pr(E;) > (1 — ¢)/™'. Then
claim 1 follows.

Claim 2 still appears to be a subset of claim 3.
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Claim 3’s proof is the same, except that we now can immediately jump straight to (1—¢)*

after the initial application of the chain rule. In fact, we can more compactly write the proof

Pr (ﬁl Ej> = Pr(Ey) - Iﬁl Pr (Ej

k=0

ﬁ Ek> >(1—¢)-(1—e)f L.

This would complete the proof.

However, this method semi-invalidates / repeats a lot of Lemma 1 part 3’s
proof, which implies that we can either get rid of Lemma 1 part 3 or rework
Lemma 1 part 3’s proof to only include relevant information.

Equivalently, if this line of logic works out, we can basically say “by the same arguments
as those in Lemma 17 and only highlight the relevant piece, namely that conditioned on any
of the events we’re interested in, we have Atj"l"rdet C Aadd,tj, and that lets us say that |xs| > 2

on Aggay; is good enough to bound below by (1 — ).

]
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