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1 Model

At each time t > ty, we have

Y = Az + wy
Tip1 = T + Vit Can we use ;7

Here, E[w;] = 0, cov(w;) = Elw,w,] = R = 02 L,xn, iid and independent of x;; zy, = z¢ ~
N(0, 02 01n,); and vy ~ N(0, 02, Iy,) iid.

Y, Wy € Rn’ A€ Rnxm’ T, Vy € R™.

Time indices are discrete. Make the distinction between sampling times (used) and
continuous time (not used).

41t +2 -1 | 41
t j+1

At the addition times t; = to + jd for some o, the support of z; changes: N; = Ny, for
all t € [tj : tj+1 — 1], and Nt]. C th+1.



2 Algorithm — KFCS with LS

This algorithm applies to the case where there are no support deletions.
Issues:

P,,—1 and Q; — is this an identity of size |Nhat| or is it a full-blown identity
with nonzeros on diagonal entries corresponding to Nhat

Is this algorithm transcribed correctly? There are 3 versions of it that I have
(NV original, AB+NV typed draft, and AB handwritten) and all 3 are different.

Look for places to simplify — this is long and contains repeat steps, which is
non-ideal



IHPUt: Osysy Oobsy Osys,05 Av {tj}7 {Nt}a {yt}

Tpymit = argmin, ||z||; subject to ||y, — Azl <&
Niy ={J :2|(jto7init)j| > a}
Pto—l = Usys,OINtO
Qto - O
i‘tofl =0
Pto‘tofl = Pto—]. + Qto
—1
Kt() = PtoltO*lA/ (Apto|t071A/ + OngI)
Jto - I — KtoA
Pto = JtQPt0|t0—1
i‘to = Jtoj:tofl + Ktoyto

for t > t; do
Qt = O-SySINt,1

Py—1 = P11 + Qy

Ky = Py A (ARf|t—1A/ + Ugbsf>_1
J,=1—K,A

Py = Ji Py

i"t,init = JiTy1 + Ktyt

yt,res =Yt — Ai‘t,init

By = argming || 5]|1 subject to ||yires — ABl2 <&
Lf;t,CSres - jlf,il’lit + /Bt

AA = {] : ’(it,CSres)j’ > Oé}

Nt - Nt_l U AA

if AA = (Z) then

A

‘ Ty = 'Tt,inlt
else
'Z%t — 0
Pt = Omxm
(Pt)]\A[t,Nt - (A[lzn],Nty(A[l:n},Nt) O-(Q)bsI\Nﬂ
end
end



3 Algorithm — Genie-Aided Kalman Filtering (GAKF)

This algorithm applies to the case where there are no support deletions.
Issues:

Check blue piece below — do we want all-ones, identity of size |DeltaA|, or
identity restricted to DeltaA and zero else?

Input: oy, Oobs, Osys0, A, {t;}, {N:e}, {w}

for t >ty do

if t =ty then

T =N,

Py = Us2yS7o]T

T 1=0

Q=0

else

T =Ny

Qi = UfyS[T

if t =t; for some j > 0 then
Ay = Ny \ Ny

Pt—l) 202 ]A
( AaAa sys*|Aal

end

end

]5t|t—1 =D+ Q

K, = Pt|t71A/ (AIBﬂtflA/ + oﬁbsl> B
Jy=1— KA

B= by

Ty = STy + Ky

end




4 Candes RIP — (; Computation for «

[1], Theorem 1.3: Suppose y = Az + 7, |supp(z)| = s, 625 = 02s(A) < V2 — 1, and
Inll2 < € Then
& = argmin ||z||; subject to ||y — Az||s <&

satisfies

|z — 2]z < Ci(s)E,
where
44/1 + 09y

A = T Ve

Claim / Note: It can be shown that C} is an increasing function of dos, and o, is an
increasing function of s, so C; is an increasing function of s.

For any support size s in this paper, we will have s < Sy and thus C(s) < C1(Smax)-



5 Linear Systems Theory

5.1 Definitions

We present some basic definitions from linear systems theory. These can be found in [3],
Appendix C. Throughout, let F,G, H € R"*".

A matrix F' is stable if p(F') < 1.

The pair {F,G} is controllable if the matrix [G, FG,..., F""'G] is full rank n. An
equivalent characterization of controllability is that rank([A] — F, G]) = n for all eigenvalues
Aof F.

The pair {F, G} is unit-circle controllable if rank([A] — F, G]) = n for all eigenvalues
A of F with |A\| = 1. May not need this anymore since we have changed over to
Hassibi’s PhD exclusively.

The pair {F, G} is stabilizable if rank([\] — F, G]) = n for all eigenvalues A\ of F' with
Al > 1.

The pair {F, H} is detectable if and only if {F’, H'} is stabilizable.

Consider the case where F' = I. Then A = 1 is the only eigenvalue of F' = F’ and the
matrix [\ — F, G] = [0, G] has rank n if and only if G has rank n. Therefore, if G is full
rank, then {/, G} is controllable, unit-circle controllable, and stabilizable. Additionally, since
rank(H) = rank(H'’), we can use the same argument to conclude that {I, H} is detectable
if H is full rank.

5.2 Theoretical Results

Here we present two important theoretical results from linear systems theory.

The general form of a discrete-time algebraic Riccati equation (DARE) is
P=FPF +GQG — (FPH +GS)(R+ HPH')""(FPH' + GS), (1)

where P, F,G,H,Q, R, S € R™",
[2], Theorem 7.5.1.b: Consider the DARE (1), where {F, H} is detectable and
Q S
KR

If, in addition, {F — GSR™'H,GQ — GSR™'5'} is stabilizable, then the DARE always has
a unique Hermitian and positive semi-definite stabilizing solution P such that F' — K,H is
stable, where K, = (FPH' + GS)(R+ HPH')™".



The general form of a discrete-time algebraic Riccati recursion (DARR) is

P.1=FPF +GQG — K,,R.,K,

D)

i>0 (2)

where K, = (FP,H' +GS)(R+ HP,H')™', R.; = R+ HP,H', and {P,},F,G,H,Q, R, S €
Rnxn.

[2], Lemma 8.7.3: Consider the Riccati recursion (2) with positive semi-definite initial
condition Py = 0. If Q = 0, R = 0, {F, H} is detectable and {F—~GSR™'H, GQ—GSR™'S'}
is stabilizable then P; converges to the unique positive semi-definite matrix, P, that satisfies
the discrete-time algebraic Riccati equation (1).



6 Proofs

Lemma 1. Assume that {x;} and {y;} follow the signal model above, {to,to+ 1,19 +2,...}
is a discrete set of sampling times, only additions to true support (Ny C Nyiq for allt), etc.

Further assume that

i) The true solution is exactly recovered at the initial time to: &y, = x4, s0 Ny = Ny =
Ny; Can we relax this to just the true support is recovered?

i1) The mazimum support size Sy Satisfies Smazr < Sex = max{s : dos(A) < V2 — 1};
iii) The observation noise wy is bounded in magnitude: ||w:|| < & for allt and some & > 0;

iv) The addition thresholds oy satisfy oy = a = C& for all t, where

4/T+0
C = C(Sma) 02

Tz (14 v2) b2s,.,

with dss,,,. = 0as,,..(A); and

v) The addition delay d satisfies d > Tz, where the detection delay T4 is defined by

2
2x

o)1/,
04y Q1 (UE)T“>

Tdet = Tdet<aa 5) =

Here, Q7'(z) is the inverse of the Gaussian Q-function, Q(z) = [° L =7 dt.
Then

1) ||zt — &t .csresll2 < « for all sampling times t;

2) there are no false support additions: N, C N, for all sampling times t; and
3) Pr(E;|F;) > 1 —¢, where By = {N, = N, for allt € [t; + T4 : tjs1 — 1]} and
Fj = {thfl = thfl}'

We may want to split claim 3 into its own piece because its proof relies
on the other 2 parts, which are proved separately with induction.



Proof. Need to find some way to get Candes Thm 1.3 in here and make the
connection that #; csres in our notation is z* in his. Also need to point out that
the way we chose «, we have any (1§ < (1 (Smax)é = a.

To prove claims 1 and 2, we proceed by induction on the value of ¢.

Consider the base case, where ¢ = t;. Claim 1 follows from Theorem 1.3 in [1] and
assumptions (ii), (iii), and (iv) (Not immediate — need to connect to Candes as
above), and assumption (i) trivially proves claim 2.

Suppose now that claims 1 and 2 are both true for some time (¢ — 1). We show that the
claims are true at time ¢.

First, we verify claim 1 at time ¢. Let TYPO HERE? vy, — ¥:,es? Can probably
remove after getting algorithm typed up.

By = x — L¢,init

B = argmin |||y subject t0 [[yzes — ABll> < €
it,CSres = :i't,init + Bt?

where 4 init and y; res are defined in the KFCS with LS algorithm and & in;; satisfies supp(Z imit) =
N1

By the induction hypothesis, Ny, C N;_1, and by our model assumptions we have
Ni_1 C N;. Therefore, supp(5;) € Ny U Ny_1 = Ny, so |supp(5y)| < [Vy| < Siax- With this,
we can apply Theorem 1.3 in [1] to see that |8, — ]|z < @ (AGAIN, need to make this
connection). By the definitions of 8, and & csres, We see that || — BtHg = ||zt — Tt CSres]|2s
so claim 1 follows.

Next, we verify claim 2 at time ¢. Suppose that (x;); = 0 for some index i, so that
i ¢ supp(x;) = N;. Since Ni—1 € N, we must also have i ¢ N, 1; by the induction
hypothesis, this implies that ¢ ¢ N;_;.

Applying the result of claim 1,
|(j:t,CSres)i| - |($t - jt,CSres)i| S ||xt - i‘t,CSresHQ S «.

Referring to the algorithm, N, = N, U {j : |(@tcsres)j] > a}. Since i ¢ N,_; and
|(Zt.0sres)i| < «, it follows that ¢ ¢ N;. Thus if i ¢ Ny, then i ¢ Ny; equivalently, if
1 € Ny, then ¢ € N;. Therefore, N; C N;, which proves claim 2 and completes our induction
proof.



Now, we prove claim 3. Let A; = N, \ Nt—l denote the set of indices of the true support
at time ¢ which have not been detected before time ¢. Suppose that F; holds, that is,
thfl = thfl‘

Since FJ hOldS, At g Aadd,tj for all t € [t] . tj+1 — 1]

Let ¢ € A, for some t € [t; : t;11 — 1] and suppose that |(z;);| > 2a. Applying the result
from claim 1,

O S |(xt - j:t,CSres)i| S ||(xt - Zit,CSres)HQ S a < 20{ < |(‘rt)z|7

so that
|(Zt,0sres)i| = [(24)i — [(24)i — (Z1,C5res)i|
2 ‘|($t)z| — (2 — i‘t,CSres)iH
= ’(xt)z‘ - ’(xt - i’t,CSres)z’|
> 20— «
= .

We see that if |(z¢);] > 2a, then |(Z¢csres)i| > v, 801 € N,=N,_; U {7 |(Zr.csres)j| > a}.

If [(w¢)i| > 2a for all i € Agaay,, then Ay C Agaay; € Nt; in words, we will detect all
“missing” indices at time ¢, so Nt = N,.

From the above discussion, we see that the event {|(x);] > 2a for all i € Augqy,} is
contained within the event {|(z;);| > 2a for alli € A, | F;}, which in turn is contained
within the event {N; = N; | F;}.

All of the above is still kind of weak in places. It all makes sense in words
and is true, but the math / set theory is kind of wonky.

Our model asserts that the entries (z;); of z; are independent and identically distributed
N (0, (t — tj)agys) random variables. With this in mind, we see that

Pr (Nt N,

Fj> > Pr(|();] > 2a for all i € A, |F;)
> Pr (|(:1:t)

r (|(x) | > 204)] e

[ ==

’ > 2« for all 7 € Aadd,tj)

10



We examine the particular case where ¢t = ¢; + 74¢. In this case,

Sadd
2a
F:) > |2
J) = [ Q (gsys\/(tj+7det) _tj>]
e ()
B Osys/ Tdet

21_87

Pr (th+‘rdet = th+Tdet

where the final inequality is easily verified and follows from the ceiling in the definition of
Taer and the fact that Q is a decreasing function.

If Nt = N, for t = t; + T4er, then the model assumptions of no support deletions and no

support additions until time ¢,4,, in addition to the result of claim 2, imply that N, = N,
for all t € [t; + Taer © tj41 — 1], which is exactly the event E;. Therefore, Pr (E; | F;) =

Pr (Ntﬁmet = Nt; trger Fj> > 1 — €, which completes the proof. O

11



Lemma 2. Assume that {x;} and {y;} follow the signal model above, {to,to+ 1,10 +2,...}
is a discrete set of sampling times, only additions to true support (Ny C Nyi1 for all t), ete.

(SsmaI(A) < 1, Aldel = 0.

Define the event D = {N, = N, = N, for all t € [t, : t,.]}, where N, is some fired index
set.

At each time t, let &, = T4 gkpes be the KFCS estimate of xy and let 2, = 2 caxr be the
GAKF estimate of ;.

Then given any € > 0 there exists some tps > t. such that for all t € [t : t.w], we have
E[|Z; — 2¢]|3| D] < ¢, i.e., Ty converges to Iy in mean square.

Proof. Throughout, we assume that the event D occurs and ¢ € [t, : t..].

Where possible, we consider variables and parameters only along the support set N,, but
to simplify notation will omit the subscript N,. Thus, v, = (4)n,, A = Apmn,, @ = Qn. N.,
Ty = (TN, Jo = (Jt)N*,N*a Ky = (Kt)N*,[lzn]v Py = (Pt\t—l)N*,N*a Py = (Pt)N*,N*a and
analogously for 7, jt, f(t, f’ﬂt,l, and ]5t.

Note, however, that y; and w; may be be supported on [1 : n] and are thus not truncated
when they appear; similarly, R is not truncated.

For t > t,, both KFCS and GAKF run the same fixed-dimensional and fixed-parameter
Kalman filter for (z;)y,, but with different initial conditions. Elaborate...

J—— moved to enhance the flow of the proof

Suppose that ¢t € [t, : t..]. We see that

P =P+ Q
= - KA)Py1 +Q
=Ppy1+Q— Py 1A (AP 1A'+ R)_lA})ﬂtfla

which is a discrete algebraic Riccati recursion (2) with F =1, G=1,0Q = O-sys]|N*\><|N*\ > 0,
R=02% 1I,., = 0,and S = 0. Verify Q, R — goes back to the algorithm issues. Note

obs
that @ is constant on [t : t..] since we assume that D occurs.

Since |N,| < Smax and dg,,.. < 1, A = (Ap.yw,) is full rank. Therefore, using the

results from Section 5.1, {1, A} is detectable. Further, since Q = 02,1 is full rank, {I,Q} is
stabilizable.

Referring to the algorithm, we see that Py = Py,—1 = 03¢l > 0.

Therefore, by [2], Lemma 8.7.3, the DARR converges to a positive semi-definite matrix P,
which satisfies the corresponding DARE. This implies that K; — K, = BLA(APA + R)™!
and J; — J, = (I — K, A). Further, by [2], Theorem 7.5.1.b, p(J,) = p(I — K, A) < 1.

Since GAKF and KFCS run the same Kalman filter, these results also apply to the GAKF
iterates, i.e. Py — P., Ky — K, and J; — J,.

12



Define p = p(J;) and let ¢ = (1 — p)/2. A standard result from linear algebra states
that there exists a matrix norm || - ||, such that || /.||, < p+¢eo = (1 + p)/2 < 1. Further,
by the equivalence of matrix norms on a finite-dimensional space, there exists some constant
c2,p such that || M|y < ¢g,||M]|, for any matrix M.

Since J, — J,, there exists some te > to such that for all t > ., |]~th2 < || Jell2 + 1.
Therefore, for any ¢ > ty, we have ||Jy|l2 < max{||Jy, ||2; [|Jtor1ll2s - - -5 [[Foe—all2s [[Lull2 + 1},
i.e. there exists some value By > 0 such that ||Ji[|; < By for all ¢. Since || J;]|2 < oo for all ¢
and || J,||2 < 0o, we must also have B < oo.

By similar arguments, since .J; converges to J, and Py, and 131;|t71 converge to P,, there
exist some 0 < By, Bp, Bp < oo such that ||J||s < By, ||Pyi-1ll2 < Bp, and ||Py—1]]2 < Bp
for all ¢.

Let € > 0 be arbitrary.

The convergence results above and standard analysis techniques can be used to show that
there exists some t. > t, such that for all ¢ > t., all of the following conditions hold:

) HKt — Kt”z < €
o || — jt||2 < ¢&; and

o [1llp < I Jllp + (1 = p) /4,

* Why do we care if . does not depend on y?

Problem: NV proof says z;, is independent of 1, , but by definition it’s not. AB draft:
t, — 1. So I agree that we're independent of y; ...y, 1, but we are dependent on y;, ...y,
because z; = Jizy_1 + Ky, for t > t,. All of this independence stuff needs to be very
carefully worked and verified; also, why do we care? I think z is useless here, it
does not affect the choice of ..

Attempted fix: Examining the algorithms, we see that K, f(t, gy, jt, Py;—1 and ]5“15,1
do not depend on {y;}, hence, neither do K, J,, and P,. It follows that ¢. also does not
depend on {y}.

t—— /moved

Let é; = x; — 2; and é; = xz; — Z;. Define diff; = é; — €; and notice that diff; = 2, — Z;.

13



Let t > t. > t.. By the KFCS with LS algorithm and the model, we see that

€ = Ty — Ty
= (ri_1 + 1) — (JiZ1 + Kyye)
=T 1+ v — S — Ki(Axg + wy)
=x 1+ v — iy — KA(x 1+ vy) — Ky
= - KAz — i + (I — KAy — Ky
= Sy — Te1) + Jon — Kywy
= Jier1 + Sy — Kywy.

Similarly, using the GAKF algorithm and the model, we can verify that
ét = jtét—l + jtVt - f(twt.
Combining these results yields

dlfft = Jtdiﬁt_l + (Jt - jt)<ét—1 + Vt) + (Kt - Kt)wt.

Let ) 3
w = (Jy — Jp) (€1 + 1) + (K — Ky)wy,

so that diff, = J;diff,_; + u;. Recursively applying this identity, we see that

diff; = Jdiff,_; + wy
= Jp (S diffy o + wp1) +
= JyJiadifty o + Jue—1 +
= Ji i1 (Ji—odiffi_3 + w—2) + Jyus—1 + wy
= JpJi1Jyodifty 3 + Sy w0 + Jpup—y 4 uy

= JtJt—l cee Jt€+1diﬁt6 + JtJt—l cee Jts+2uts+1 + ...+ Jtut_l -+ Uz.

If we define

M — Jedi—1 - Tppr i k<t
1 k>t

then we can more compactly write

t
diffy = M, diffy, + Y My, up

k=t:.+1

14



Therefore, applying the triangle and Cauchy-Schwarz inequalities for expectation and
noting that the matrices {M}} are deterministic,

t
—E HM;Hdifft€+ > My,
k=t-+1

1
2 2

D

SIS

E [||diff||3 | D]

2

t

_ 1 1 -1 1
<E [ M dift, ;| D]+ E [Ju? D] + Y- E[[|Mulf} | D]

k=t-+1
_ 1 1
<E || My} | D] E [jaif, |3 D] +
1 t—1 1 1
E[Jlwll}|D)? + Y- E[[Mil; D] E [Jlul} | D]
k=te+1

1 1
E [||diffy[|3 | D]* < | M ,,|l2 E [||diff,. |3 | D] +

(1 + Y ||M;||2) max {B [Jlu,|}| D)} 3)

l=t.+2
Recall that, for k > t., we have
[ kllp < N Tllp + (X = p)/A< (X +p)/2+ (1= p)/4=(B+p)/4 <1
Let a = (3+ p)/4. Then for t. < k <t,

IMEll2 < o, [ M,

= | JeJe—r - Tillp
< N ellpll e=1llp - - - 1Tkl
[M]l2 < cpat "1 (4)

With this, we see that

t t
<1+ > HMgHQ> < <1+ > czpat_m)

l=t+2 l=tc+2

[e.e]
<max{l,cy,} - Zaﬁ
=0

t
1
(1 + D HM?H?) < max{l, ¢} - T (5)

0=to+2
Let 7 € [t.+1 : t] be arbitrary. Since 7 > t., we have | K, — K,||» < € and || J, — J,||» < e.

15



Consider

2 3
D)

2

~ 1 ~ 1
< ”JT - JTHQ E [HéT—l + V—ng ‘ D] *+ HKT - KTHQ E [Hang } D] ’

E [Ju. |2 | D]} =E U\(JT )t v) ¢ (R — K,

1 1
<e-Efllé-1+ vl ‘ D]? +¢-E [||w7|]§ | D]>
E [lurll3 | D]? <& (E [llé-113| D] * +E [Jull3 | D] * +E [Jlw- ;| D)) , (6)
where we have used the triangle and Cauchy-Schwarz inequalities for expectation.

By the properties of the Kalman filter, for any k, we have

P =E[(@ —E@ |y vz - ) @ — ElEelye vz - ue)) | 90,020 0]
=E [(j“ck — ) (Tg —[Ek>/’y17y2,...,yk]
=E[e; [y1, 92, - U]
= E[é,6,],

where the independence on the last line follows because P, has no dependence on any of
the {y;}, a well-known property of the Kalman filter (and consequence of the algorithm).
Therefore,

Here, we used the fact that the occurrence of D is independent of the value of P, = E lexel.].
Make sure this is legitimate.

We see that
1Pell2 = [T Papp—rllz < 1kl )| Peper|l2 < BsBp < oo,

where we recall that ||Pys_illa < Bp and [|Jy|la < By. Since By is Hermitian, ||Py|, =
Amax(Px). Therefore,

tr(Py) = Z/\z(pk) < | N Amax(Br) = [NuJ|| Pell2 < |N.|B;Bp < o0,

so there exists some 0 < B < oo such that tr(P,) < B for all k.

16



Therefore,
E[|é, ]2 |D] = tr (157_1) < B.

Since D occurs, v, is supported on N, so the covariance of v, = (v;)y, is E[v, 1] =

E v, | D] = 03, In. xn.|- VERIFY this claim. Therefore,

A similar computation proves that E [HwTHg ! D] = no?

obs*
With (6), these results show that

E [HUT”§ | D}% <e <\/§+ \/|N*|U§ys + 4/ no? ) :

obs

Since 7 € [t. + 1 : t] was arbitrary, we conclude that

max {E [ 3] Dﬁ} <e <@+ NA \/nagbs) . (7)

TE[te+1:t]

We have seen that E [||ék||§ |D] < tr(P,) < B for some B and all k; by similar work,

we can conclude that there exists some B such that E [Heng |D] < tr(P) < B for all k.
Therefore, by the triangle inequality for expectation,

E [[le.. — &.|2| D]
1

1
< E[llew.|l3| D]? +E [||é.[I3| D]
E [|diff, |2| D] < B+ B. (8)

E [||diff,. |2 | D]?

Combining (3) with (4), (5), (7), and (8), we see that

E [||dift;[|3 | D]? < cs,0a" (B + B) + Ck,

where C' = max{1,c,} - 1 - (\/E—F \/ I Nl o2 + nagbs>'

17



It

Ce
tms = te + lOga N )
{ (CZp(BJFB))—‘

then we see that for all t > £,
1
2

E [|3 — &3] D]* = E [|diff || D] * < 2Ce,

and since C' is constant and ¢ is arbitrary we have obtained our desired result.

18



Corollary 1. Assume that the conditions of Lemma 2 hold.

Then given any € and €. there exists some Tgxrp = Tgp(€, Eerry Ni) Such that for all
t € [t + TkF : tu], we have Pr(Hﬁét — i"tH; < Eepr ‘ D) > 1 —e¢e. Note that if t, + Tgr > tex,
then this interval 1s empty and the result is vacuously true.

Proof. Let € > 0 and ¢, > 0 be given and let € < € - £, By Lemma 2, there exists some
tms = tms(€, Ny) such that for all ¢ > t,,

E [||Z; — &3 | D] <& < e e

Let t > t,s. By Markov’s inequality,

ElJé—al3ID) _ & __

561“[' 5err

Pr (”‘%t — i’t”% > Eerr | D)

IN

Define mxp = ts — t. Since t,, is a function of £, which is itself a function of € and &,
we have Tgxp = Tkr (€, €errs Ny ), and for all ¢ > t,,s = t. + TxF,

Pr (Hi‘t — jjt”g < Eerr

D) >1—c¢,

which is our desired result. O
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Theorem 1. Assume that the conditions of Lemma 1 and Lemma 2 hold.

Choose d large enough.
1) Given any j € [0: K—1], Pr(||@; — &5 < €err) > (1—)7%2 for allt € [t;+ Tager+ Tier :
tj+1 — 1]
2) Pr(|Ay < Saaq and |Al| =0 for all t > ty) > (1 —¢)X
3) Pr(Forallje[0: K —1], |A =0 and |A| =0 for allt € [t; + Tger : tj11 — 1]) > (1—
e)k
Proof. We first show by induction that Pr(E;) > (1 —&)’*! for all j > 0.
Consider the base case, where 7 = 0. We have

PI‘(EQ) =Pr (EO ‘ Fo) Z 1—¢

by Lemma 1, which proves the base case. Go back and add in something about j to
statement of Lemma 1, also handle the case with F_; / explain the case with Fj

Now assume that the claim is true for j = (k — 1) for some k > 1, that is, Pr(Eyx_1) >
(1 —¢)*. Consider

Pr(Ey) = Pr(Ex NEx_1) + Pr(Ex N (Ex_1)%)

> Pr(ExNEx 1)

=Pr (Ex |Ex_1) Pr(Ex )

= Pr (Ey |Fx) Pr(Ex_1) WHY is this true?
> (1—¢)(1—¢)*

(
(1 )k+17

where we applied Lemma 1 to conclude that Pr (Ey | Fy) > 1—e&. Therefore, by the principle
of mathematical induction, we conclude that

Pr(E) > (1 - )™

for all j > 0.
Fix j € [0: K — 1].
(needed?) Fix ¢ € [t; + Tget + TkF : tj+1 — 1].

Choosing t, = t; + Taer and ¢, = t;41 — 1, the event D = {Nt = N, for all t € [t,
t«} is identically the event E; = {Nt = N, for all t € [t; + Taet : tj+1 — 1]} Corollary 1 thus
yields

Pr (|, — &3 < € | Ej) > 1—¢
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for all ¢ € [t; + Taet + TxF : tj41 — 1].

Note that since d > 74et + 7 for all j, the interval [t; + Tget + TkF : tj41 — 1] is
nonempty.

For any t € [t; + Taet + Tkr © tj41 — 1], we see that

Pr (|2 — &l < €er) = Pr ({[|Z — 2013 < cen} NEy) +Pr ({7 — @[l3 < e} N (Ey)°)
> Pr ({12 — &3 < ean} N E;)
= Pr (|7 — &[5 < con | Ey) Pr(E;)
> (1-e)(1—e)"

= (1 —¢g)*,

which verifies the first claim.

I think that the third claim’s probability equals the one below. Either way,
we need this.

K

")

PI'(EO N El N...N EK—I) = PI'(E())PI' (El | Eo) Pr (E2 ’ EO N El) ---Pr (EK—I
7=0

Stuff to verify:

Pr(E;| E;—1) = Pr (E; | F;): if E;_; happens, then F; definitely happens, but not seeing
why these are equal yet.

Markov property used on {E;}: justification
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