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1 Model

At each time ¢, we have y, = Az, + w;.
Model on {z;}.

Time indices are discrete. Make the distinction between sampling times (used) and
continuous time (not used).
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At the addition times ¢; = to + jd for some ?o, the support of x; changes: N; = Ny, for
all t € [t] . tj+1 — 1], and th C Nt

Jj+1°

2 Algorithm — KF-CS with LS

(TBA)



3 Candes RIP — (; Computation for «

We need to add this as a theorem or something — cite [1] Thm 1.3 and explicitly
give the value of (', and the commentary below.

THEOREM / RESULT: [1], Theorem 1.3
Suppose y = Az + 1, |supp(z)| = s, dos = da5(A) < V2 — 1, and ||n]|2 < &. Then

& = argmin ||z||; subject to ||y — Az||s <&
z

satisfies

e —&]l2 < Ci(s)€,

where

AT ¥ 0,

O = T e

Claim / Note: It can be shown that C} is an increasing function of dos, and da, is an
increasing function of s, so C; is an increasing function of s.

For any support size S in this paper, we will have S < Sy and thus C1(S) < C1(Smax)-



4 Proofs

Lemma 1. Assume that {x;} follow the signal model above, y; = Axy + wy, {to,to+ 1,0 +

2,...} is a discrete set of sampling times, only additions to true support (N, C Nyyq for all
t), ete.

Further assume that

i) The true solution is exactly recovered at the initial time to: &y, = xy,, SO Nto =Ny, =
Ny; Can we relax this to just the true support is recovered?
it) The mazimum support size Spmay Satisfies Spar < S = max{s : Jos(A) < V2 — 1};
iii) The observation noise wy is bounded in magnitude: ||w;|| < & for allt and some & > 0;
iv) The addition thresholds oy satisfy oy = a = C& for all t, where

41+
C = C(Sman) 02

T 1= (1+2) as,...

with dss,, .. = 0as,,..(A); and

v) The addition delay d satisfies d > Tz, where the detection delay T4 is defined by
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Tdet = Tdet<aa 5) =

Here, Q71(z) is the inverse of the Gaussian Q-function, Q(z) = [°

x

e~ 7 dt.
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Then

1) |lwy — 2t csresll2 < « for all sampling times t;
2) there are no false support additions: N; C N, for all sampling times t; and

3) Pr(E;| F;) > 1 —¢, where E; = {N, = N, for allt € [t; + Taer : tjs1 — 1]} and
Fy={Ni,-1 = Ny, 1}

We may want to split claim 3 into its own piece because its proof relies
on the other 2 parts, which are proved separately with induction.



Proof. Need to find some way to get Candes Thm 1.3 in here and make the
connection that #; csres in our notation is z* in his. Also need to point out that
the way we chose «, we have any (1§ < (1 (Smax)é = a.

To prove claims 1 and 2, we proceed by induction on the value of ¢.

Consider the base case, where ¢ = t;. Claim 1 follows from Theorem 1.3 in [1] and
assumptions (ii), (iii), and (iv) (Not immediate — need to connect to Candes as
above), and assumption (i) trivially proves claim 2.

Suppose now that claims 1 and 2 are both true for some time (¢ — 1). We show that the
claims are true at time ¢.

First, we verify claim 1 at time ¢. Let

5t = Tt — T init

Bt = argmﬁin |B]|1 subject to ||y — AB|l2 < &
aAjt,CSres = it,init + Bta

where & in; is defined in the algorithm and satisfies supp(Zsinit) = N, ;.

By the induction hypothesis, Ny, C N;_1, and by our model assumptions we have
N;_1 C N;. Therefore, supp(5;) € Ny U N1 = Ny, so |supp(5;)| < |N¢| < Smax- With this,
we can apply Theorem 1.3 in [1] to see that ||3; — ]| < o (AGAIN, need to make this
connection). By the definitions of 8, and Z; cgres, We see that ||5; — ,@tHg = ||zt — Tt CSres]|2s
so claim 1 follows.

Next, we verify claim 2 at time ¢. Suppose that (x;); = 0 for some index i, so that
i ¢ supp(x;) = N;. Since Ni—1 € N;, we must also have i ¢ N;_1; by the induction
hypothesis, this implies that ¢ ¢ N;_;.

Applying the result of claim 1,
|<£t,CSres>z’| - |<$t - i't,CSres)i| S ||mt - fi't,CSresHQ S .

Referring to the algorithm, N, = N,_; U {j : l(Zrcsres)j| > a}. Since i ¢ N,_; and
|(Z¢.0sres)i| < «, it follows that ¢ ¢ N;. Thus if i ¢ Ny, then i ¢ Ny; equivalently, if
1 € Ny, then ¢ € N,. Therefore, N; C N;, which proves claim 2 and completes our induction
proof.



Now, we prove claim 3. Let A; = N, \ Nt—l denote the set of indices of the true support
at time ¢ which have not been detected before time ¢. Suppose that F}; holds, that is,
thfl = thfl‘

Since Fj holds, Ay C Agqay, for all £ € [t; : ;1 — 1].

Let ¢ € A, for some t € [t; : t;11 — 1] and suppose that |(z;);| > 2a. Applying the result
from claim 1,

O S |(xt - j:t,CSres)i| S ||(xt - Zit,CSres)HQ S a < 20{ < |(‘rt)z|7

so that
|(Z4,csves )il = [(24)i — [(@0)i — (B4, C5res )i
> “(xt)zl — (2 — i't,CSres)iH
= ’(xt)z‘ - ’(xt - i’t,CSres)z’|
> 20—«
= Q.

We see that if |(z¢);| > 2a, then |(Z¢csres)i| > v, 8010 € Ny =N, ;U {7 (Zr.csres)j| > a}.
If [(w¢);| > 2a for all i € Agaay,, then Ay C Aggay, € N;: in words, we will detect all
“missing” indices at time ¢, so Nt = N,.

From the above discussion, we see that the event {|(x);] > 2a for all i € Augqy,} is
contained within the event {|(z;);| > 2a for alli € A, | F;}, which in turn is contained
within the event {N, = N, | F}}.

All of the above is still kind of weak in places. It all makes sense in words
and is true, but the math / set theory is kind of wonky.

Our model asserts that the entries (z;); of z; are independent and identically distributed
N (0, (t - tj)agys) random variables. With this in mind, we see that

Pr(N, = N, | F;) > Pr(|(z,);] > 2a for all i € A, | F)
> Pr (|(x )il > 2a for all i € Ayday,)
r (|(2)1] > 2a)]"

[ (=)



We examine the particular case there ¢ = t; + 7qe¢. In this case,

Sadd
2c0
2Q
(Usys \/(tj + 7—det) - tj >]
(=)
Osysv/ Tdet

21_67

Fy) =

Pr(th+Tdet = th+7det

where the final inequality is easily verified and follows from the ceiling in the definition of
Taer and the fact that Q is a decreasing function.

If Nt = N, for t = t; + T4er, then the model assumptions of no support deletions and no
support additions until time ¢,4,, in addition to the result of claim 2, imply that N, = N,
for all ¢ € [t; + Taet : tj41 — 1], which is exactly the event E;. Therefore, Pr(E; | Fj) =
Pr(Nt].Jerct = N4z, | Fj) > 1 — ¢, which completes the proof. O
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