KF-CS Theory

Animesh Biswas, Kevin Palmowski

Last compiled June 11, 2014

1 Model

At each time ¢, we have y, = Az, + w;.

Time indices are discrete. Make the distinction between sampling times (used) and
continuous time (not used).

2 Algorithm — KF-CS with LS



3 Proofs

Lemma 1. Assume that {x;} follow the signal model above, y; = Axy + wy, {to,to+ 1,0 +

2,...} is a discrete set of sampling times, only additions to true support (N, C Nyyq for all
t), ete.

Further assume that
i) The true solution is exactly recovered at the initial time to: &y, = xy,, SO Nto =Ny, =
Ny; Can we relax this to just the true support is recovered?
it) The mazimum support size Spmay Satisfies Spar < S = max{s : Jos(A) < V2 — 1};
iii) The observation noise wy is bounded in magnitude: ||w;|| < & for allt and some & > 0;

i) The addition threshold oy satisfies oy = C1€ for each sampling time t, where C7 =
C1(|Ne|, &) (verify) is defined below OR in Candes; and

v) The addition delay d satisfies d > Tze, where

2
20ét

(Tsys(I)i1 <(1—€%1/s‘1 )

Tdet = Taet(, €) = < superscript looks bad

Here, ®~1(x) is the inverse of the standard Guassian CDF, ®(x) = [ e‘é dz.
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T 2
Then

1) |lwy — 2y csresll2 < oy for all sampling times t;
2) N, C N, for all sampling times t; and

3) Pr(E;| F;) > 1 —¢, where E; = {N, = N, for allt € [t; + Taer : tjs1 — 1]} and
F} = {th—l = Nt]'—l}'

Proof. Need to find some way to get Candes Thm 1.3 in here and make the
connection that Z; cgres in our notation is z* in his

To prove claims 1 and 2, we proceed by induction on the value of .

Consider the base case, where ¢t = t;. Claim 1 follows from Theorem 1.3 in [1] and
assumptions (ii), (iii), and (iv) (Not immediate — need to connect to Candes as
above), and assumption (i) trivially proves claim 2.



Suppose now that claims 1 and 2 are true for some time (¢t —1). We show that the claims
are true at time ¢.

First, we verify claim 1 at time ¢. Let

Br = x¢ — Tt init

B = arg min [|5]|; subject to [l — AB|l2 <€
j:t,CSres = Zit,init + Bta

where 24 in;; is defined in the algorithm and supp(Zyinit) = N,

By the induction hypothesis, N,_; € N,_;, and by our model assumptions we have
N;—1 C N;. Therefore, supp(5;) € Ny U Ny—1 = Ny, so |supp(5i)| < |N¢| < Smax. With this,
we can apply Theorem 1.3 in [1] to see that |8, — ]|z < a; (AGAIN, need to make this
connection). By the definitions of 8; and & csres, we see that ||5; — Bt||2 = ||zt — Zt.CSresl|2s
so claim 1 follows.

Next, we verify claim 2 at time ¢. Suppose that (x;); = 0 for some index i, so that
i ¢ supp(x;) = N;. Since Ni—1 € N, we must also have i ¢ N;_1; by the induction
hypothesis, this implies that ¢ ¢ N;_;.

Applying the result of claim 1,
’(i't,CSres)i‘2 = |(xt - ijt,CSres)i|2 S ”xt - it,CSresH% S 05?7

S0 |(Zt.csres)i] < . Referring to the algorithm, N, =N, ;U {J : |(Zt,c8res);| > ou}. Since
i ¢ Ni—1 and |(Z¢,csres)i| < au, it follows that ¢ ¢ N;. Thusifi ¢ N, then i ¢ Vy; equivalently,
if i € N;, then i € N;. Therefore, N; C N, which proves claim 2 and completes our induction
proof.

Now, we prove claim 3. FINISH THIS
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