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Course Plan I

Overall Plan:

Math background: random matrix theory results

PCA: basic idea, PCA for big data key points, PCA in non-isotropic and
data-dependent noise

Robust PCA and Dynamic Robust PCA (Robust Subspace Tracking)

If time permits: Brief review of Low-rank Matrix Recovery

Above was the plan for a longer course, for a tutorial, we will change the order to
Introduction, Robust and Dynamic Robust PCA, then PCA. Will switch over to
Math preliminaries where needed.

Roughly 2 hours for RPCA, 1 hour for PCA, two 15-min breaks
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Reading Material I

Reading Material:
1 Review the following probability and linear algebra notes ahead of

time if you’d like
I http://www.ece.iastate.edu/~namrata/EE527_Spring12/322_

recap.pdf (very basic – should know already)
I http://www.ece.iastate.edu/~namrata/EE527_Spring14/

Probability_recap_3.pdf
I http://www.ece.iastate.edu/~namrata/EE527_Spring14/

linearAlgebraNotes.pdf

2 https://arxiv.org/abs/1011.3027 R. Vershynin, “Introduction
to the non-asymptotic analysis of random matrices” , also
Davis-Kahan sin θ theorem from 1970 paper by Davis and Kahan,
“The Rotation of Eigenvectors by a Perturbation”

3 https://arxiv.org/abs/1803.00651 Static and Dynamic Robust
PCA and Matrix Completion: A Review, Proceedings of the IEEE,
August 2018
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Reading Material II

4 https://arxiv.org/abs/1712.06061 Nearly Optimal Robust
Subspace Tracking, ICML 2018

5 https://arxiv.org/abs/1709.06255 (Finite Sample Guarantees
for PCA in Non-Isotropic and Data-Dependent Noise), Allerton 2017
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My Research: I am looking for graduate student(s)

Dynamic Structured (Big) Data Recovery

1 Dynamic Compressive Sensing [KF-CS, ICIP’08], [Modified-CS, T-SP’10, T-IT’15], ...

I clean data sequence is sparse w/ time-varying supports, measurements:
undersampled linear projections of each clean data vector

I our main message: use structure dynamics (slow support change) to
reduce sample complexity without increasing algorithm complexity

2 Dynamic Robust PCA [ReProCS, Qiu et al., Allerton’10, T-IT’14], [AISTATS’16]

I clean data sequence lies in a fixed or changing low-dimensional
subspace, measurements: outlier-corrupted clean data vectors

I our main message: use structure dynamics (slow subspace change) to
improve outlier tolerance and reduce algorithm complexity

3 Low Rank Phase Retrieval - recently started work [LRPR, T-SP’17]

I clean data sequence is low rank, measurements: magnitude-only linear
projections of each column of the clean data matrix

I useful in astronomy, sub-diffraction imaging, Fourier ptychography,...
I current algorithm: only uses low rank to reduce sample complexity;

ongoing work: exploit dynamics (slow subspace change)



Introduction

In today’s big data age, a lot of data is generated everywhere
I e.g., tweets, video surveillance camera feeds, Netflix movie ratings’

data, social network connectivity patterns across time, etc
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video surveillance Netflix movie ratings’ data Reality Mining dataset

A lot of it is streaming big data that is not stored or not for too long
I and often needs to be analyzed on-the-fly.

First step before processing most big (high-dimensional) datasets is
dimension reduction and noise/outlier removal

I focus of this tutorial

Clean data usually has structure, e.g., sparsity or low-rank
I in a long sequence, structure properties are dynamic (change with time)



Two classical approaches for dimension reduction

Principal Component Analysis (PCA): estimate the low-dimensional
subspace that best approximates a given dataset, project to it

I first step before data classification, image or video retrieval, face
recognition, Netflix problem (recommending new movies to users),
exploratory data analysis, ...

I works when data lies close to an (unknown) low-dimensional subspace

Linear transform to sparsify, followed by zeroing out small entries

I first step in lossy data compression, e.g., JPEG-2000 uses wavelet
transform, and in denoising

I works when data is sparsifiable in a known transform domain, e.g.,
wavelet

Namrata Vaswani (Iowa State) PCA, Robust PCA, Robust Subspace Tracking 8 / 108



Many datasets satisfy neither property

Many datasets are not one or the other, e.g.,
I clean Netflix users’ data lies close to a low-dimensional subspace

(users’ preferences governed by only a few factors),
F but is corrupted by data from lazy or malicious users (sparse outliers)

I slow changing videos (e.g., video of moving waters) lie close to a
low-dimensional subspace,

F but are often corrupted by foreground moving objects (occlusions)

I a foreground image sequence is usually sparse,
F but the background image sequence may not be sparse or easily

sparsifiable;

I social media users’ connectivity patterns often well-approximated by a
low-dimensional tensor,

F but those of anomalous / outlier / suspicious users may not
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original background foreground
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Many above datasets = sparse + low-rank

In all previous examples, data is well modeled as a sum of a low-dimensional
subspace component and a sparse component,

I i.e., data vector at time t,

yt = xt + `t + wt

with xt being sparse, `t lying in a low-dimensional subspace of Rn, and
wt being small modeling error

If the low-dimensional subspace is fixed or changing slowly,
I the resulting matrix Lt = [`1, `2, . . . `t ] is low-rank
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Mathematical Preliminaries
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Cauchy-Schwarz for sums of matrices says the following.

Theorem
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Theorem (sin θ theorem of Davis-Kahan 1970)

Let D0 be a Hermitian matrix whose span of top r eigenvectors equals
span(P). Let D be the Hermitian matrix with top r eigenvectors P̂. The
theorem states that

SE(P̂,P) ≤ ‖(D −D0)P‖2

λr (D0)− λr+1(D)
≤ ‖(D −D0)P‖2

λr (D0)− λr+1(D0)− λmax(D −D0)
(2)

as long as the denominator is positive. The second inequality follows from
the first using Weyl’s inequality.
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Theorem (Hoeffding inequality for scalars)

Let X1, . . . ,Xn be independent zero-mean random variables. Suppose that
ai ≤ Xi ≤ bi almost surely, for all i . Also, let M := maxi (bi − ai ). Then,
for any ε > 0,

Pr

(
|

n∑
i=1

Xi | > ε

)
≤ 2 exp

(
− ε2∑

i (bi − ai )2

)
≤ 2 exp

(
− ε2

nM2

)

Theorem (Bernstein inequality for scalars)

Let X1, . . . ,Xn be independent zero-mean random variables. Suppose that
|Xi | ≤ M almost surely, for all i . Then, for any ε > 0,

Pr

(
|

n∑
i=1

Xi | > ε

)
≤ 2 exp

− 1
2ε

2∑
j E
[
X 2

j

]
+ 1

3Mε
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Theorem (matrix Bernstein, Theorem 1.6 of Tropp’s User-friendly tail
bounds)

For a finite sequence of d1 × d2 zero mean independent matrices Zk with

‖Zk‖2 ≤ R, and max(‖
∑

k

E[Zk
′Zk ]‖2, ‖

∑
k

E[ZkZk
′]‖2) ≤ σ2,

we have Pr(‖
∑

k Zk‖2 ≥ s) ≤ (d1 + d2) exp
(
− s2/2
σ2+Rs/3

)
.

Matrix Bernstein conditioned on another r.v. X , says the following.
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Theorem

Given an α-length sequence of n1 × n2 dimensional random matrices and a
r.v. X . Assume the following. For all X ∈ C, (i) conditioned on X , the
matrices Zt are mutually independent, (i) P(‖Zt‖ ≤ R|X ) = 1, and (iii)
max

{∥∥ 1
α

∑
t E[Zt

′Zt |X ]
∥∥ , ∥∥ 1

α

∑
t E[ZtZt

′|X ]
∥∥} ≤ σ2. Then, for an

ε > 0,

P

(∥∥∥∥∥ 1

α

∑
t

Zt

∥∥∥∥∥ ≤
∥∥∥∥∥ 1

α

∑
t

E[Zt |X ]

∥∥∥∥∥+ ε

∣∣∣∣X
)
≥ 1− (n1 + n2) exp

(
−αε2

2 (σ2 + Rε)

)
for all X ∈ C.
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Vershynin’s result for matrices with independent sub-Gaussian rows
(Theorem 5.39 of Vershyin’s tutorial), conditioned on another r.v. X , says
the following.

Theorem

Given an N-length sequence of sub-Gaussian random vectors wi in Rnw , a
r.v X , and a set C. Assume that for all X ∈ C, (i) wi are conditionally
independent given X ; (ii) the sub-Gaussian norm of wi is bounded by K
for all i . Let W := [w1,w2, . . . ,wN ]′. Then for an 0 < ε < 1 we have

P
(∥∥∥∥ 1

N
W ′W − 1

N
E
[
W ′W |X

]∥∥∥∥ ≤ ε∣∣∣∣X) ≥ 1− 2 exp

(
nw log 9− cε2N

4K 4

)
for all X ∈ C.
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Notation and Basic PCA
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Notation

‖.‖: refers to l2 norm

A′: transpose of A; use other MATLAB notation as well.

For a set T , IT is a sub-matrix of I containing columns with indices in T .
For a matrix A, AT := AIT
Basis matrix P: P is a tall n × r matrix with mutually orthonormal columns,
i.e., P ′P = I

I used to specify an r -dimensional subspace.

Subspace error / distance between two subspaces P, P̂:

SE(P̂,P) := ‖(I − P̂P̂ ′)P‖

measures the largest principal angle between the corresponding subspaces.

Namrata Vaswani (Iowa State) PCA, Robust PCA, Robust Subspace Tracking 21 / 108



Principal Component Analysis (PCA)

Given data points Y := [y1, y2, . . . , yα], find the low-dimensional subspace
that best approximates Y , i.e., find an n × r basis matrix, P̂, so that

‖Y − P̂P̂ ′Y ‖

is minimized.

When looking for an r -dimensional subspace: r -PCA

Solution [Eckart-Young]: SVD on Y or EVD on YY ′

I Let Y SVD
= USV ′; set P̂ = U[1:r ] := UI[1:r ]

I P̂ is equivalently the matrix of top r eigenvectors of YY ′.
Practical issues: Estimate r automatically

I look for largest eigen-gap or largest normalized eigen-gap
I all eigenvalues above a pre-set threshold
I percentage energy

PCA is a one-line MATLAB command (svd) if data is clean and not very
high-dimensional
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Robust and Dynamic Robust PCA / Robust Subspace
Tracking
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Principal Components Analysis (PCA) and Robust PCA

PCA: find the low-dimensional subspace that best approximates a given
dataset

I first step before many data analytics’ tasks - video retrieval, face
recognition, Netflix problem, exploratory data analysis, ...

I PCA for clean data is easy: SVD on data matrix

Robust PCA: problem of PCA in the presence of outliers; much harder
problem; many heuristics exist for trying to solve it

I best old solution: Robust Subspace Learning (RSL) [de la Torre, Black,’03]

Recent work [Candes, Wright, Li, Ma, 2009] defined Robust PCA as the problem of
decomposing a data matrix Y as

Y := L + X

where L is low rank and X is sparse
I idea: outliers occur occasionally and usually on only a few data indices;

their magnitude is typically large - model as sparse corruptions
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Applications [Candes, Wright, Li, Ma, 2009]

Video Layering (separate video into foreground and background video layers)

X = [x1, x2 . . . , xt , . . . xd ], L = [`1, `2, . . . `t , . . . `d ]
I `t : background - usually slow changing,
I xt : foreground - sparse (technically xt : (fg-bg) on fg support)

I video layering can simplify many downstream computer vision and video
analytics tasks, e.g., video retrieval, denoising, background editing, ...

original background foreground
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Applications – 2

Recommendation systems design (Netflix problem) [Candes et al’2009]

(robust PCA with missing entries / robust matrix completion)
I `t : ratings of movies by user t
I the matrix L is low-rank: user preferences governed by only a few

factors
I xt : some users may enter completely incorrect ratings due to laziness or

malicious intent or just typos: outliers
I goal: recover the matrix L in order to recommend movies

Detecting anomalous connectivity patterns in social networks or in computer
networks [Mateos et al.,2011]

I `t : vector of n/w link “strengths” at time t when no anomalous
behavior

I xt : outliers or anomalies on a few links

Functional MRI based brain activity detection or other dynamic MRI based
region-of-interest detection problems [Otazo, Candes, et al. 2014]

I only a sparse brain region activated in response to stimuli, everything
else: very slow changes
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Practically useful and provably correct RPCA solutions

[Candes,Wright,Li,Ma,2009], [Chandrasekharan et al,2009] intro. Principal Component Pursuit:

min
X̃ ,L̃
‖L̃‖∗ + λ‖X̃‖1 s.t. Y = X̃ + L̃

I first soln that “works” for real videos and has a provable guarantee

Improved guarantee for PCP by [Hsu et al,2011]

ReProCS (Recursive Projected Compressive Sensing): algorithm [Qiu,V., Allerton’10,’11],

[Guo,Qiu,V., T-SP’14], & partial guarantee: [Qiu,V.,Lois,Hogben, ISIT’13,T-IT’14] for
dynamic/online RPCA

ORPCA (online solver for PCP) and partial guarantee [Feng, Xu, Yan, NIPS’13]

I partial guarantee: makes assumptions on intermediate algorithm estimates

AltProj: provable alt-min for RPCA [Netrapalli et al,NIPS’14]: faster than PCP

First provably correct ReProCS: [Lois,V., ISIT’15], [Zhan,Lois,Guo,V., AISTATS’16]

GD and NO-RMC: provable grad. descent for RPCA and robust matrix completion

(RMC) [Yi et al., NIPS’16], [Jain et al., COLT’16]: faster than AltProj

I NO-RMC is fastest but needs d ≈ n

Best provable ReProCS: [Narayanamurthy,V.,ICML 2018]: this talk
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First provably correct solution to R-PCA: PCP

[Candes et al,2009; Chandrasekharan et al,2009; Hsu et al,2011] introduced and studied a convex
opt program called PCP:

min
X̃ ,L̃
‖L̃‖∗ + λ‖X̃‖1 s.t. Y = X̃ + L̃

If (a) left and right singular vectors of L are dense enough; (b) support of X
is generated uniformly at random; (c) rank and sparsity are bounded, then
PCP exactly recovers X and L from Y := X + L w.h.p. [Candes et al,2011]

I [Chandrasekharan et al,2011; Hsu et al,2011] (??): similar flavor; replace ‘unif rand
support’ by upper bound on # of nonzeros in any row of X .

I first set of guarantees for a practical robust PCA approach

Implementation: Inexact Augmented Lagrangian Method (IALM)

Web: https://github.com/andrewssobral/lrslibrary
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Incoherence assumption I

Introduced in Candes and Plan Matrix Completion work

Let L
SVD
= USV ′ be the reduced SVD of rank r matrix L of size n1 × n2.

Thus U is n1 × r .

Incoherence with parameter µ means that

‖Ii
′U‖2 ≤ µ r

n1
, ‖Ii

′V ‖2 ≤ µ r

n2
,

row norm of U is not too much larger than r/n1 (holds if no entry of U is
too large); same for V

Strong incoherence with parameter µ means that above holds and

‖UV ′‖max ≤
√

µr

n1n2

inner product between any row of U and any row of V is below the RHS.
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Guarantees for PCP I

Let rL := rank(L)

[Candes et al, 2009] (?) If

I incoherence and strong incoherence holds with parameter µ
I support of X is generated uniformly at random
I and is of size at most c2n1n2 (thus max-outlier-frac ≤ c)
I and rL ≤ c1

µ
n

(log n)2 ;

then, PCP with λ = 1/
√
n succeeds (returns L̂ = L) w.p. at least 1− cn−10.

[Hsu et al (follow-up on Chandrasekharan et al)] (?): If

I incoherence holds;
I max-outlier-frac ≤ c

µrL
I algorithm parameter set

then, PCP succeeds (returns L̂ = L) all the time.

Second result removes uniform random support assumption and strong
incoherence but needs much stronger bound on max-outlier-frac and rL
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Guarantees for PCP II

Note: above results assume the PCP convex program is solved exactly. In
practice, use an iterative solver, that is not possible. Can only solve it to a
given small enough error in finite time.

Time: for an n × α matrix with α < n, time is O(nα2) per iteration and it
needs O(1/ε) iterations to solve PCP to ε tolerance (for exact result see
Inexact ALM technical report).
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Non-convex RPCA solution: Alternating Minimization [Netrapalli et al,NIPS’14] I

PCP is a convex opt solution - for an n × α matrix with α < n, time is
O(nα2) per iteration and it needs O(1/ε) iterations

Alt-Min solution: much faster

I time taken is O(nαr2
L log(1/ε))

AltProj Algorithm Netrapalli et al, NIPS 2014]: idea for rank-1 matrix L:
I Initialize

F set L0 = 0;
F threshold out large entries from M to get S0 = HTβσ1 (M), where
σ1 = σ1(M)

I For Iterations t=1 to T do, set T = c log(1/ε)
F Lt = P1(M − S t) : project M − S t onto space of rank-1 matrices
F S t = HTβ(σ2+0.5tσ1)(M − Lt) where σi = σi (M − S t)

End For

AltProj Algorithm: idea for rank r case:

I proceed in r stages and do T iterations for each stage
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Non-convex RPCA solution: Alternating Minimization [Netrapalli et al,NIPS’14] II

I at stage k: project onto rank k matrices; remove outliers of magnitude
larger than β(σk+1 + 0.5tσk )

Guarantee for AltProj (?): similar to PCP guarantee of Hsu et al. If β set
carefully and if

I incoherence condition holds,
I max-outlier-frac < 1

512µ2r ,

I set parameter β = 4µ2r√
nα

; also need r

Then ‖L̂− L‖F ≤ ε ‖S − Ŝ‖max ≤ ε/
√
nα and Supp(Ŝ) ⊆ Supp(S)

Details: https://arxiv.org/pdf/1410.7660.pdf
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1: Input: Matrix M ∈ Rm×n, convergence criterion ε, target rank r ,
thresholding parameter β.

2: Set initial threshold ζ0 ← βσ1(M).
3: L(0) = 0,S (0) = HTζ0(M − L(0))
4: for Stage k = 1 to r do
5: for Iteration t = 0 to T = 10 log

(
nβ‖M − S (0)‖/ε

)
do

6: Set threshold ζ as

ζ = β

(
σk+1(M − S) +

(
1

2

)t

σk (M − S)

)
7: L(t+1) = Pk (M − S (t))
8: S (t+1) = HTζ(M − L(t+1))
9: end for

10: if βσk+1(L) < ε
2n then

11: Return: L(T ),S (T ) /* Return rank-k estimate if remaining part
has small norm */

12: else
13: S (0) = S (T ) /* Continue to the next stage */
14: end if
15: end for
16: Return: L(T ),S (T )
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Non-convex RPCA solution 2: Gradient Descent [Caramanis,?’16] I

Motivation: reduce time complexity to almost as much as that for simple
PCA (r -SVD for data with large eigen-gap); while nearly matching outlier
support guarantees

Key Ideas:

I ”Sparsifying Operator” TB [(]) zero out just enough entries so that each
row and column of B has bmax-outlier-frac or less nonzero entries;
here bmax-outlier-frac is the assumed bound on max-outlier-frac

I Initialize:
F estimate sparse matrix first: Sinit

F r -SVD (need not run to convergence) on Y − Sinit .
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Non-convex RPCA solution 2: Gradient Descent [Caramanis,?’16] II

F project left and right singular vectors onto U ,V respectively:

U :=

{
A ∈ Rd1×r

∣∣ |||A|||2,∞ ≤√2µr

d1
|||U0|||op

}
,

V :=

{
A ∈ Rd2×r

∣∣ |||A|||2,∞ ≤√2µr

d2
|||V0|||op

}
. (3)

(if row norm of some row of Ut is larger than bound, rescale all entries
of that row to so it equals the bound)

I Algorithm:
F update sparse matrix by applying “sparsifying” operator to Y − UtV

′
t

F gradient descent for cost function L(U,V ;S) + 0.125‖U ′U − V ′V ‖2
F

where L(U,V ;S) := ‖Y − S − UV ′‖2
F

F project left and right singular vectors onto U ,V respectively:

Guarantee for RPCA-GD [Caramanis,?’16] If

I incoherence condition holds,
I max-outlier-frac < max( 1

µκ2r ,
1

µ
√
κr 3

),
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Non-convex RPCA solution 2: Gradient Descent [Caramanis,?’16] III

I set algorithm parameters: need to know r , σ1(L) (to set the step size),
max-outlier-frac (for sparse estimation) and κ (to set total number of
iterations T = O(κ log(1/ε))

Then SE(U t ,U) ≤ (1− c
κ )t
√
κµr
√
r
√
λ1 (subspace error at iteration t)

Time complexity for GD: O(nαr · κ(− log ε))
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RPCA via GD algorithm (?)

Algorithm 1 Fast RPCA

1: Input: Observed matrix Y with rank r and corruption fraction α; pa-
rameters γ, η; number of iterations T .

2: Sinit ← Tα [Y ]
3: [L,Σ,R]← SVDr [Y − Sinit]

1

4: U0 ← LΣ1/2, V0 ← RΣ1/2. Let U ,V be defined according to (??).

5: U0 ← ΠU (U0), V0 ← ΠV (V0)
6: for t = 0, 1, . . . ,T − 1 do
7: St ← Tγα

[
Y − UtV

>
t

]
8: Ut+1 ← ΠU

(
Ut − η∇UL(Ut ,Vt ; St)− 1

2ηUt(U>t Ut − V>t Vt)
)

9: Vt+1 ← ΠV
(
Vt − η∇VL(Ut ,Vt ;St)− 1

2ηVt(V>t Vt − U>t Ut)
)

10: end for
11: Output: (UT ,VT )
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Performance Guarantees summary: PCP, AltProj, GD

n × d data matrix Y := L + X : L has rank rL, X is sparse

PCP or AltProj recovers L and X with error at most ε if
I incoherence (denseness) holds for left and right singular vectors of L

F (ensures L is not sparse)
I and max-outlier-frac ∈ O(1/rL) (max-outlier-frac: max fraction of nonzeros in any

row or col of X )

F (ensures X is not low rank)

Storage complexity: O(nd)

Best Time complexity: O(ndr2
L log(1/ε)) for AltProj

I or O(ndrL log(1/ε)) for GD but it needs max-outlier-frac ∈ O(1/r1.5
L )

Theorem (sample guarantee for recovering L from Y := L + X + V )

Let L SVD
= UΣV ′. If U, V are µ-incoherent, max-outlier-frac ≤ c

µrL
, and

‖V ‖2
F ≤ Cε2, then ‖L̂− L‖F ≤ ε. Time: O(ndr2

L log(1/ε)). Memory: O(nd).
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Dynamic Robust PCA / Robust Subspace Tracking
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Limitations of existing RPCA solutions

1 Need outliers to be uniformly randomly generated (impractical) or need tight
bounds on outlier fractions: need max-outlier-frac ∈ O(1/rL)

I these bounds are often violated in practice, e.g.,
F in video analytics: often have occasionally static or slow moving

foreground (fg) objects: large outlier fractions per row

F can also have large-sized fg objects: large outlier fractions per column

F in network anomaly detection: anomalous behavior continues on most
of the same edges for a period of time after begins

2 Need to store the entire data matrix – memory inefficient

3 Are usually slow

Our work: by exploiting the dynamics (slow subspace change) and a lower bound
on most outlier magnitudes, can

significantly improve outlier tolerance – allow max-outlier-frac-row ∈ O(1),

and get an online, fast, and memory-efficient algorithm
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A Preview

original ReProCS PCP
(proposed)

(a) Background recovery

original ReProCS PCP
(proposed)

(b) Foreground recovery

Figure: Slow moving person ⇒ sparse matrix X is also low rank ⇒ PCP confuses
person for background. Proposed method (ReProCS) works; and needs only 16.5ms and
50 frames of memory; PCP needs 44ms and 1200 frames of memory
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(dynamic) Robust PCA or Robust Subspace Tracking

Track data lying in a slowly changing low-dimensional subspace while being
robust to sparse outliers and small noose

I applications: video analytics, detecting anomalous behavior in dynamic
social or computer networks, ....

All P’s, P̂’s: “basis” matrices (tall matrices with mutually orthonormal
columns)

I used to denote subspaces

Subspace Error / Distance: SE(P1,P2) := ‖(I − P1P1
′)P2‖

I sine of largest principal angle b/w the two subspaces
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(dynamic) Robust PCA or Robust Subspace Tracking [Guo,Qiu,Vaswani,T-SP’14]2,

[Qiu,Vaswani,Allerton’10,’11]3

Given length-n data vectors

yt := `t + xt , t = 1, 2, . . . , d

I `t lies in a fixed or slowly-changing low (r) dimensional subspace of Rn

F `t = Ptat , Pt : n × r matrix with r � n,
F Pt changes only a “little” every so often (slow subspace change)
F columns of Pt are dense vectors (left incoherence)
F at ’s i.i.d. & element-wise bounded (similar to right incoherence)

I xt : sparse outlier vector with support set Tt
F the outlier support size is bounded (bound on max-outlier-frac-col)
F outlier supp changes enough over time (bound on

max-outlier-frac-row)
F lower bound on (most) outlier magnitudes

Track `t , span(Pt), starting with initial estimate of span(P0)
I init: few iter’s of PCP or AltProj on first Cr data samples

2
H. Guo, C. Qiu, N. Vaswani, An Online Algorithm for Separating Sparse and Low-Dimensional Signal Sequences From

Their Sum”, IEEE Trans.SP, Aug 2014
3

C. Qiu and N. Vaswani, Real-time Robust Principal Components’ Pursuit, Allerton, 2010
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(dynamic) Robust PCA or Robust Subspace Tracking [Guo,Qiu,Vaswani,T-SP’14]4,

[Qiu,Vaswani,Allerton’10,’11]5

Robust PCA interpretation: estimate n × d matrix L with rank rL from
Y := L + X

I with extra slow changing assumption on subspaces spanned by sets of
consecutive col’s of L

Also study the more practical noisy setting:

yt = `t + xt + vt or Y := L + X + V

Easy extensions

I provable online solution to matrix completion and robust MC
I undersampled or compressive RPCA setting: see [Qiu,Vaswani,Allerton’11]

4
H. Guo, C. Qiu, N. Vaswani, An Online Algorithm for Separating Sparse and Low-Dimensional Signal Sequences From

Their Sum”, IEEE Trans.SP, Aug 2014
5

C. Qiu and N. Vaswani, Real-time Robust Principal Components’ Pursuit, Allerton, 2010
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Ensuring identifiability

1 Piecewise constant subspace change:

P(t) = Pj for all t ∈ [tj , tj+1), j = 1, 2, . . . , J

I if allow changes at each time t: have > nr unknowns but only one
n-dimensional data vector yt at time t – problematic!

2 Ensure L is not sparse:

I µ-incoherence of Pj ’s (denseness of col’s of Pj )
F (almost) same as left incoherence of L

I at ’s are i.i.d. and element-wise bounded
F replaces right incoherence of L

3 Ensure (α-consecutive-col sub-matrices of) X not low-rank: bound

I max-outlier-frac-col := maxt |Tt |/n and
I max-outlier-frac-rowα: max fraction of nonzeros in any row of

[xt , xt+1, . . . , xt+α−1]
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Recursive Projected Compressive Sensing (ReProCS)

[Qiu,Vaswani,Allerton’10,Allerton’11],[Guo,Qiu,Vaswani,T-SP’14]

Recall: yt := xt + `t , `t = Ptat , Pt : tall n × r basis matrix, xt : sparse

Given P̂0 (obtain using PCP or AltProj on init data). For all later times t, do

1 Projected Compressive Sensing (CS) / Robust Regression

1 Projection: compute ỹt := Φyt , where Φ := I − P̂t−1P̂t−1
′

F then ỹt = Φxt + βt , βt := Φ`t is small “noise” because of slow
subspace change

2 Noisy CS: l1 min + support estimate + LS: get x̂t

F denseness of columns of Pt ⇒ sparse xt recoverable from ỹt

3 Recover `t by subtraction: compute ˆ̀
t = yt − x̂t

2 Subspace update: use ˆ̀
t ’s to update P̂t every α frames

I next slide...
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Subspace update – simplest (ReProCS-NORST [Narayanamurthy, V., ICML 2018])

Suppose Pt := Ptj for all t ∈ [tj , tj+1), j = 0, 1, . . . , J

(for recovering `t ’s, algo works even w/o this assumption)

Idea

Detect j-th subspace change: suppose detected at t̂j

I detect change: σmax((I − P̂j−1P̂j−1
′)[ ˆ̀

t−α+1, ˆ̀
t−α+2, . . . ˆ̀

t ]) > ω0

Update j-th subspace estimate

I at t = t̂j + α: compute first estimate of Pj := Ptj

P̂t ← P̂j,1 ← top r left singular vectors of [ ˆ̀̂
tj
, ˆ̀̂

tj +1, . . . , ˆ̀̂
tj +α−1]

I at t = tj + 2α: compute second estimate of Pj := Ptj

P̂t ← P̂j,2 ← top r left singular vectors of [ ˆ̀̂
tj +α,

ˆ̀̂
tj +α+1, . . . , ˆ̀̂

tj +2α−1]

I repeat K times: get final estimate P̂j := P̂j,K
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Recursive Projected Compressive Sensing (ReProCS) framework

Perpendicular Projection
ỹt = (I − P̂t−1P̂t−1

′)yt

l1
minimiz

Support
estimate and LS

ˆ̀t = yt − x̂t

Delay

Subspace update

yt ỹt x̂t,cs T̂t , x̂t T̂t ,P̂t

x̂t , ˆ̀t

ˆ̀t

P̂t

P̂t−1

P̂t−1

Projected CS

Figure: The ReProCS framework: `1 min can be replaced by any other method;
can also use structured sparse recovery methods
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Why it works - intuition [Qiu,Vaswani,Lois,Hogben,T-IT,2014] 6

Slow subspace change ⇒ noise βt := Φ`t seen by CS step small

Denseness of columns of Pt and slow subspace change ⇒ RIP constant of
Φ := I − P̂t−1P̂t−1

′ small. Reason: max-outlier-frac-col ≤ c/µr and

δ2s(I − PP ′) = max
|T |≤2s

‖IT ′P‖2 ≤ C µ (max-outlier-frac-col) r

Above two facts + a guarantee for l1 min + carefully set support recovery
threshold and lower bound on xmin ⇒ xt is accurately recovered; and hence
`t = yt − xt is accurately recovered

Most of the work: show accurate subspace recovery P̂(t) ≈ P(t)

I standard PCA results not applicable: et := ˆ̀
t − `t correlated with `t

F reason: et = xt − x̂t and this depends on βt := Φ`t

I all existing guarantees for PCA assumed data, noise uncorrelated
F above problem inspired our work on correlated-PCA [Vaswani,Guo,NIPS’16] ,

[Vaswani,Narayanamurthy,PCA in Data-Dependent Noise, Allerton’17]

6
C. Qiu, N. Vaswani, B. Lois and L. Hogben, Recursive Robust PCA or Recursive Sparse Recovery in Large but Structured

Noise, IEEE Trans. IT, 2014
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Simulation experiments: plot of ‖`t− ˆ̀
t‖2

‖`t‖2
v/s time t

0 2000 4000 6000
10−7

10−2

103

t

ReProCS (37ms)

GRASTA (1ms)

ORPCA (3ms)

Offline ReProCS (85ms)

PCP (89ms)

Alt Proj (130ms)

RPCA-GD (470ms)
0 2000 4000 6000

10−12

10−6

100

t

Figure: Normalized error of `t . Left: larger max-outlier-frac-row and non-random
outliers (simulated slow moving objects), max-outlier-frac-row = 0.4 (after init), Right:
random outliers (Bernoulli) and max-outlier-frac-row = 0.2 (after init).

With each SVD step, the error decreases exponentially
I better estimate of Pt ⇒ smaller noise βt seen by CS step in next α-frame

interval ⇒ smaller CS step error et := xt − x̂t = ˆ̀
t − `t ⇒ smaller

perturbation seen at next SVD step ⇒ even better next estimate of Pt

I reason that first estimate of Pt is good and each next estimate is better:
F et is sparse with support Tt that changes enough

(bound on max-outlier-frac-row holds)



ReProCS algorithm parameters: practice

Use the following parameters for all videos:

I support threshold: ωsupp,t =
√
‖yt‖2/n (RMS of image pixel intensities)

I noise bound for l1 min step: ξt = ‖Φ ˆ̀
t−1‖

I eigenvalue threshold to detect subspace change: ωevals = 0.01λ−

(λ−: r -th eigval. of empirical cov of L̂[1,ttrain] with r = 40)

I α = 60,

I K = 3,

I ttrain = 400, AltProj applied to first ttrain frames

Code:
http://www.ece.iastate.edu/~hanguo/PracReProCS.html

Show switch-light video
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ReProCS algorithm parameters: theory

Needs knowledge of 4 model parameters: r , λ−, λ+, xmin (min nonzero
magnitude of any xt)

Set the algorithm parameters as
I support threshold: ωsupp = xmin/2

I noise bound for l1 min step: ξ = xmin/15

I eigenvalue threshold to detect subspace change: ωevals = 0.01λ−

I α = Cf 2r log n where f = λ+/λ−

I K = C log(1/ε),

I ttrain = Cf 2r log n, AltProj applied to the first ttrain frame dataset
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ReProCS guarantee – for ReProCS-NORST [Narayanmurthy,Vaswani,ICML’18] I

We have yt = `t + xt + vt , `t = Pjat for t ∈ [tj , tj+1)

Let Λ := E[a1a1
′], λ+ := λmax(Λ), λ− := λmin(Λ),

Let xmin := mint mini∈Tt (xt)i denote minimum outlier magnitude

Pick ε (desired accuracy) s.t., ε ≤ min(0.01, 0.03(minj SE(Pj−1,Pj )
2/f )

Let K := C log(1/ε), and α := Cr log n.

We assume the condition number f := λ+/λ− is a constant

See: P. Narayanamurthy and N. Vaswani, “Nearly Optimal Robust Subspace
Tracking”, ICML 2018.
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ReProCS guarantee – for ReProCS-NORST [Narayanmurthy,Vaswani,ICML’18] II

Theorem

Each subspace is recovered to ε error w/ delay only O(r log n log(1/ε)) w.h.p. if

1 left & right incoherence: Pj ’s are µ-incoherent; and at ’s are zero mean,
i.i.d., and element-wise bounded (maxt maxi (at)2

i ≤ Cλi (Λ));

2 vt ’s zero mean, mutually independent, indep. of xt , `t , & ‖vt‖2 ≤ crε2λ−,

3 outlier frac: max-outlier-frac-col ∈ O(1/r), max-outlier-frac-rowα ∈ O(1);

4 slow subspace change & outlier magnitudes lower bounded:

1 tj+1 − tj > Cr log n log(1/ε),

2 ∆ := maxj SE(Pj−1,Pj ) satisfies C1

√
rλ+(∆ + 2ε) < mint mini∈Tt (xt)i

5 initializ: SE(P̂0,P0) ≤ 0.25, and C1

√
rλ+SE(P̂0,P0) < mint mini∈Tt (xt)i

Can relax outlier mag lower bound to: most outlier magnitudes are lower

bounded, while the rest are small enough s.t. their squared sum is upper bounded
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Main Result: Other conclusions

With probability at least 1− 10dn−11 all the following also hold:

at all times t, T̂t = Tt : exact outlier support recovery

tj ≤ t̂j ≤ tj + 2α (recall α = O(r log n)): subspace change detected quickly

subspace error decays exponentially with each new update:

SE(P̂(t),P(t)) ≤

 ε+ ∆ t ∈ [tj , t̂j + α)
(0.3)k−1(ε+ ∆) t ∈ [t̂j + (k − 1)α, t̂j + kα)
ε t ∈ [t̂j + Kα, tj+1)

‖x̂t − xt‖ = ‖ ˆ̀
t − `t‖ ≤ 1.2(SE(P̂(t),P(t)) + ε)‖`t‖: error stable and small

at all times

Offline: SE(P̂off
(t) ,P(t)) ≤ ε, ‖x̂off

t − xt‖ = ‖ ˆ̀off
t − `t‖ ≤ ε‖`t‖ at all t.

Memory complexity is O(nr log n log(1/ε)): nearly-optimal

Time complexity is O(ndr log(1/ε)): comparable to complexity for simple
(non-robust) PCA via SVD
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Proof outline: assume vt = 0

Slow subspace change, denseness (incoherence) of columns of P(t), and bound on

max-outlier-frac-col ⇒ RIP constant of Φ = (I − P̂t−1P̂t−1
′) is small.

This + CS guarantee + lower bnd on outlier magnitudes ⇒ et := xt − x̂t satisfies

et = ITt (ITt

′ΦITt )−1ITt

′Φ`t

notice et is data-dependent, sparse, with changing support

Since ˆ̀
t = yt − x̂t and yt = `t + xt , ˆ̀

t = `t + et ; using ˆ̀
t ’s for subspace update is

thus a PCA in Data-Dependent Noise problem:

I made the analysis harder – almost no results for data-dependent noise
I use results from [Vaswani, Narayanamurthy, ISIT’18, Allerton’17], [Vaswani, Guo, NIPS’16]

Overall idea: show error reduction after first subspace update ⇒ further reduced error
seen by the CS step in next interval ⇒ further reduced et = xt − x̂t = ˆ̀

t − `t ⇒ use to
show further error reduction in next subspace update

Key idea in showing error reduction after subspace update: et sparse with
changing support (max-outlier-frac-rowα ≤ c)

thus norm of time-average of E[etet
′] is
√
c times ‖E[etet

′]‖
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Proof technique I

Theorem (Davis-Kahan sin θ theorem - simplified)

Let D0 be a Hermitian matrix whose span of top r eigenvectors equals span(P).
Let D be the Hermitian matrix with top r eigenvectors P̂. Then,

SE(P̂,P) ≤ ‖D −D0‖2

λr (D0)− λr+1(D0)− ‖D −D0‖2
(4)

as long as the denominator is positive.

Apply above w/ D0 = 1
α

∑
t `t`

′
t = P( 1

α

∑
t ata′t)P ′ and D = 1

α

∑
t

ˆ̀
t

ˆ̀
t
′

Use matrix Bernstein and Vershynin’s sub-Gaussian result to conclude that,
w.h.p.

SE(P̂j,k ,Pj ) /
2
∥∥ 1
α

∑
t E[`tet

′]
∥∥+

∥∥ 1
α

∑
t E[etet

′]
∥∥+ 0.3ελ+

λ− − 0.1ελ+ − numerator

Namrata Vaswani (Iowa State) PCA, Robust PCA, Robust Subspace Tracking 58 / 108



Proof technique II

Use Cauchy-Schwarz for sums of products of matrices to bound above terms

In k-th subspace update step: start with SE(P̂j,k−1,Pj ) ≤ 0.3k−1(∆ + ε),∥∥∥∥∥ 1

α

∑
t

E[etet
′]

∥∥∥∥∥ =

∥∥∥∥∥ 1

α

∑
t

ITt BtΦPjΛP ′jΦBt
′ITt

′

∥∥∥∥∥
≤

√√√√∥∥∥∥∥ 1

α

∑
t

ITt ITt
′

∥∥∥∥∥ (max
t

(‖Bt‖2SE(P̂j,k−1,Pj ))2λ+)2

≤
√

max-outlier-frac-rowα(1.2)2(0.3k−1(∆ + ε))2λ+

Similarly can show that∥∥∥∥∥ 1

α

∑
t

E[`tet
′]

∥∥∥∥∥ ≤ √max-outlier-frac-rowα(1.2)20.3k−1(∆ + ε)λ+

Use above to show that SE(P̂j,k ,Pj ) ≤ 0.3k (∆ + ε)
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Comparisons: assumptions, time, memory

PCP AltProj GD ReProCS

max-outlier-frac-row O(1/rL) O(1/rL) O(1/
√
r3

L ) O(1)

max-outlier-frac-col O(1/rL) O(1/rL) O(1/
√
r3

L ) O(1/r)
slow subspace change No No No Yes
lower bound on outlier mag. No No No Yes
initial data Yinit assumptions of AltProj:

max-outlier-frac ≤ c/r
# of algo parameters 1 2 5 4
time O(nd2 1

ε ) O(ndr2
L log 1

ε ) O(ndrL log 1
ε ) O(ndr log 1

ε )
memory O(nd) O(nd) O(nd) O(nr log n log 1

ε )
online? No No No Yes
detect/track subsp change? No No No Yes

Table: An n × d data matrix Y := L + X + V ; rank of L is rL = rJ: r is subspace
dimension at any time, J is total number of subspace changes.

Other work:

PCP (Candes et al): needs uniform random outlier support and strong incoherence but
allows allows max-outlier-frac ∈ O(1) and rL ∈ O(n/(log2 n))

Namrata Vaswani (Iowa State) PCA, Robust PCA, Robust Subspace Tracking 60 / 108



Comparison with state-of-the-art

Table: Comparing tracking (dynamic RPCA) solutions7.

Algorithm Outlier tolerance Other Assumptions Memory, Time, Delay

modified-PCP max-outlier-frac-row ∈ O(1) outlier support: unif. random, Memory: O(nr log2 n)
max-outlier-frac-col ∈ O(1) slow subspace change (unrealistic), Time: O(ndr log2 n 1

ε )

rL ≤ c min(n,d)

log2 n
Detect delay: ∞

orig-ReProCS max-outlier-frac-row ∈ O(1) unrealistic slow subspace change, Memory: O(nr2/ε2)
r2/ε2-times sub-optimal max-outlier-frac-col ∈ O(1/rL) many unrealistic Time: O(ndr log 1

ε )
delay assumptions Detect delay: Cnr2/ε2

s-ReProCS: max-outlier-frac-row ∈ O(1) subspace change: only 1 direc at a time, Memory: O(nr log n log 1
ε )

r -times sub-optimal max-outlier-frac-col ∈ O(1/r) NORST assumptions Time: O(ndr log 1
ε )

delay Detect delay: Cr log n

ReProCS-NORST max-outlier-frac-row ∈ O(1) outlier mag. lower bounded, Memory: O(nr log n log 1
ε )

near-optimal delay max-outlier-frac-col ∈ O(1/r) at ’s independent, Time: O(ndr log 1
ε )

first Cr samples: AltProj assu’s Detect delay O(r log n)

7
mod-PCP: “Robust PCA with Partial Subspace Knowledge”, ISIT’14, T-SP’15, Zhan & V.;

orig-ReProCS: “Online (and Offline) Robust PCA: Novel Algorithms and Guarantees”, AISTATS’16, Zhan,Lois,Guo & V.;
s-ReProCS: “Provable Dynamic Robust PCA or Robust Subspace Tracking”, ISIT’18, Narayanamurthy & V.;
ReProCS-NORST: “Nearly Optimal Robust Subspace Tracking”, ICML’18, Narayanamurthy & V.
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Summary

1 First provable guarantee for Robust Subspace Tracking (dynamic
robust PCA) that has near-optimal tracking delay of
O(nr log n log(1/ε))

2 Fast Running Time: Run time equals rank r -vanilla SVD:
O(ndr log(1/ε))

3 Near optimal memory complexity: O(nr log n log(1/ε))

4 Significantly improved worst-case outlier tolerance.
1 allows max. outlier fraction per row to be O(1) without assumptions

on outlier support – existing works only allow O(1/r).

5 All the above hold under 2 simple extra assumptions
I slow subspace change,
I most outlier magnitudes lower bounded,
I right incoherence imposed differently
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Pros and Cons of ReProCS – Video context

Pros

1 Allows video objects that move every so often or move very slowly
I tolerates max-outlier-frac-row ∈ O(1); others need O(1/rL)

2 Typically, also allows larger-sized foreground objects than other methods
I tolerates max-outlier-frac-col ∈ O(1/r); others need O(1/rL)

F e.g., if r = O(log n), but J = O(d/(r log n)), then rL = rJ is almost
O(d): ReProCS still works, all others fail

3 ReProCS is the fastest; and has nearly optimal memory complexity

Cons: needs

1 Slowly changing subspace of video backgrounds
I (usually valid for static camera videos)

2 Foreground pixels are either different enough from background pixels or very
similar

I outlier magnitudes are either large or very small
I mild assumption: follows from definition of outlier as a large magnitude

corruption
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Discussion

First set of complete guarantees for any online / dynamic / streaming RPCA
solution:

I first algorithm for static or dynamic RPCA that tolerates a constant
fraction of outliers per row without assumptions on outlier support

I first method with near-optimal memory complexity

Earlier work:

I partial guarantees (required assumptions on intermediate algo. estimates):

F ReProCS [Qiu,Vaswani,Lois,Hogben,ISIT’13,T-IT’14],
F ORPCA [Feng et a;.,NIPS’13]

I complete guarantee for ReProCS but with more assumptions: ReProCS
[Lois,V.,ICASSP’15,ISIT’15], [Zhan,Lois,Guo,V.,AISTATS’16]

New proof techniques needed to be developed

I useful for various other problems, e.g., correlated-PCA [Vaswani,Guo,NIPS’16]
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Methods compared

Online:

ReProCS – [Qiu,V., Allerton’10], [Qiu,V.,Lois,Hogben,T-IT’14], [Zhan,Lois,Guo,V.,AISTATS’16]

Modified-PCP (Robust PCA with Partial Subspace Knowledge) – [Zhan,
V.,T-SP’15]

GRASTA – [He, Balzano, et al, CVPR 2012]

pROST – [Seidel et al. arXiV 2013]

ORPCA – [Feng, Xu, et al, NIPS 2013], online algorithm to solve PCP

Batch:

PCP (IALM) – batch algo. for static RPCA - convex opt.

AltProj – batch algo. for static RPCA - Alt-Min

RPCA-GD – batch algo. for static RPCA - Grad. Desc.

NO-RMC – batch algo. for static robust matrix completion

GoDec – [Zhou and Tao, ICML’11]

2PRPCA – [Gao et al, PAMI’14] Block-sparse RPCA for salient motion detection

3TD – [Oreifej et al, PAMI’13] Simultaneous video stabilization and moving object detection in turbulence

PRMF – [Wang et al, ECCV’12] A Probabilistic approach to Robust Matrix Factorization
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Evaluating basic ReProCS for background recovery: visual comparisons I

Original ReProCS (17ms) AltProj(26ms) GD(30ms) GRASTA(3ms) PCP (45ms)

Figure: Background recovery comparison. ReProCS works best; is the fastest among
provable methods; and needs only 60 frames of memory instead of all 1200.
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Evaluating basic ReProCS for background recovery: visual comparisons II

Original ReProCS (85ms) AltProj(96ms) GD(123ms) GRASTA (23ms) PCP (318ms)

Figure: Background recovery comparison for frames t = 400 + 60, 200, 688, 999.
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Improved Practical ReProCS

Also exploited slow support change of the foreground object(s) when
possible

Applications

I Video layering:
F Foreground recovery for video surveillance, and Background recovery

and subspace tracking - useful for simulating video textures

I Video Denoising and Enhancement

I Work of Selin Aviyente et al.:
F Tensor ReProCS for detecting anomalous connectivity patterns in social

networks data on-the-fly
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Video surveillance application - foreground recovery

original ReProCS PCP RSL GRASTA

Figure: Foreground recovery (t = ttrain + 35, 500, 1300)
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Background recovery and subspace tracking - useful for simulating video textures

original ReProCS PCP RSL GRASTA

Figure: Background recovery for modeling (t = ttrain + 30, 80, 140).
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Quantitative comparisons for video layering (fg-bg separation) I

Comparisons on 15 challenging sequences from the CDnet video dataset:

I two sequences from ‘Baseline’ category, three from Dynamic
Background (DB) category, two from Camera Jitter category, three
from Intermittent Object Motion (IOM), category, three from
‘Shadows’ category, and two from ‘Thermal’ category.

For all these videos, foreground pixels have been manually labeled. These
serve as ground truth.

Use F measure (standard metric for evaluating information retrieval
methods): F = 2 Recall·Precision

Recall+Precision

I Recall is number of pixels correctly labeled as foreground (fg) as a
fraction of total number of pixels labeled by the algorithm as fg.

I Precision is number of pixels correctly labeled as fg as a fraction of
total number of true fg pixels.

Comparisons done by Sajid Javed and Thierry Bouwmans.



Quantitative comparisons for video layering (fg-bg separation) II

Table: Comparing F scores (higher is better) and time for various categories of videos
from CDnet dataset. DB: Dynamic Backgrounds, IOM: Intermittent Object Motion.

Provable Methods Baseline DB Camera Jitter Shadow Thermal IOM Average Time (secs/frame)

PCP (batch) 0.75 0.69 0.62 0.73 0.65 0.48 0.65 4.19
AltProj (batch) 0.78 0.71 0.60 0.76 0.69 0.58 0.68 2.38

NO-RMC (batch) 0.71 0.64 0.64 0.66 0.71 0.50 0.64 2.85
RPCA-GD (batch) 0.74 0.62 0.68 0.75 0.66 0.49 0.65 2.46

ReProCS-provable (online) 0.77 0.77 0.69 0.71 0.74 0.70 0.73 0.74
Modified-PCP (online) 0.75 0.64 0.70 0.65 0.69 0.70 0.68 0.44

Heuristics Methods Baseline DB Camera Jitter Shadow Thermal IOM Average Time

ReProCS (online) 0.80 0.76 0.72 0.75 0.77 0.69 0.74 0.61
GRASTA (online) 0.66 0.35 0.43 0.52 0.42 0.35 0.45 1.16

3TD (batch) 0.88 0.75 0.72 0.68 0.78 0.55 0.72 2.17
2PRPCA (batch) 0.92 0.79 0.81 0.80 0.76 0.65 0.78 1.63
GoDec (batch) 0.77 0.58 0.48 0.51 0.62 0.38 0.55 1.56

OR-PCA (online) 0.86 0.75 0.70 0.74 0.76 0.56 0.72 0.22
pROST (online) 0.79 0.59 0.79 0.70 0.58 0.48 0.65 2.03

PRMF 0.92 0.77 0.85 0.88 0.83 0.48 0.78 2.40

For Intermittent Object Motion (IOM) and Dynamic Background (DB), ReProCS

has the best or second best performance compared with all methods.

I IOM implies large max-outlier-frac-row, DB implies large rL.

Compared with the provable methods (simple methods), ReProCS has best
average performance while also being very fast.



Video denoising of very noisy videos

Idea: large variance noise can always be split as frequently occurring small
noise and occasionally occurring large outliers.

Approach:
I use ReProCS to get x̂t and ˆ̀

t for each frame t
I apply a state-of-art denoiser, VBM-3D, to each layer separately
I use denoised ˆ̀

t in most cases; sometimes use denoised image (add up
denoised layers)

Waterfall video: http://www.ece.iastate.edu/~hanguo/denoise.html,
https://youtu.be/pycgXFQAC9Y

http://www.ece.iastate.edu/~hanguo/denoise.html
https://youtu.be/pycgXFQAC9Y


Peak Signal-to-Noise-Ratio (PSNR) comparisons for Video Denoising

σ ReProCS-LD PCP-LD AltProj-LD GRASTA-LD VBM3D MLP
25 32.78 (73.54) 32.84 (198.87) 31.98 (101.78) 28.11 (59.43) 32.02 (24.83) 28.26 (477.22)
30 32.68 (73.33) 32.60 (185.47) 31.56 (106.30) 26.89 (58.76) 30.96 (23.96) 26.96 (474.26)
50 32.27 (73.14) 31.65 (195.77) 30.09 (128.35) 23.97 (58.23) 27.99 (24.14) 18.87 (477.60)
70 31.79 (69.77) 30.67 (197.94) 29.63 (133.53) 21.81 (55.45) 24.42 (21.01) 15.03 (478.73)

Table: PSNR measures denoised image quality, so larger PSNR value is better.

The video is made noisy by adding zero mean Gaussian noise with standard
deviation σ varied from 25 to 70.

Images were of size n = 108× 192 and video length d = 650.

ReProCS-LD (ReLD): ReProCS based layering denoising: use ReProCS to
get low-rank and sparse layers, then use VBM3D on each layer.

Similarly PCP-LD, AltProj-LD and GRASTA-LD.
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Low-light Video Enhancement: “seeing in the dark”

Figure: Original, V-BM-3D, K-SVD, ReProCS. In the video, a person is walking
through a hallway. ReProCS successfully “sees” the person.
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Summary and Open Questions
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Pros and Cons of ReProCS – Video context

Pros

1 Allows video objects that move every so often or move very slowly

I tolerates max-outlier-frac-row ≤ c ; others need ≤ c/rL (rL = rank(L))

2 Typically, also allows larger-sized foreground objects than other methods
I tolerates max-outlier-frac-col ≤ c/r ; others need c/rL

F e.g., if r = O(log n), but J = O(n), then rL = r + J = O(n): ReProCS
works, others fail

3 ReProCS is the fastest; has nearly optimal storage complexity; and is online

Cons: needs

1 Slowly changing subspace of video backgrounds

I (usually valid for static camera videos)

2 Most foreground pixels are different enough from background pixels

I needs a lower bound on most outlier magnitudes
I mild assumption: follows from definition of outlier as large magnitude

corruption
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Open Questions

1 Extensions to dynamic robust matrix completion, undersampled RPCA

2 Remove lower bound on outlier magnitudes and still get a guarantee (even if
with a tighter outlier fraction bound) – replace CS step by thresholding

3 Moving camera; sudden scene changes; algorithm speed-up w/o significant
loss in performance; streaming ReProCS

4 Applications:

I use video layering to simplify computer vision and video analytics’ tasks
I functional MRI based brain activity pattern tracking;
I tracking user preferences over time

5 Open: use in related problems: dynamic subspace clustering, phaseless
robust PCA (preliminary ongoing work on low rank phase retrieval)
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Main references discussed in detail

Solutions for original RPCA

1 PCP: Robust Principal Components Analysis?, J. ACM, 2009.

2 AltProj: Non-Convex Robust PCA, NIPS, 2014.

3 RPCA-GD: Fast Algorithms for Robust PCA via Gradient Descent, NIPS 2016

Our work on ReProCS and ReProCS-NORST:

1 Nearly Optimal Robust Subspace Tracking, ICML 2018

2 Online (and Offline) Robust PCA: Novel Algorithms and Performance Guarantees,
AISTATS 2016

3 Recursive Robust PCA or Recursive Sparse Recovery in Large but Structured
Noise, IEEE Trans. IT, 2014

4 An Online Algorithm for Separating Sparse and Low-dimensional Signal Sequences
from their Sum, IEEE Trans. SP, 2014

5 Real-time Robust Principal Components’ Pursuit, Allerton, 2010

PCA in data-dependent (correlated) noise:

Correlated-PCA: Principal Component Analysis when Data and Noise are
Correlated, NIPS 2016

Finite Sample Guarantees for PCA in Non-Isotropic and Data-Dependent Noise,
Allerton 2017.
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PCA for big-data
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PCA for big-data I

When data is outlier-corrupted (robust PCA):

I much harder problem: SVD fails; focus of most of this talk

For high-dimensional data: full SVD is expensive: O(nd2) for n × d matrix

I partial (r -SVD), e.g., svds, is fast if data well-approximated as lying in
a low-dimensional subspace (has large eigen-gap)

I but is much slower (needs many more iterations) when gap is small
I r -SVD complexity is O(ndrq): q is the number of iterations.

I Need: q = O
(

max
(

log(d/ε)√
ε

, log(d/ε)√
gap

))
where gap := (σr − σr+1)/σr

[Musco,Musco,NIPS’15], [Chinmay Hegde talk]

I Constant gap: r-SVD cost is O(ndr) within log factors;
Small gap: r-SVD cost is O(ndr/

√
ε) within log factors

I In the above discussion,
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PCA for big-data II

F the guarantee is that the partial SVD of a given matrix is computed to
ε error in the stated amount of time; no conditions on size of matrix,
result holds for all matrices.

F it says nothing about how “close” the estimated singular vectors or
their subspace is to the top r singular vectors of the true (noise-free)
data – in fact here there is no notion of true data and noise

F just a result about computing top r singular vectors of a given matrix –
fits in the field called randomized numerical LA (randNLA); dominated
by computer scientists

F still an active research area
F papers of Woodruff et al, Tropp et al, Musco and Musco 2015, much

later work in NIPS 2016 and later

So far we have tried to answer the question: given a matrix M that is large
sized (but small enough that it can be “stored” in memory), how to quickly
can we find its left singular vectors?
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PCA for big-data III

Now consider the statistical (signal processing) problem: observed data =
true data + noise. To accurately recover the subspace of true data, we need
to have enough samples d .
If noise is Gaussian, then we need at least n samples, i.e., need d ≥ Cn
But then, if n is large, there may not be enough memory to store the
resulting n × d matrix.
This is where streaming PCA algorithms become important.
Claims: if number of samples d is large enough, then the
streaming-PCA-algorithm will approximate the true data’s subspace.

Memory issues for high-dimensional and noisy data: resolved by streaming
solutions, but need a larger lower bound on the number of columns d
(sample complexity) than what guarantees for batch PCA need

I stochastic power method and variants
I use optimal memory – O(nr) – but need more samples d to accurately

get the true principal components (as compared to simple SVD used
for batch-PCA)
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PCA for big-data IV

I for the batch PCA solution, d = O(n/ε2) suffices to get an estimate
that is within ε error of the true subspace;

I for block-stochastic power method, need d to be at least
C (nr log n/ε2) to get within ε error of the true subspace (under certain
data models)

I also still an active research area
I papers of Mitliakgas et al, NIPS’13, Hardt and Price, NIPS’14 (Noisy

power method), Jain et al, ?’16
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Power method and Orthogonal iteration: simplest algorithm for partial SVD

Power method: for 1-PCA
I let A = 1

α

∑
t ytyt

′.
I generate h with entries iid N (0, 1)
I set q0 = h/‖h‖.
I for τ = 1, 2, . . . ,T , do

F compute sτ+1 = Aqτ ,
F qτ+1 = sτ+1/‖sτ+1‖

I Output qT as estimate of top singular/eigen vector of A.

Extension for r -PCA (Orthogonal Iteration)
I let A = 1

α

∑
t ytyt

′.
I generate an n × r matrix H with entries iid N (0, 1)
I get Q0 by QR decomposition: H = Q0R0
I For τ > 0, do

F compute Sτ+1 = AQτ ,
F get Qτ+1: QR decomp on Sτ+1 = Qτ+1Rτ+1

I Output QT
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Stochastic Gradient Descent (GD) I

Basic GD for minx

∑α
t=1 Ft(yt , x) (yt is observed data).

x̂τ+1 = x̂τ − ητ
α∑

t=1

∇Ft(yt , x̂τ )

Stochastic GD:
x̂τ+1 = x̂τ − ητ∇Fτ (yτ , x̂τ )

advantage: (a) do not need to store yt ’s; (b) faster: computing one gradient
at each time τ instead of α gradients; (c) if x actually changes with time,
this can track the changes.

Adaptive filters do exactly the above.

1-PCA: top eigenvector is a solution to minv 6=0−
v ′(

∑
t yty ′t )v)
‖v‖2 ; thus,

Ft(yt , v) = − v ′yty ′t v
‖v‖2
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Stochastic power method variants: solve both speed and memory issues I

PCA for big-data (both speed and memory issues) solved by “stochastic
power method” based algorithms

Krasulina’s algorithm for 1-PCA: stochastic GD [Krasulina’69]

I initialize w0
I for t = 1, 2, . . . ,T , do

F wt ← wt−1 + ηt(ytyt
′ − wt−1

′ytyt
′wt−1

‖wt−1‖2 I )wt−1

Block-Stochastic Power Method
I Generate H with entries iid N (0, 1);
I QR decomposition on H: get Q0
I For τ = 1, 2, . . . ,T , do

F Sτ+1 ← 0,
F For t = Bτ + 1, . . . , (B + 1)τ :

Sτ+1 ← Sτ+1 + 1
B
yt(y ′tQτ ),

End For.
F QR decomp on Sτ+1: get Qτ+1

(computes Qτ+1 as QR dec of Sτ+1 := ( 1
B

∑t=(B+1)τ
t=Bτ+1 ytyt

′)Qτ )
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Stochastic power method variants: solve both speed and memory issues II

End For
I Output QT

This takes O(nr) memory and O(nr) time
Sample complexity: needs α = O(nr2 log n/ε2) samples for spiked covariance
model (for fixed eigenvalues and final error) instead of α = O(n/ε2)
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Basic PCA (svd) – guarantees for non-isotropic and/or
data-dependent noise settings
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This section is based on

N. Vaswani and P. Narayanamurthy, “PCA in Sparse Data-Dependent
Noise”, ISIT 2018

N. Vaswani and P. Narayanamurthy, “Finite Sample Guarantees for
PCA in Non-Isotropic and Data-Dependent Noise”, Allerton 2017

N. Vaswani and H. Guo, “Correlated-PCA: PCA when Data and
Noise are Correlated”, NIPS 2016



Principal Components Analysis (PCA)

Most commonly used technique for dimension reduction; first step in
exploratory data analysis, classification, clustering, etc.

Given data vectors y1, y2, . . . , yα that lie in <n, find their best r -dimensional
dimensional subspace approximation,

I i.e., find an n × r basis matrix (matrix with orthonormal entries), P̂, so
that,

‖Y − P̂P̂ ′Y ‖2

is minimized. Here Y := [y1, y2, . . . , yα] is n × α

Solution [Eckart-Young]: SVD
I P̂: top r singular vectors of Y

Question: if intepret yt as true data (signal) plus noise, how close is
P̂ to the signal subspace?
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Quantifying subspace recovery error:

For two subspaces (defined by their basis matrices), P̂, P, the subspace error
(SE) betwen their column spans is quantified by

SE(P̂,P) := ‖(I − P̂P̂ ′)P‖2

This measures the sine of the largest principal angle between the subspaces

(′ denotes transpose)
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Existing results

Almost all existing work that studies the SVD solution
I assumes the spiked covariance model:

F data and noise uncorrelated, noise is isotropic (white)

I most work provides asymptotic guarantees

Finite sample guarantees: Nadler’08
I assumed the spiked covariance model;
I studied r = 1 dimensional PCA;
I assumed Gaussian data and noise

Namrata Vaswani (Iowa State) PCA, Robust PCA, Robust Subspace Tracking 93 / 108



Our Work

Noise can be non-isotropic (colored) and data-dependent;

Study PCA for a general dimension r ≥ 1;

Data and noise either bounded or sub-Gaussian; in the bounded case: can
achieve near-optimal sample complexity in certain regimes

I most sensors power-limited: bounded-ness is a more practical
assumption than Gaussianity

Application: helps obtain the first simple guarantee for dynamic robust PCA
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Problem setting [Vaswani,Guo,NIPS’16, Correlated-PCA], [Vaswani,Narayanamurthy,ISIT’18]

For t = 1, 2, . . . , α, we are given n-length data vectors,

yt := `t + wt + vt , where `t = Pat , wt = Mt`t , E[`tvt
′] = 0

where
I P: subspace basis: n × r matrix with orthonormal columns and r � n
I `t : true data (“signal”) vector
I wt : data-dependent noise
I vt : uncorrelated noise, with covariance matrix Σv

I the matrices Mt are unknown and typically such that E[`tw ′t ] 6= 0: so
wt is correlated with `t

Observe: in general, wt ’s do not lie in a lower dim subspace of <n.

Applications: PCA in sparse data-dependent noise; two special cases:
(a) PCA in missing data:

yt = `t − ITt ITt

′`t , Tt : missing entries’ set at t

(b) subspace update step in ReProCS for dynamic robust PCA:

ˆ̀
t = `t − ITt Bt(I − P̂t−1P̂t−1

′)(`t + vt)
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Statistical assumptions: bounded or sub-Gaussian

Recall: for t = 1, 2, . . . , α, we are given n-length data vectors,

yt := `t + wt + vt , where `t = Pat , wt = Mt`t , E[`tv ′t ] = 0

Bounded data and noise
I at ’s zero mean, i.i.d., element-wise bounded, with diagonal cov Λ
I vt ’s zero mean, i.id., bounded, with cov Σv

I wt = Mt`t = MtPat (model on at implies model on wt)

I let λ− := λmin(Λ), λ+ := λmax(Λ), f := λ+

λ− , λ+
v := λmax(Σv )

I |(at)i |2 ≤ ηλi and ‖vt‖2
2 ≤ rvλ

+
v ; rv : effective noise dimension of vt

Sub-Gaussian data and noise:
I above, but at ’s and vt ’s are sub-Gaussian with sub-Gaussian norms

bounded by c
√
λ+ and c

√
λ+

v
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Only uncorrelated noise case: yt = `t + vt , E[vtvt
′] = Σv

P̂: matrix of top r eigenvectors of D := 1
α

∑α
t=1 ytyt

′

Corollary (Σv = λ+
v I - spiked covariance model)

To ensure SE(P̂,P) ≤ ε w.p. at least 1− 10n−10, need

bounded-ness and α ≥ C
f
λ+

v
λ−
ε2 max(rv , r) log n

or sub-Gaussianity and α ≥ C
f
λ+

v
λ−
ε2 n

Corollary (Σv 6= λ+
v I - non-isotropic uncorrelated noise)

To ensure SE(P̂,P) ≤ ε w.p. at least 1− 10n−10, need

sample complexity lower bound given above and

λmax(Σv − PP ′ΣvPP
′)− λmin(P ′ΣvP) < 0.5λ−, ‖P⊥′ΣvP‖2 < 0.45ελ−

Near optimal sample complexity if rv ∈ O(r), λ+
v ≤ Cε2λ−, bounded data, noise
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Reasoning

Recall: P̂ is top r eigenvectors of D := 1
α

∑α
t=1 ytyt

′

When Σv = λ+
v I ,

E[D] = PΛP ′ + Σv = P(Λ + λ+
v I )P ′ + λ+

v P⊥P⊥
′

span of top r eigenvectors of E[D] equals span(P); if α large enough w.h.p.
this will approximately be true for P̂ too

But for a general Σv , above argument does not work

I to see a simple example, if Σv = (1.2λ−)(P⊥)1(P⊥)1
′, then can show

that when α large enough, w.h.p. SE(P̂,P) ≥ 1− cε

I need assumptions to ensure that noise power outside signal subspace is
small
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Proof technique

Use the Davis-Kahan sin θ theorem

Theorem (Davis-Kahan sin θ theorem)

Let D0 be a Hermitian matrix whose span of top r eigenvectors equals span(P).
Let D be the Hermitian matrix with top r eigenvectors P̂. Then,

SE(P̂,P) ≤ ‖(D −D0)P‖2

λr (D0)− λr+1(D)

≤ ‖(D −D0)P‖2

λr (D0)− λr+1(D0)− λmax(D −D0)
(5)

as long as the denominator is positive. The second inequality follows from the
first using Weyl’s inequality.

Apply it with D0 = P(P ′ΣvP)P ′ and D = 1
α

∑
t ytyt

′ and simplify

Use matrix concentration inequalities: matrix Bernstein and Vershynin’s
sub-Gaussian result
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Only data-dependent noise: special case of sparse data-dependent noise

yt = `t + wt ,
`t = Pat is true data (lies in r -dimensional subspace)
wt = ITt Ms,t`t is the sparse data-dependent noise with support Tt

Corollary (bounded case)

P̂ (top-r singular vectors of 1
α

∑
t ytyt

′) satisfies SE(P̂,P) ≤ ε with probability at
least 1− 10n−10 if, for a q < 1 and b < 1,

1 the fraction of nonzeros in any row of [w1,w2, . . . ,wα] is at most b,

2 maxt ‖Ms,tP‖2 ≤ q and b, q satisfy 3
√
bqf < 0.4ε,

3 and α ≥ α0 := Cq2f
ε2 r log n (in the bounded at case)

Condition 1 holds if the sparse noise support Tt changes “enough” over time

Observe: near-optimal sample complexity α
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Understanding the Result - I

‖Ms,tP‖2 ≤ q < 1 implies that

1 noise power ‖E[wtwt
′]‖2 ≤ q2λ+; thus q2 bounds noise-to-signal ratio

There are at most bα non-zeros in any row of [w1,w2, · · · ,wα] implies∥∥∥∥∥ 1

α

α∑
t=1

ITt ITt

′

∥∥∥∥∥
2

≤ b.

1 this helps reduce time-averaged noise power
√
b times: by

Cauchy-Schwarz, time-averaged noise power,

‖ 1

α

α∑
t=1

E[wtwt
′]‖2 ≤

√
bq2λ+

2 it also helps reduce time-averaged signal-noise correlation:
‖E[`twt

′]‖2 ≤ qλ+ but

‖ 1

α

α∑
t=1

E[`twt
′]‖2 ≤

√
bqλ+
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Understanding the Result - II

Recall we need 3
√
bqf < 0.4ε

to achieve error level ε = q/2, need
√
bf < 0.1,

notice the need for the ITt assumption: without it, b = 1: impossible
to achieve ε = q/2 (or any frac of q)

Sample complexity to achieve ε = q/2 is α ≥ Cr log n: near-optimal
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General data-dependent noise case: yt = `t + wt , wt = Mt`t

Theorem (data-dependent noise)

Assume bounded-ness. Assume the following data-noise correlation assumption:
Mt can be decomposed as Mt = M2,tM1,t with ‖M2,t‖ = 1,

‖M1,tP‖2 ≤ q < 1, and (6)

∥∥∥∥∥ 1

α

α∑
t=1

M2,tM2,t
′

∥∥∥∥∥
2

≤ b0 � 1. (7)

With probability at least 1− 10n−10, SE(P̂,P) ≤ ε if

α ≥ C q2f 2

ε2 (r log n) and
√
b0(2q + q2)f < 0.45ε.

Under sub-Gaussianity, lower bound on α changes to α ≥ c q2f 2

ε2 n.
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Application: a simple guarantee for dynamic robust PCA

Given outlier-corrupted data vectors, yt := `t + xt , t = 1, 2, . . . , d :
`t = Ptat , xt are sparse outliers, track span(Pt) and `t over time

Use ReProCS [Qiu,Vaswani,Lois,Hogben,T-IT’14], [Narayanamurthy,Vaswani’17]

Guarantee: If

subspace Pt is piecewise constant with time and changes “slowly”:
I Pt = Ptj for all t ∈ [tj , tj+1),
I SE(Pj−1,Pj ) ≤ ∆ with ∆

√
rλ+ ≤ (xmin − 15bv )/15, and

I (tj+1 − tj ) ≥ Kα where K := C log ∆
ε and α = Cf 2(r log n)

columns of Pt are dense, at satisfies simple statistical assumptions
(bounded, mutually indep.), and outlier fractions bounded:

I max-outlier-frac-col ≤ c
µr and max-outlier-frac-row ≤ 0.01

f 2

initial subspace estimate satisfies SE(P̂0,P0) ≤ ∆,
I use any RPCA method, e.g., PCP, for initial short batch of data

then, can track the subspace change with a delay at most O(r log n log 1
ε )

Weakens standard RPCA assumptions by exploiting slow subspace change (see
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Low Rank Matrix Recovery: Matrix Completion, Matrix
Sennsing, Robust MC
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Matrix Completion (MC) and Matrix Sensing I

MC: Recover a low rank matrix L from a subset of its entries

y := PΩ(L)

here Ω is the set of indices (i,j) of the matrix that are observed; PΩ: means
observe the entries of L which belong to the set Ω

Matrix Sensing: Recover a low rank matrix L from linear projections of the
matrix (“like Compressed Sensing for low-rank matrices”)

y := A(L)

here A(.): computes m linear projections of L, i.e.,

yi =< Ai ,L >:= Trace(Ai
′L)

Solutions

I nuclear norm minimization
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Matrix Completion (MC) and Matrix Sensing II

I alternating minimization with spectral init
I projected GD – IHT-like method with zero init
I ReProCS-MC – also solves dynamic MC : can develop ReProCS for MC

by eliminating the support recovery step (see Lois and Vaswani,
“Online Matrix Completion and Online Robust PCA”, ISIT 2015)

Can define low-rank-matrix-RIP: satisfied by certain kinds of matrix sensing
problems; not satisfied by MC problem.

Guarantees for MC

I If the set Ω is generated Bernoulli(p), left and right singular vectors of
L satisfy incoherence (denseness) with parameter µ, and p upper
bounded (see paper)
then whp, ‖L− L̂‖F ≤ ε
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Matrix Completion (MC) and Matrix Sensing III

Robust MC problem: Recover low rank matrix L

y := PΩ(L + X )

here X is the sparse outlier matrix – this is also the “RPCA with missing
entries” problem.

solutions:

I nuc norm
I projected GD : Prateek Jain et al, Nearly Optimal Robust Matrix

Completion
I can also develop ReProCS-RMC : replace ell-1 min step by Modified-CS

with support knowledge T being the set of missing entries at time t
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