Outline:

- Neyman-Pearson test for simple binary hypotheses, receiver operating characteristic (ROC).

- An introduction to classical composite hypothesis testing.

Reading:

- Chapter 3 in Kay-II,

- (part of) Chapter 5 in Levy.
In binary hypothesis testing, we wish to identify which hypothesis is true (i.e. make the appropriate decision):

\[\mathcal{H}_0 \ : \ \theta \in \text{sp}_\Theta(0) \quad \text{null hypothesis} \quad \text{versus} \]
\[\mathcal{H}_1 \ : \ \theta \in \text{sp}_\Theta(1) \quad \text{alternative hypothesis} \]

where

\[\text{sp}_\Theta(0) \cup \text{sp}_\Theta(1) = \text{sp}_\Theta, \ \text{sp}_\Theta(0) \cap \text{sp}_\Theta(1) = \emptyset. \]

Recall that a binary decision rule \(\phi(x) \) maps data space \(\mathcal{X} \) to \(\{0, 1\} \):

\[
\phi(x) = \begin{cases}
1, & \text{decide } \mathcal{H}_1, \\
0, & \text{decide } \mathcal{H}_0.
\end{cases}
\]

which partitions the data space \(\mathcal{X} \) [i.e. the support of \(f_x |_\Theta(x | \theta) \)] into two regions:

\[\mathcal{X}_0 = \{x : \phi(x) = 0\} \quad \text{and} \quad \mathcal{X}_1 = \{x : \phi(x) = 1\}. \]
Recall the probabilities of false alarm and miss:

\[
P_{FA}(\phi(X), \theta) = \mathbb{E}_{X|\Theta}[\phi(X) | \theta] = \int_{x_1} f_{X|\Theta}(x | \theta) \, dx \quad \text{for } \theta \in \text{sp}\Theta(0) \tag{1}
\]

\[
P_{M}(\phi(X), \theta) = \mathbb{E}_{X|\Theta}[1 - \phi(X) | \theta] = 1 - \int_{x_1} f_{X|\Theta}(x | \theta) \, dx
\]

\[
= \int_{x_0} f_{X|\Theta}(x | \theta) \, dx \quad \text{for } \theta \text{ in } \text{sp}\Theta(1) \tag{2}
\]

and the probability of detection (correctly deciding \(H_1\)):

\[
P_{D}(\phi(X), \theta) = \mathbb{E}_{X|\Theta}[\phi(X) | \theta] = \int_{x_1} f_{X|\Theta}(x | \theta) \, dx \quad \text{for } \theta \text{ in } \text{sp}\Theta(1).
\]

For simple hypotheses, \(\text{sp}\Theta(0) = \{\theta_0\}, \text{sp}\Theta(1) = \{\theta_1\}, \) and \(\text{sp}\Theta = \{\theta_0, \theta_1\},\) the above expressions simplify, as shown in the following.
Probabilities of False Alarm (P_{FA}) and Detection (P_D) for Simple Hypotheses

\[P_{FA}(\phi(X), \theta_0) = \int_{X_1} f_X|_{\Theta}(x|\theta_0) \, dx \]
\[= \Pr_{X|\Theta}\{\text{test statistic (ts)} > \tau \mid \theta_0 \} \quad (3) \]

\[P_D(\phi(X), \theta_1) = \int_{X_1} f_X|_{\Theta}(x|\theta_1) \, dx \]
\[= \Pr_{X|\Theta}\{\text{ts} > \tau \mid \theta_1 \}. \quad (4) \]

Comments:

(i) As the region X_1 shrinks (i.e. $\tau \nearrow \infty$), both of the above
probabilities shrink towards zero.

(ii) As the region \mathcal{X}_1 grows (i.e. $\tau \downarrow 0$), both probabilities grow towards unity.

(iii) Observations (i) and (ii) do not imply equality between P_{FA} and P_D; in most cases, as \mathcal{X}_1 grows, P_D grows more rapidly than P_{FA} (i.e. we better be right more often than we are wrong).

(iv) However, the perfect case where our rule is always right and never wrong ($P_D = 1$ and $P_{FA} = 0$) cannot occur when the conditional pdfs/pmfs $f_{X \mid \Theta}(x \mid \theta_0)$ and $f_{X \mid \Theta}(x \mid \theta_1)$ overlap.

(v) Thus, to increase the detection probability P_D, we must also allow for the false-alarm probability P_{FA} to increase. This behavior

- represents the fundamental tradeoff in hypothesis testing and detection theory and
- motivates us to introduce a (classical) approach to testing simple hypotheses, pioneered by Neyman and Pearson, to be discussed next.

Receiver Operating Characteristic (ROC) allows us to visualize the realm of achievable $P_{FA}(\phi(X), \theta_0)$ and $P_D(\phi(X), \theta_1)$.
A point \((P_{FA}, P_D)\) is in the shaded region if we can find a rule \(\phi(X)\) such that \(P_{FA}(\phi(X), \theta_0) = P_{FA}\) and \(P_D(\phi(X), \theta_1) = P_D\).
Bayesian tests are criticized because they require specification of prior distribution (pmf or, in the composite-testing case, pdf) and the cost-function parameters $L(i \mid j)$.

An alternative classical solution for simple hypotheses is developed by Neyman and Pearson.

Select the decision rule $\phi(X)$ that maximizes $P_D(\phi(X), \theta_1)$ while ensuring that the probability of false alarm $P_{FA}(\phi(X), \theta_0)$ is less than or equal to a specified level α.

Setup:

- **Simple hypothesis** testing:
 \[H_0 : \theta = \theta_0 \quad \text{versus} \quad H_1 : \theta = \theta_1. \]

- Parametric data models $f_X(\mathbf{x} \mid \theta_0)$, $f_X(\mathbf{x} \mid \theta_1)$.

- No prior pdf/pmf on Θ is available.
Define the set of all rules $\phi(X)$ whose probability of false alarm is less than or equal to a specified level α:

$$D_\alpha = \{ \phi(X) \mid P_{FA}(\phi(X), \theta_0) \leq \alpha \}$$

see also (3).

A Neyman-Pearson test $\phi_{NP}(x)$ solves the constrained optimization problem:

$$\phi_{NP}(x) = \arg \max_{\phi(x) \in D_\alpha} P_D(\phi(x), \theta_1).$$

We apply Lagrange multipliers to solve this optimization problem; consider the Lagrangian:

$$L(\phi(x), \lambda) = P_D(\phi(x), \theta_1) + \lambda [\alpha - P_{FA}(\phi(x), \theta_0)]$$

with $\lambda \geq 0$. A decision rule $\phi(x)$ will be optimal if it maximizes $L(\phi(x), \lambda)$ and satisfies the Karush-Kuhn-Tucker (KKT) condition:

$$\lambda [\alpha - P_{FA}(\phi(x), \theta_0)] = 0. \quad (5)$$

Upon using (3) and (4), the Lagrangian can be written as

$$L(\phi(x), \lambda) = \lambda \alpha + \int_{\chi_1} [f_{X \mid \Theta}(x \mid \theta_1) - \lambda f_{X \mid \Theta}(x \mid \theta_0)] dx.$$
Consider maximizing $L(\phi(x), \lambda)$ with respect to $\phi(x)$ for a given λ. Then, $\phi(x)$ needs to satisfy

$$
\phi_\lambda(x) = \begin{cases}
1, & \Lambda(x) > \lambda \\
0 \text{ or } 1, & \Lambda(x) = \lambda \\
0, & \Lambda(x) < \lambda
\end{cases}
$$

(6)

where

$$
\Lambda(x) = \frac{f_{X|\Theta}(x|\theta_1)}{f_{X|\Theta}(x|\theta_0)}
$$

is the likelihood ratio. The values x that satisfy $\Lambda(x) = \lambda$ can be allocated to either X_1 or X_0. To completely specify the optimal test, we need to select

- a λ such that the KKT condition (5) holds and
- an allocation rule for those x that satisfy $\Lambda(x) = \lambda$.

Now, consider two versions of (6) for a fixed threshold λ:

$$
\phi_{U,\lambda}(x) = \begin{cases}
1, & \Lambda(x) > \lambda \\
1, & \Lambda(x) = \lambda \\
0, & \Lambda(x) < \lambda
\end{cases}
$$

and

$$
\phi_{L,\lambda}(x) = \begin{cases}
1, & \Lambda(x) > \lambda \\
0, & \Lambda(x) = \lambda \\
0, & \Lambda(x) < \lambda
\end{cases}
$$
In the first case, all observations \(x \) for which \(\Lambda(x) = \lambda \) are allocated to \(\mathcal{X}_1 \); in the second case, these observations are allocated to \(\mathcal{X}_0 \).

Consider the cumulative distribution function (cdf) of \(\Lambda(X) = \Lambda \) under \(\mathcal{H}_0 \):

\[
F_{\Lambda|\Theta}(l|\theta_0) = \Pr_{\Lambda|\Theta}\{\Lambda \leq l | \theta_0\}.
\]

Define

\[
f_0 = F_{\Lambda|\Theta}(0|\theta_0) = \Pr_{\Lambda|\Theta}\{\Lambda \leq 0 | \theta_0\}.
\]

Recall that cdf \(F_{\Lambda|\Theta}(l|\theta_0) \) must be nondecreasing and right-continuous, but may have discontinuities.
Consider three cases, depending on α:

(i) When

$$1 - \alpha < f_0 \quad \text{i.e.} \quad 1 - f_0 < \alpha$$ \hspace{1cm} (7)

we select the threshold $\lambda = 0$ and apply the rule

$$\phi_{L,0}(x) = \begin{cases}
1, & \Lambda(x) > 0 \\
0, & \Lambda(x) = 0
\end{cases} .$$ \hspace{1cm} (8)

In this case, KKT condition (5) holds and, therefore, the test (8) is optimal; its probability of false alarm is

$$P_{FA}(\phi_{L,0}(x), \theta_0) = 1 - f_0 < \alpha \quad \text{see (7)}.$$

An example of this case corresponds to $\lambda_1 = 0$ and $1 - \alpha_1$ in the above figure.

(ii) Suppose that

$$1 - \alpha \geq f_0 \quad \text{i.e.} \quad 1 - f_0 \geq \alpha$$ \hspace{1cm} (9)

and there exists a λ such that

$$F_{\Lambda|\Theta}(\lambda | \theta_0) = 1 - \alpha.$$ \hspace{1cm} (10)

Then, by selecting this λ as the threshold and using

$$\phi_{L,\lambda}(x) = \begin{cases}
1, & \Lambda(x) > \lambda \\
0, & \Lambda(x) \leq \lambda
\end{cases}$$ \hspace{1cm} (11)
we obtain a test with false-alarm probability

\[P_{FA}(\phi_L, \lambda(x), \theta_0) = 1 - F_{\Lambda | \Theta}(\lambda | \theta_0) = \alpha \]

see (9)

the KKT condition (5) holds, and the test (10) is optimal. An example of this case corresponds to \(\lambda_2 \) and \(1 - \alpha_2 \) in the above figure.

(iii) Suppose that

\[1 - \alpha \geq f_0 \quad \text{i.e.} \quad 1 - f_0 \geq \alpha \]

as in (ii), but cdf \(F_{\Lambda | \Theta}(l | \theta_0) \) has a discontinuity point \(\lambda > 0 \) such that

\[F_{\Lambda | \Theta}(\lambda_- | \theta_0) < 1 - \alpha < F_{\Lambda | \Theta}(\lambda_+ | \theta_0) \]

where \(F_{\Lambda | \Theta}(\lambda_- | \theta_0) \) and \(F_{\Lambda | \Theta}(\lambda_+ | \theta_0) \) denote the left and right limits of \(F_{\Lambda | \Theta}(\lambda | \theta_0) \) at \(l = \lambda \). If this case happens in practice, we can try to avoid the problem by changing our specified \(\alpha \), which is anyway not God-given, but chosen rather arbitrarily. We should pick a value of \(\alpha \) that satisfies the KKT condition.

Suppose that we are not allowed to change \(\alpha \); this gives us a chance to practice some basic probability. First, note that
• $\phi_{L,\lambda}(\mathbf{x})$ has false-alarm probability

$$P_{FA}(\phi_{L,\lambda}(\mathbf{x}), \theta_0) = 1 - F_{\Lambda|\Theta}(\lambda_+ | \theta_0) < \alpha,$$

• $\phi_{U}(\mathbf{x}, \lambda)$ has false-alarm probability

$$P_{FA}\{\phi_{U,\lambda}(\mathbf{x}), \theta_0\} = 1 - F_{\Lambda|\Theta}(\lambda_- | \theta_0) > \alpha$$

and KKT optimality condition (5) requires that $P_{FA}(\phi_{\lambda}(\mathbf{x}), \theta_0) = \alpha$. We focus on the tests of the form (6) and construct the optimal test via randomization.

Define the probability

$$p = \frac{\alpha - P_{FA}(\phi_{L,\lambda}(\mathbf{x}), \theta_0)}{P_{FA}(\phi_{U,\lambda}(\mathbf{x}), \theta_0) - P_{FA}(\phi_{L,\lambda}(\mathbf{x}), \theta_0)}$$

which clearly satisfies $0 < p < 1$.
Select $\phi_{U,\lambda}(x)$ with probability p and $\phi_{L,\lambda}(x)$ with probability $1 - p$. This test indeed has the form (6); its probability of false alarm is

\[
P_{FA}(\phi_{\lambda}(x), \theta_0) = P_{FA}(\phi_{L,\lambda}(x), \theta_0) + p \left[P_{FA}(\phi_{U,\lambda}(x), \theta_0) - P_{FA}(\phi_{L,\lambda}(x), \theta_0) \right] = \alpha.
\]

Since KKT condition (5) is satisfied, the randomized test

\[
\phi_{\lambda}(x) = \begin{cases}
1 \text{ w.p. } p & \text{and } 0 \text{ w.p. } 1 - p, \\
1, & \Lambda(x) > \lambda \\
0, & \Lambda(x) = \lambda \\
0, & \Lambda(x) < \lambda
\end{cases}
\]

is optimal.
Based on the Neyman-Pearson theory, if we set $P_{FA} = \alpha$, then the test that maximizes P_D must be a likelihood-ratio test of the form (6). Thus, the ROC curve separating achievable and non-achievable pairs (P_{FA}, P_D) corresponds to the family of likelihood-ratio tests.

For simplicity, we focus here on the case where the likelihood ratio is a continuous random variable given θ. First, note that,
for the likelihood-ratio test,

\[P_{\text{FA}}(\tau) = \int_{X_1} f_{X|\Theta}(x|\theta_0) \, dx \]

\[= \Pr_{X|\Theta}\{\Lambda(X) > \tau | \theta_0\} = \int_{\tau}^{+\infty} f_{\Lambda|\Theta}(l|\theta_0) \, dl \tag{12} \]

\[P_{\text{D}}(\tau) = \int_{X_1} f_{X|\Theta}(x|\theta_1) \, dx \]

\[= \Pr_{X|\Theta}\{\Lambda(X) > \tau | \theta_1\} = \int_{\tau}^{+\infty} f_{\Lambda|\Theta}(l|\theta_1) \, dl \tag{13} \]

where \(\tau \) denotes the threshold. Under the continuity assumption for the likelihood ratio, as we vary \(\tau \) between 0 and \(+\infty\), the point \((P_{\text{FA}}(\phi(X), \theta_0), P_{\text{D}}(\phi(X), \theta_1))\) moves continuously along the ROC curve. If we set \(\tau = 0 \), we always select \(H_1 \) and, therefore,

\[P_{\text{FA}}(0) = P_{\text{D}}(0) = 1. \]

Conversely, if we set \(\tau = +\infty \), we always select \(H_0 \) and, therefore,

\[P_{\text{FA}}(+\infty) = P_{\text{D}}(+\infty) = 0. \]

In summary,

ROC Property 1. If the likelihood ratio is a continuous random variable given \(\theta \), the points \((0, 0)\) and \((1, 1)\) belong to ROC.
Now, differentiate (12) and (13) with respect to τ:

$$\frac{dP_D(\tau)}{d\tau} = -f_{\Lambda|\Theta}(\tau | \theta_1)$$

$$\frac{dP_D(\tau)}{d\tau} = -f_{\Lambda|\Theta}(\tau | \theta_0)$$

implying

$$\frac{dP_D(\tau)}{dP_{FA}(\tau)} = \frac{f_{\Lambda|\Theta}(\tau | \theta_1)}{f_{\Lambda|\Theta}(\tau | \theta_0)} = \tau.$$

In summary,

ROC Property 2. *If the likelihood ratio is a continuous random variable given θ, the slope of ROC at point $(P_{FA}(\tau), P_D(\tau))$ is equal to the threshold τ of the corresponding likelihood-ratio test.*

In particular, this result implies that the slope of ROC is

- $\tau = +\infty$ at $(0, 0)$ and
- $\tau = 0$ at $(1, 1)$.

ROC Property 3. *The domain of achievable pairs (P_{FA}, P_D) is convex and the ROC curve is concave. This property holds in general, including the case where the likelihood ratio is a mixed or discrete random variable given θ.*

HW: Prove ROC Property 3.
ROC Property 4. All points on ROC curve satisfy

\[P_D(\tau) \geq P_{FA}(\tau). \]

This property holds in general, including the case where the likelihood ratio is a mixed or discrete random variable given \(\theta \).
Simple hypotheses: the space of the parameter μ and its partitions are

$$\mathcal{sp}_\mu = \{\mu_0, \mu_1\}, \quad \mathcal{sp}_\mu(0) = \{\mu_0\}, \quad \mathcal{sp}_\mu(1) = \{\mu_1\}.$$

The measurement vector X given μ is modeled using

$$f_{X \mid \mu}(x \mid \mu) = \mathcal{N}(x \mid \mu, C)$$

$$= \frac{1}{\sqrt{\mid 2\pi C \mid}} \exp[-\frac{1}{2}(x - \mu)^T C^{-1} (x - \mu)]$$

where C is a known positive definite covariance matrix. Our likelihood-ratio test is

$$\Lambda(x) = \frac{f_{X \mid \mu}(x \mid \mu_1)}{f_{X \mid \mu}(x \mid \mu_0)}$$

$$= \frac{\exp[-\frac{1}{2}(x - \mu_1)^T C^{-1} (x - \mu_1)]}{\exp[-\frac{1}{2}(x - \mu_0)^T C^{-1} (x - \mu_0)]} \overset{\mathcal{H}_1}{\geq} \tau.$$
Therefore,

\[-\frac{1}{2} (x - \mu_1)^T C^{-1} (x - \mu_1) + \frac{1}{2} (x - \mu_0)^T C^{-1} (x - \mu_0) \gtrless H_1 \ln \tau\]

i.e.

\[(\mu_1 - \mu_0)^T C^{-1} [x - \frac{1}{2} (\mu_0 + \mu_1)] \gtrless \ln \tau.\]

and, finally,

\[T(x) = s^T C^{-1} x \overset{H_1}{\gtrless} \ln \tau + \frac{1}{2} (\mu_1 - \mu_0)^T C^{-1} (\mu_1 + \mu_0) \overset{\triangle}{=} \gamma\]

where we have defined

\[s \overset{\triangle}{=} \mu_1 - \mu_0.\]

False-alarm and detection/miss probabilities. Given \(\mu\), \(T(x)\) is a linear combination of Gaussian random variables, implying that it is also Gaussian, with mean and variance:

\[
E_{x_{|\mu}}[T(X)|\mu] = s^T C^{-1} \mu
\]

\[
\text{var}_{x_{|\mu}}[T(X)|\mu] = s^T C^{-1} s \quad (\text{not a function of } \mu).
\]
Now,

\[
P_{\text{FA}} = \Pr_{X | \mu} \{ T(X) > \gamma | \mu_0 \} \\
= \Pr_{X | \mu} \left\{ \frac{T(X) - s^T C^{-1} \mu_0}{\sqrt{s^T C^{-1} s}} > \frac{\gamma - s^T C^{-1} \mu_0}{\sqrt{s^T C^{-1} s}} \right\} | \mu_0 \}
\]

\[
= Q \left(\frac{\gamma - s^T C^{-1} \mu_0}{\sqrt{s^T C^{-1} s}} \right) \tag{14}
\]

and

\[
P_D = 1 - P_M = \Pr_{X | \mu} \{ T(X) > \gamma | \mu_1 \} \\
= \Pr_{X | \mu} \left\{ \frac{T(X) - s^T C^{-1} \mu_1}{\sqrt{s^T C^{-1} s}} > \frac{\gamma - s^T C^{-1} \mu_1}{\sqrt{s^T C^{-1} s}} \right\} | \mu_1 \}
\]

\[
= Q \left(\frac{\gamma - s^T C^{-1} \mu_1}{\sqrt{s^T C^{-1} s}} \right).
\]

We use (14) to obtain a \(\gamma\) that satisfies the specified \(P_{\text{FA}}\):

\[
\frac{\gamma}{\sqrt{s^T C^{-1} s}} = Q^{-1}(P_{\text{FA}}) + \frac{s^T C^{-1} \mu_0}{\sqrt{s^T C^{-1} s}}
\]
implying

\[P_D = Q \left(Q^{-1}(P_{FA}) - \sqrt{s^T C^{-1} s} \right) \]

\[= Q \left(Q^{-1}(P_{FA}) - d \right) \] \hspace{1cm} (15)

Here,

\[d = \sqrt{s^T C^{-1} s} = \sqrt{(\mu_1 - \mu_0)^T C^{-1} (\mu_1 - \mu_0)} \]

is the deflection coefficient.
Decentralized Detection for Simple Hypotheses

Consider a decentralized detection scenario depicted by

Assumptions:

- The observations $X[n]$, $n = 0, 1, \ldots, N - 1$ made at N spatially distributed sensors (nodes) follow the same marginal probabilistic model:

$$f_{X|\Theta}(x[n] | \theta)$$

and are conditionally independent given $\Theta = \theta$, which may not always be reasonable, but leads to an easy solution.
• We wish to test:

\[H_0 : \theta = \theta_0 \quad \text{versus} \quad H_1 : \theta = \theta_1. \]

• Each node \(n \) makes a **hard local decision** \(d[n] \) based on its local observation \(x[n] \) and sends it to the **headquarters** (fusion center), which collects all the local decisions and makes the final **global decision** \(H_0 \) versus \(H_1 \). This structure is clearly suboptimal: it is easy to construct a better decision strategy in which each node sends its (quantized, in practice) likelihood ratio to the fusion center, rather than the decision only. However, such a strategy would have a higher communication (energy) cost.

The false-alarm and detection probabilities of each node’s local decision rules can be computed using (16). Suppose that we have obtained them for each \(n \):

\[P_{FA,n}, P_{D,n}, \quad n = 0, 1, \ldots, N - 1. \]

We now discuss the decentralized detection problem. Note that

\[
p_{D(n)} | \Theta(d_n | \theta_1) = P_{D,n}^{d_n} (1 - P_{D,n})^{1-d_n}
\]

Bernoulli pmf
and, similarly,

\[p_{D(n)} | \Theta(d_n | \theta_0) = P_{d,n}^{d_n} (1 - P_{FA,n})^{1-d_n} \]

where \(P_{FA,n} \) is the \(n \)th sensor’s local detection false-alarm probability. Now,

\[
\ln \Lambda(d) = \sum_{n=1}^{N} \ln \left[\frac{p_{D(n)} | \Theta(d_n | \theta_1)}{p_{D(n)} | \Theta(d_n | \theta_0)} \right]
\]

\[
= \sum_{n=1}^{N} \ln \left[\frac{P_{D,n}^{d_n} (1 - P_{D,n})^{1-d_n}}{P_{FA,n}^{d_n} (1 - P_{FA,n})^{1-d_n}} \right] \geq \ln \tau.
\]

To be able to further simplify the above expression, we now focus on the case where all sensors have identical performance:

\[P_{D,n} = P_{D}, \quad P_{FA,n} = P_{FA} \]

i.e. all local decision thresholds at the nodes are identical. Define the number of sensors deciding locally to support \(H_1 \):

\[u_1 = \sum_{n=0}^{N-1} d[n]. \]
Then, the log-likelihood ratio becomes

$$
\log \Lambda(d) = u_1 \log \left(\frac{P_D}{P_{FA}} \right) + (N - u_1) \log \left(\frac{1 - P_D}{1 - P_{FA}} \right) \overset{\mathcal{H}_1}{\geq} \log \tau
$$

or

$$
u_1 \log \left[\frac{P_D \cdot (1 - P_{FA})}{P_{FA} \cdot (1 - P_D)} \right] \overset{\mathcal{H}_1}{\geq} \log \tau + N \log \left(\frac{1 - P_{FA}}{1 - P_D} \right). \quad (17)
$$

Clearly, each node’s local decision d_n is meaningful only if $P_D > P_{FA}$, which implies

$$
\frac{P_D \cdot (1 - P_{FA})}{P_{FA} \cdot (1 - P_D)} > 1
$$

the logarithm of which is therefore positive, and the decision rule (17) further simplifies to

$$
u_1 \overset{\mathcal{H}_1}{\geq} \tau'.
$$

The Neyman-Person performance analysis of this detector is easy: the random variable U_1 is binomial given θ (i.e. conditional on the hypothesis) and, therefore,

$$
\Pr_{U_1 \mid \Theta} \{ U_1 = u_1 \mid \theta \} = \binom{N}{u_1} p^{u_1} (1 - p)^{N-u_1}
$$
where \(p = P_{\text{FA}} \) under \(\mathcal{H}_0 \) and \(p = P_D \) under \(\mathcal{H}_1 \). Hence, the “global” false-alarm probability is

\[
P_{\text{FA,global}} = \Pr_{U_1 \mid \Theta} \{ U_1 > \tau' \mid \theta_0 \}
\]

\[
= \sum_{u_1 = \lceil \tau' \rceil}^{N} \binom{N}{u_1} \cdot P_{\text{FA}}^{u_1} \cdot (1 - P_{\text{FA}})^{N-u_1}.
\]
An Introduction to Classical Composite Hypothesis Testing

First, recall that, in composite testing of two hypotheses, we have $\Theta(0)$ and $\Theta(1)$ that form a *partition* of the parameter space Θ:

$$\Theta(0) \cup \Theta(1) = \Theta, \quad \Theta(0) \cap \Theta(1) = \emptyset$$

and that we wish to identify *which* of the two hypotheses is true:

$$\mathcal{H}_0 : \Theta \in \Theta(0) \quad \text{null hypothesis} \quad \text{versus} \quad \mathcal{H}_1 : \Theta \in \Theta(1) \quad \text{alternative hypothesis}.$$

Here, we adopt the classical Neyman-Pearson approach: given an upper bound α on the false-alarm probability, maximize the detection probability.

The fact that \mathcal{H}_0 is composite means that the false-alarm probability for a rule $\phi(X)$ is a function of θ:

$$P_{FA}(\phi(X), \theta)$$

where $\theta \in \Theta(0)$. Therefore, to satisfy the upper bound α, we
consider all tests $\phi(X)$ such that
\[\max_{\theta \in \text{sp}_\Theta(0)} P_{FA}(\phi(X), \theta)) \leq \alpha. \] (18)

In this context,
\[\max_{\theta \in \text{sp}_\Theta(0)} P_{FA}(\phi(X), \theta) \] (19)
is typically referred to as the size of the test $\phi(X)$. Therefore, the condition (18) states that we focus on tests whose size is upper-bounded by α.

Definition. Among all tests $\phi(X)$ whose size is upper-bounded by α [i.e. (18) holds], we say that $\phi_{UMP}(X)$ is a uniformly most powerful (UMP) test if it satisfies
\[P_D(\phi_{UMP}(X), \theta) \geq P_D(\phi(X), \theta) \]
for all $\theta \in \text{sp}_\Theta(1)$.

This is a very strong statement and very few hypothesis-testing problems have UMP tests. Note that Neyman-Pearson tests for simple hypotheses are UMP.

Hence, to find an UMP test for composite hypotheses, we need to first write a likelihood ratio for the simple hypothesis test with $\text{sp}_\Theta(0) = \{\theta_0\}$, $\text{sp}_\Theta(1) = \{\theta_1\}$, and $\text{sp}_\Theta = \{\theta_0, \theta_1\}$ and then transform this likelihood ratio in such a way that unknown quantities (e.g. θ_0 and θ_1) disappear from the test statistic.
(1) If such a transformation can be found, there is hope that a UMP test exists.

(2) However, we still need to figure out how to set a decision threshold (τ, say) such that the upper bound (18) is satisfied.
Example 1: Detecting a Positive DC Level in AWGN (versus zero DC level)

Consider the following composite hypothesis-testing problem:

\[H_0 : \quad \theta = 0 \quad \text{i.e. } \theta \in \text{sp}_\Theta(0) = \{0\} \quad \text{versus} \]
\[H_1 : \quad \theta > 0 \quad \text{i.e. } \theta \in \text{sp}_\Theta(1) = (0, +\infty) \]

where the measurements \(X[0], X[1], \ldots, X[N - 1] \) are conditionally independent, identically distributed (i.i.d.) given \(\Theta = \theta \), modeled as

\[\{X[n] \mid \Theta = \theta\} = \theta + W[n] \quad n = 0, 1, \ldots, N - 1 \]

with \(W[n] \) a zero-mean white Gaussian noise with known variance \(\sigma^2 \), i.e.

\[W[n] \sim \mathcal{N}(0, \sigma^2) \]

implying

\[f_{X \mid \Theta}(x \mid \theta) = \frac{1}{\sqrt{(2 \pi \sigma^2)^N}} \cdot \exp \left[-\frac{1}{2 \sigma^2} \sum_{n=0}^{N-1} (x[n] - \theta)^2 \right] \quad (20) \]

where \(x = [x[0], x[1], \ldots, x[N - 1]]^T \). A sufficient statistic for \(\theta \) is

\[\bar{x} = \frac{1}{N} \sum_{n=1}^{N} x[n]. \]
Now, find the pdf of \bar{x} given $\Theta = \theta$:

$$f_{\bar{X} | \Theta}(\bar{x} | \theta) = \mathcal{N}(\bar{x} | \theta, \sigma^2/N). \quad (21)$$

We start by writing the classical Neyman-Pearson test for the simple hypotheses with $\text{sp}_\Theta^{\text{simple}}(0) = \{0\}$ and $\text{sp}_\Theta^{\text{simple}}(1) = \{\theta_1\}, \theta_1 \in (0, +\infty)$:

$$\frac{f_{\bar{X} | \Theta}(\bar{x} | \theta_1)}{f_{\bar{X} | \Theta}(\bar{x} | 0)} = \frac{(2 \pi \sigma^2/N)^{-1/2} \cdot \exp[-\frac{1}{2 \sigma^2/N} (\bar{x} - \theta_1)^2]}{(2 \pi \sigma^2/N)^{-1/2} \cdot \exp[-\frac{1}{2 \sigma^2/N} (\bar{x})^2]} \geq \lambda.$$

Taking log etc. leads to

$$\theta_1 \bar{x} \geq \eta.$$

Since we know that $\theta_1 > 0$, we can divide both sides of the above expression by θ_1 and accept \mathcal{H}_1 if

$$\phi(\bar{x}) : \bar{x} \geq \tau.$$

Hence, we transformed our likelihood ratio in such a way that θ_1 disappears from the test statistic, i.e. we accomplished (1) above.

Now, on to (2). How to determine the threshold τ such that the upper bound (18) is satisfied? Based on (25), we know:

$$f_{\bar{X} | \Theta}(\bar{x} | 0) = \mathcal{N}(\bar{x} | 0, \sigma^2/N)$$
and, therefore,

\[
P_{FA}(\phi(X), 0) = \Pr_{X|\Theta} \{X > \tau \mid 0\}
\]

\[
= \Pr_{X|\Theta} \left\{ \frac{X - 0}{\sqrt{\sigma^2/N}} > \frac{\tau}{\sqrt{\sigma^2/N}} \mid 0 \right\}
\]

standard normal random var.

\[
= Q\left(\frac{\tau}{\sqrt{\sigma^2/N}}\right).
\]

Note that

\[
\max_{\theta \in \text{sp} \Theta(0)} P_{FA}(\phi(X), \theta) = P_{FA}(\phi(X), 0) = Q\left(\frac{\tau}{\sqrt{\sigma^2/N}}\right) = \alpha
\]

see (18) and (19). The most powerful test is achieved if the upper bound \(\alpha\) in (18) is reached by equality:

\[
\tau = \sqrt{\frac{\sigma^2}{N}} \cdot Q^{-1}(\alpha).
\]

Hence, we have accomplished (2), since this \(\tau\) yields exactly size \(\alpha\) for our test \(\phi(X)\).

To study the performance of the above test, we substitute
\[(22) \] into the power function:

\[
\Pr_{X|\Theta}\{\bar{X} > \tau \mid \theta\} = \Pr_{X|\Theta}\left\{ \left. \frac{\bar{X} - \theta}{\sqrt{\sigma^2/N}} > \frac{\tau - \theta}{\sqrt{\sigma^2/N}} \right\} \right\}
\]

\[= Q\left(\frac{\tau - \theta}{\sqrt{\sigma^2/N}}\right) = Q\left(\frac{1}{Q^{-1}(\alpha)} - \frac{\theta}{\sqrt{\sigma^2/N}}\right). \quad (23) \]
Consider the following composite hypothesis-testing problem:

\[H_0 : \quad \theta \leq 0 \quad \text{i.e. } \theta \in \text{sp}_\Theta(0) = (-\infty, 0] \quad \text{versus} \]

\[H_1 : \quad \theta > 0 \quad \text{i.e. } \theta \in \text{sp}_\Theta(1) = (0, +\infty) \]

where the measurements \(X[0], X[1], \ldots, X[N - 1] \) are conditionally i.i.d. given \(\Theta = \theta \), modeled as

\[\{X[n] | \Theta = \theta\} = \theta + W[n] \quad n = 0, 1, \ldots, N - 1 \]

with \(W[n] \) a zero-mean white Gaussian noise with known variance \(\sigma^2 \), i.e.

\[W[n] \sim \mathcal{N}(0, \sigma^2) \]

implying

\[
f_{X|\Theta}(x | \theta) = \frac{1}{\sqrt{(2 \pi \sigma^2)^N}} \cdot \exp \left[-\frac{1}{2 \sigma^2} \sum_{n=0}^{N-1} (x[n] - \theta)^2 \right] \tag{24}\]

where \(x = [x[0], x[1], \ldots, x[N - 1]]^T \). A sufficient statistic for \(\theta \) is

\[
\bar{x} = \frac{1}{N} \sum_{n=1}^{N} x[n].
\]
and
\[
f_{X|\Theta}(\bar{x}|\theta) = \mathcal{N}(\bar{x}|\theta, \sigma^2/N).
\] (25)
We start by writing the classical Neyman-Pearson test for the simple hypotheses with \(\Theta_{\text{simple}}(0) = \{\theta_0\}\) and \(\Theta_{\text{simple}}(1) = \{\theta_1\}\), where \(\theta_0 \in (-\infty, 0]\) and \(\theta_1 \in (0, +\infty)\), implying
\[
\frac{f_{X|\Theta}(\bar{x}|\theta_1)}{f_{X|\Theta}(\bar{x}|\theta_0)} = \frac{(2\pi \sigma^2/N)^{-1/2} \cdot \exp[-\frac{1}{2\sigma^2/N} (\bar{x} - \theta_1)^2]}{(2\pi \sigma^2/N)^{-1/2} \cdot \exp[-\frac{1}{2\sigma^2/N} (\bar{x} - \theta_0)^2]} \geq \lambda
\]
and
\[
\theta_0 < \theta_1.
\]
Taking log etc. leads to
\[
(\theta_1 - \theta_0) \bar{x} \geq \eta
\]
and, since \(\theta_0 < \theta_1\), to
\[
\phi(\bar{x}) : \bar{x} \geq \tau.
\]
Hence, we transformed our likelihood ratio in such a way that \(\theta_0\) and \(\theta_1\) disappear from the test statistic, i.e. we accomplished (1) above.

The power function of this test is
\[
Pr_{X|\Theta}\{\bar{X} > \tau | \theta\} = Pr_{X|\Theta}\left\{\frac{\bar{X} - \theta}{\sigma/\sqrt{N}} > \frac{\tau - \theta}{\sigma/\sqrt{N}} \bigg| \theta\right\} = Q\left(\frac{\tau - \theta}{\sigma/\sqrt{N}}\right)
\]
which is an increasing function of θ. Recall the definition (19) of test size:

$$\max_{\theta \in \text{sp}_\Theta(0)} P_{\text{FA}}(\phi(X), \theta) = \max_{\theta \in \text{sp}_\Theta(0)} \Pr_X \{ \bar{X} > \tau | \theta \}$$

$$= \max_{\theta \in (-\infty, 0]} Q\left(\frac{\tau - \theta}{\sigma / \sqrt{N}}\right) = Q\left(\frac{\tau}{\sigma / \sqrt{N}}\right).$$

The most powerful test is achieved if the upper bound α in (18) is reached by equality:

$$\tau = \frac{\sigma}{\sqrt{N}} Q^{-1}(\alpha).$$

Hence, we have accomplished (2), since this τ yields exactly size α for our test $\phi(X)$.

![Power as a function of Θ](image)

FIGURE 10.1. The power function for Example 2. The size of the test is the largest probability of rejecting H_0 when H_0 is true. This occurs at $\Theta = 0$, hence the size is $\text{power}(0)$. We choose the critical value c so that $\text{power}(0) = \alpha$.

EE 527, Detection and Estimation Theory, # 5c
Example 3: Detecting a Completely Unknown DC Level in AWGN

Consider now the composite hypothesis-testing problem:

\[\mathcal{H}_0 : \quad \theta = 0 \quad \text{i.e.} \quad \theta \in \text{sp}_\Theta(0) = \{0\} \quad \text{versus} \]

\[\mathcal{H}_1 : \quad \theta \neq 0 \quad \text{i.e.} \quad \theta \in \text{sp}_\Theta(1) = (-\infty, +\infty) \setminus \{0\} \]

where the measurements \(X[0], X[1], \ldots, X[N - 1] \) are conditionally i.i.d. given \(\Theta = \theta \), following

\[
 f_{X | \Theta}(x | \theta) = \frac{1}{\sqrt{(2\pi \sigma^2)^N}} \cdot \exp \left[-\frac{1}{2 \sigma^2} \sum_{n=0}^{N-1} (x[n] - \theta)^2 \right]
\]

and \(x = [x[0], x[1], \ldots, x[N - 1]]^T \). A sufficient statistic for \(\theta \) is \(\bar{x} = \frac{1}{N} \sum_{n=1}^{N} x[n] \) and the pdf of \(\bar{x} \) given \(\Theta = \theta \) is

\[
 f_{\bar{X} | \Theta}(\bar{x} | \theta) = \mathcal{N}(\bar{x} | \theta, \sigma^2 / N). \quad (26)
\]

We start by writing the classical Neyman-Pearson test for the simple hypotheses with \(\text{sp}_\Theta(0) = \{0\} \) and \(\text{sp}_\Theta(1) = \{\theta_1 \neq 0\} \):

\[
 \theta_1 \bar{x} > \eta.
\]

We cannot accomplish (1), since \(\theta_1 \) cannot be removed from the test statistic; therefore, UMP test does not exist for the above problem.
Consider a scalar parameter θ. We say that $f_{X \mid \Theta}(x \mid \theta)$ belongs to the monotone likelihood ratio (MLR) family if the pdfs (or pmfs) from this family

- satisfy the identifiability condition for θ (i.e. these pdfs are distinct for different values of θ) and
- there is a scalar statistic $T(x)$ such that, for $\theta_0 < \theta_1$, the likelihood ratio

$$\Lambda(x; \theta_0, \theta_1) = \frac{f_{X \mid \Theta}(x \mid \theta_1)}{f_{X \mid \Theta}(x \mid \theta_0)}$$

is a monotonically increasing function of $T(x)$.

If $f_{X \mid \Theta}(x \mid \theta)$ belongs to the MLR family, then use the following test:

$$\phi_\lambda(x) = \begin{cases}
1, & \text{for } T(x) \geq \lambda, \\
0, & \text{for } T(x) < \lambda
\end{cases}$$
and set

$$\alpha = P_{FA}(\phi(X), \theta_0) = \Pr_{X|\Theta}\{T(X) \geq \lambda \mid \theta_0\} \quad (27)$$

e.g. use this condition to find the threshold λ.

This test has the following properties:

(i) With α given by (27), $\phi_{\lambda}(x)$ is UMP test of size α for testing

$$\mathcal{H}_0 : \theta > \theta_0 \quad \text{versus} \quad \mathcal{H}_1 : \theta \leq \theta_0.$$

(ii) For each λ, the power function

$$\Pr_{X|\Theta}\{T(X) \geq \lambda \mid \theta\} \quad (28)$$

is a monotonically increasing function of θ.

Note: Consider the one-parameter exponential family

$$f_{X|\Theta}(x \mid \theta) = h(x) \exp[\eta(\theta) T(x) - B(\theta)]. \quad (29)$$

Then, if $\eta(\theta)$ is a monotonically increasing function of θ, the class of pdfs (pmfs) (29) satisfies the MLR conditions.
Example: Detection for Exponential Random Variables

Consider conditionally i.i.d. measurements $X[0], X[1], \ldots, X[N-1]$ given the parameter $\theta > 0$, following the exponential pdf:

$$f_{X|\Theta}(x[n] | \theta) = \text{Expon}(x[n] | 1/\theta) = \frac{1}{\theta} \exp(-\theta^{-1} x[n]) i_{(0, +\infty)}(x[n]).$$

The likelihood function of θ for all observations $x = [x[0], x[1], \ldots, x[N-1]]^T$ is

$$f_{X|\Theta}(x | \theta) = \frac{1}{\theta^N} \exp[-\theta^{-1} T(x)] \prod_{n=0}^{N-1} i_{(0, +\infty)}(x[n])$$

where

$$T(x) = \sum_{n=0}^{N-1} x[n].$$

Since $f_{X|\Theta}(x | \theta)$ belongs to the one-parameter exponential family (29) and $\eta(\theta) = -\theta^{-1}$ is a monotonically increasing function of θ. Therefore, the test

$$\phi_\lambda(x) = \begin{cases} 1, & \text{for } T(x) \geq \lambda, \\ 0, & \text{for } T(x) < \lambda \end{cases}$$
is UMP for testing

\[\mathcal{H}_0 : \theta > \theta_0 \quad \text{versus} \quad \mathcal{H}_1 : \theta \leq \theta_0. \]

The sum of i.i.d. exponential random variables follows the Erlang pdf (which is a special case of the gamma pdf):

\[
f_{T \mid \Theta}(T \mid \theta) = \frac{1}{\theta^N} \frac{T^{N-1}}{(N-1)!} \exp\left(-\frac{T}{\theta}\right) i_{(0, +\infty)}(T) = \text{Gamma}(T \mid N, \theta^{-1}).
\]

Therefore, the size of the test can be written as

\[
\alpha = \Pr_{X \mid \Theta} \{ T(X) \geq \lambda \mid \theta_0 \} = \frac{1}{\theta_0^N} \int_{\lambda}^{+\infty} \frac{t^{N-1}}{(N-1)!} \exp\left(-\frac{t}{\theta_0}\right) dt
\]

\[
= \left[1 + \frac{\lambda}{\theta_0} + \cdots + \frac{1}{(N-1)!} \left(\frac{\lambda}{\theta_0}\right)^{N-1} \right] \exp\left(-\frac{\lambda}{\theta_0}\right)
\]

where the integral is evaluated using integration by parts. For \(N = 1 \), we have

\[\lambda = \theta_0 \ln(1/\alpha). \]
Generalized Likelihood Ratio (GLR) Test

Recall again that, in composite testing of two hypotheses, we have $\Theta(0)$ and $\Theta(1)$ that form a partition of the parameter space Θ:

$$\Theta(0) \cup \Theta(1) = \Theta, \quad \Theta(0) \cap \Theta(1) = \emptyset$$

and that we wish to identify which of the two hypotheses is true:

$$\mathcal{H}_0 : \theta \in \Theta(0) \quad \text{null hypothesis} \quad \text{versus} \quad \mathcal{H}_1 : \theta \in \Theta(1) \quad \text{alternative hypothesis.}$$

In GLR tests, we replace the unknown parameters by their maximum-likelihood (ML) estimates under the two hypotheses. Hence, accept \mathcal{H}_1 if

$$\Lambda_{GLR}(x) = \frac{\max_{\theta \in \Theta(1)} f(x | \Theta(0) \theta)}{\max_{\theta \in \Theta(0)} f(x | \Theta(0) \theta)} > \tau.$$

This test has no UMP optimality properties, but often works well in practice.
Example: Detecting a Completely Unknown DC Level in AWGN

Consider again the composite hypothesis-testing problem from p. 38:

\[\mathcal{H}_0 : \quad \theta = 0 \quad \text{i.e.} \quad \theta \in \text{sp}_\Theta(0) = \{0\} \quad \text{versus} \]

\[\mathcal{H}_1 : \quad \theta \neq 0 \quad \text{i.e.} \quad \theta \in \text{sp}_\Theta(1) = (-\infty, +\infty) \backslash \{0\} \]

where the measurements \(X[0], X[1], \ldots, X[N - 1] \) are conditionally i.i.d. given \(\Theta = \theta \), following

\[
f_{X|\Theta}(x|\theta) = \frac{1}{\sqrt{(2\pi \sigma^2)^N}} \cdot \exp \left[-\frac{1}{2\sigma^2} \sum_{n=0}^{N-1} (x[n] - \theta)^2 \right]
\]

and \(x = [x[0], x[1], \ldots, x[N - 1]]^T \). A sufficient statistic for \(\theta \) is \(\bar{x} = \frac{1}{N} \sum_{n=1}^{N} x[n] \) and the pdf of \(\bar{x} \) given \(\Theta = \theta \) is

\[
f_{\bar{X}|\Theta}(\bar{x}|\theta) = \mathcal{N}(\bar{x}|\theta, \sigma^2/N).
\]

Our GLR test accepts \(\mathcal{H}_1 \) if

\[
\Lambda_{\text{GLR}}(x) = \frac{\max_{\theta \in \text{sp}_\Theta(1)} f_{X|\Theta}(x|\theta)}{f_{\bar{X}|\Theta}(\bar{x}|0)} > \tau.
\]

Now,

\[
\bar{x} = \arg \max_{\theta \in \text{sp}_\Theta(1)} f_{X|\Theta}(x|\theta)
\]
and

\[f_{\bar{X} | \Theta}(\bar{x} | 0) = \mathcal{N}(\bar{x} | 0, \sigma^2/N) \]
\[= \frac{1}{\sqrt{2 \pi \sigma^2/N}} \exp \left(-\frac{1}{2} \frac{\bar{x}^2}{\sigma^2/N} \right) \]
\[f_{\bar{X} | \Theta}(\bar{x} | \bar{x}) = \mathcal{N}(\bar{x} | 0, \sigma^2/N) = \frac{1}{\sqrt{2 \pi \sigma^2/N}} \]

yielding

\[\ln \Lambda_{GLR}(\bar{x}) = \frac{N \bar{x}^2}{2 \sigma^2}. \]

Therefore, we accept \(\mathcal{H}_1 \) if

\[(\bar{x})^2 > \gamma \]

or

\[|\bar{x}| > \eta. \]

We compare this detector with the (not realizable, also called clairvoyant) UMP detector that assumes the knowledge of the sign of \(\theta \) under \(\mathcal{H}_1 \). Assuming that the sign of \(\theta \) under \(\mathcal{H}_1 \) is known, we can construct the UMP detector, whose ROC curve is given by

\[P_D = Q(Q^{-1}(P_{FA}) - d) \]

where \(d = \sqrt{N \theta^2 / \sigma^2} \) and \(\theta \) is the value of the parameter under \(\mathcal{H}_1 \); see (23) for the case where \(\theta > 0 \) under \(\mathcal{H}_1 \). All other detectors have \(P_D \) below this upper bound.
GLR test: Decide \mathcal{H}_1 if $|\bar{x}| > \eta$. To make sure that the GLR test is implementable, we must be able to specify a threshold η so that the false-alarm probability is upper-bounded by a given size α. This is possible in our example:

\[
P_{FA}(\phi(x), 0) = \Pr_{X|\Theta}\{|X| > \eta | 0\} \quad \text{see (26)}
\]
\[
\text{symmetry} \quad = \quad 2 \Pr_{X|\Theta}\{X > \eta | 0\} = 2 Q(\eta/\sqrt{\sigma^2/N})
\]
\[
P_D(\phi(x), \theta) = \Pr_{X|\Theta}\{|X| > \eta | \theta\}
\]
\[
= \quad \Pr_{X|\Theta}\{X > \eta | \theta\} + \Pr_{X|\Theta}\{X < -\eta | \theta\}
\]
\[
= \quad Q\left(\frac{\eta - \theta}{\sqrt{\sigma^2/N}}\right) + Q\left(\frac{\eta + \theta}{\sqrt{\sigma^2/N}}\right)
\]
\[
= \quad Q\left(Q^{-1}(\alpha/2) - \frac{\theta}{\sqrt{\sigma^2/N}}\right)
\]
\[
+ Q\left(Q^{-1}(\alpha/2) + \frac{\theta}{\sqrt{\sigma^2/N}}\right).
\]

In this case, GLR test is only slightly worse than the clairvoyant detector (Figure 6.4 in Kay-II):
Example: DC level in WGN with A and σ^2 both unknown. Recall that σ^2 is called a nuisance parameter since we care exclusively about θ. Here, the GLR test for

$\mathcal{H}_0 : \theta = 0 \quad \text{i.e. } \theta \in \text{sp}_\Theta(0) = \{0\}$ versus $\mathcal{H}_1 : \theta \neq 0 \quad \text{i.e. } \theta \in \text{sp}_\Theta(1) = (-\infty, +\infty) \setminus \{0\}$

accepts \mathcal{H}_1 if

$$\Lambda_{\text{GLR}}(x) = \frac{\max_{\theta, \sigma^2} f_X | \Theta, \Sigma^2(x | \theta, \sigma^2)}{\max_{\sigma^2} f_X | \Theta, \Sigma^2(x | 0, \sigma^2)} > \gamma$$
where

\[f_{\mathbf{x} | \Theta, \Sigma^2}(\mathbf{x} | \theta, \sigma^2) = \frac{1}{\sqrt{(2 \pi \sigma^2)^N}} \cdot \exp \left[- \frac{1}{2 \sigma^2} \sum_{n=0}^{N-1} (x[n] - \theta)^2 \right]. \]

(30)

Here,

\[
\max_{\theta, \sigma^2} f_{\mathbf{x} | \Theta, \Sigma^2}(\mathbf{x} | \theta, \sigma^2) = \frac{1}{[2 \pi \hat{\sigma}^2_0(\mathbf{x})]^{N/2}} \cdot e^{-N/2}
\]

\[
\max_{\sigma^2} f_{\mathbf{x} | \Theta, \Sigma^2}(\mathbf{x} | 0, \sigma^2) = \frac{1}{[2 \pi \hat{\sigma}^2_0(\mathbf{x})]^{N/2}} \cdot e^{-N/2}
\]

where

\[
\hat{\sigma}^2_0(\mathbf{x}) = \frac{1}{N} \sum_{n=1}^{N} x^2[n]
\]

\[
\hat{\sigma}^2_1(\mathbf{x}) = \frac{1}{N} \sum_{n=1}^{N} (x[n] - \overline{x})^2.
\]

Hence,

\[
\Lambda_{\text{GLR}}(\mathbf{x}) = \left(\frac{\hat{\sigma}^2_0(\mathbf{x})}{\hat{\sigma}^2_1(\mathbf{x})} \right)^{N/2}
\]

i.e. GLR test fits data with the “best” DC-level signal \(\hat{\theta}_{\text{ML}} = \overline{x} \), finds the residual variance estimate \(\hat{\sigma}^2_1 \), and compares this estimate with the variance estimate \(\hat{\sigma}^2_0 \) under the null case (i.e.
for \(\theta = 0 \). When sufficiently strong signal is present, \(\hat{\sigma}_1^2 \ll \hat{\sigma}_0^2 \) and \(\Lambda_{\text{GLR}}(x) \gg 1 \).

Note that

\[
\hat{\sigma}_1^2(x) = \frac{1}{N} \sum_{n=1}^{N} (\bar{x} - x[n])^2
\]

\[
= \frac{1}{N} \sum_{n=1}^{N} (x^2[n] - 2 \bar{x} x[n] + \bar{x}^2)
\]

\[
= \left(\frac{1}{N} \sum_{n=1}^{N} x^2[n] \right) - 2 \bar{x}^2 + \bar{x}^2
\]

\[
= \hat{\sigma}_0^2(x) - \bar{x}^2.
\]

Hence,

\[
2 \ln \Lambda_{\text{GLR}}(x) = N \ln \left(\frac{\hat{\sigma}_0^2(x)}{\hat{\sigma}_0^2(x) - \bar{x}^2} \right) = N \ln \left(\frac{1}{1 - \bar{x}^2/\hat{\sigma}_0^2(x)} \right).
\]

Note that

\[
0 \leq \frac{\bar{x}^2}{\hat{\sigma}_0^2(x)} \leq 1
\]

and \(\ln[1/(1 - z)] \) is monotonically increasing on \(z \in (0, 1) \). Therefore, an equivalent test can be constructed as follows:

\[
T(x) = \frac{\bar{x}^2}{\hat{\sigma}_0^2(x)} > \tau.
\]
The pdf of $T(X)$ given $\theta = 0$ does not depend on σ^2 and, therefore, GLR test can be implemented, i.e. it is CFAR.

Definition. A test is constant false alarm rate (CFAR) if we can find a threshold that yields a test whose size is equal to α.

In other words, we should be able to set the threshold independently of the unknown parameters, i.e. the distribution of the test statistic under \mathcal{H}_0 does not depend on the unknown parameters.