Homework 2: Deriving gradient flows using Calculus of Variations

1) Deriving Euler-Lagrange when E is a function of $u=u(x, y)$, i.e. u is a function of 2 variables (Application: optical flow).

Given that

$$
\begin{equation*}
E(u)=\int_{y=a 2}^{b 2} \int_{x=a 1}^{b 1} L\left(u, u_{x}, u_{y}\right) d x d y \tag{1}
\end{equation*}
$$

Show that

$$
\begin{equation*}
\left(\nabla_{u} E\right)=\left(\frac{\partial L}{\partial u}\right)-\frac{\partial}{\partial x} \frac{\partial L}{\partial u_{x}}-\frac{\partial}{\partial y} \frac{\partial L}{\partial u_{y}} \tag{2}
\end{equation*}
$$

Assume $u(a 1, y)=\gamma_{1}, \forall y, u(b 1, y)=\gamma_{2}, \forall y, u(x, a 2)=\gamma_{3}, \forall x, u(x, b 2)=\gamma_{4}, \forall x$ (basically u is fixed at known values at the boundaries).
2) Deriving Euler Lagrange when E is a function of both first and second derivatives (Application: energy minimization for parametric snakes - Kass,Witkin,Terzopolous).
Given that

$$
\begin{equation*}
E(C)=\int_{p=0}^{1} L\left(C, C_{p}, C_{p p}\right) d p \tag{3}
\end{equation*}
$$

Show that

$$
\begin{equation*}
\left(\nabla_{C} E\right)=\left(\frac{\partial L}{\partial C}\right)-\frac{\partial}{\partial p} \frac{\partial L}{\partial C_{p}}+\frac{\partial^{2}}{\partial p^{2}} \frac{\partial L}{\partial C_{p p}} \tag{4}
\end{equation*}
$$

Assume $C(0)=\gamma_{1}, C(1)=\gamma_{2}, C_{p}(0)=\gamma_{3}, C_{p}(1)=\gamma_{4}$ (basically C and C_{p} are fixed at known values at the boundaries).

Note I have given the above assumption to simplify your homework problem. Actually for closed contours, do not need this assumption. First two terms in the "integration by parts" step cancel because $p=0$ and $p=1$ are the same point, so any function of p has the same value at both $p=0$ and $p=1$.
3) Extra: (An exercise in understanding papers, both of these have been done in the papers posted on the class webpage)
a) Derive the edge based geometric active contour flow. Given

$$
\begin{equation*}
E(C)=\int_{s=0}^{L(C)} g(\|\nabla I\|) d s \tag{5}
\end{equation*}
$$

show that

$$
\begin{equation*}
\nabla_{C} E=g(\|\nabla I(C)\|) \kappa N-(\nabla g \cdot N) N \tag{6}
\end{equation*}
$$

where $L(C)$ denotes length of contour, N denotes the normal and κ denotes curvature.
Main idea: In the expression for E, the integral is over a region ($s=0$ to $s=L(C)$) that depends on the contour itself. Hence cannot apply the formulae derived earlier. Solution: Assume an arbitrary parametrization $C(p)$ with $p \in[0,1]$ and $C(0)=C(1)$. Then $d s=$ $\left\|C_{p}\right\| d p$ and the integral runs from $p=0$ to $p=1$. Then apply the standard formula
b) Derive the region based geometric active contour flow. Given

$$
\begin{equation*}
E(C)=\int_{C_{\text {inside }}}(I(x, y)-u)^{2} d x d y+\int_{C_{\text {outside }}}(I(x, y)-u)^{2} d x d y+\alpha \int_{s=0}^{L(C)} d s \tag{7}
\end{equation*}
$$

show that

$$
\begin{equation*}
\nabla_{C} E=(u-v)\left(I(C)-\frac{u+v}{2}\right) N+\alpha \kappa N \tag{8}
\end{equation*}
$$

NOTE: There may be a minus sign in the above, please verify

Main idea: The expression for E is a region integral depending on the contour. First convert it to a boundary integral over the contour boundary (using divergence theorem: $\int_{R}(\nabla \cdot F(x, y)) d x d y=\int_{s=0}^{L(C)}(F(C) \cdot N) d s$ where C is the boundary of region $\left.R\right)$. Then use the idea described in part 3 a.

Two things to note in the above:
When parameterizing contours by arc-length, s, the definition of "inner product" is: For 2 vectors $h_{1}(s)$ and $h_{2}(s)$ the inner product is $h_{1} \cdot h_{2}=\int_{s=0}^{L(C)} h_{1}(s) h_{2}(s) d s=\int_{p=0}^{1} h_{1}(p) h_{2}(p)\left\|C_{p}\right\| d p$.

Also note that there is abuse of notation when I also define the inner product in \mathbb{R}^{2} by the same "." notation: for e.g. $\nabla g \cdot N$ is an inner product in \mathbb{R}^{2}.

