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Registration

• Given a set of corresponding points in 2 frames, find a “global map”
(usually a group action) that takes one set of points to the other

• If given two segmented object regions, find the corresponding points at
the segmentation boundaries using optical flow (Least Squares optical
flow method on3× 3 blocks will suffice). Or use curvature vertices
(extrema and discontinuities) of the contour as the corresponding points.

• Global map can be affine, scaled Euclidean, Euclidean or translation
group depending on the camera model and motion assumptions.

• Solve for the group action parameters using Least Squares Estimation
(or its various modifications).

• When corresponding points not available, use an alternating
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minimization algorithm: use initial guess of group action to guess

location of the corresponding points in the second frame. Find the

corresponding point in the vicinity of the guessed location (or find the

new segmentation boundary in the vicinity of the guessed boundary).

Iterate a few times. One such solution is given in [1].
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• Affine registration: 6 parameter group. Need at least 3 corresponding

points to get AN estimate. Usually need many more to get a robust least

squares estimate.

• Scaled Euclidean registration: defines “landmark shape”

– Use theory of landmark shape analysis to solve the least squares

registration problem (find scale, rotation angle and x and y

translation).

– Represent the x and y coordinates of all the points in a frame as a

complex vector with x coordinates forming the real part and y

coordinates forming the imaginary part: compact notation, use

results from complex algebra to get closed form solutions
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Landmark Shape Analysis

• Read from [2]: Sections 2.1,2.2, 3.1,3.2,3.3,3.4, 4.1 (only 4.1.1 - 4.1.4,
only centered configuration, pre-shape, shape), 4.3 (only 4.3.1)

• Definitions of configuration, centered configuration, pre-shape, shape-1
(full Procrustes shape) and shape-2 (partial Procrustes shape).

• Translation, scale, rotation normalization.

• Procrustes distance: full (shape-1) and partial (shape-2)

• Definition of “mean shape” (“mean” of a set of configurations modulo
scale, rotation and translation): minimizes the sum of full Procrustes
distances of the set of configurations from it.

• Easy to show that “mean shape” is given by the largest eigenvector of
S =

∑n
i=1 wiw

∗
i wherewi is the pre-shape (translation and scale
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normalized configurationCi). Exercise: show this.

• Analogously can also define an “affine mean shape” for a set of
configurations, but no closed form exact solution for the mean in that

case (to the best of my knowledge).Exercise: define the affine mean

shape. Instead of complex notation, just write the configuration ofK

points as a2×K matrix with x components forming the first row and y

components forming the second row.

• A “mean shape” characterizes the mean over variations in the data, other
than global scaling, rotation, translation (or for affine mean shape, other
than affine motion). Useful to represent mean shapes of animals such as

mice, which may be of different sizes or their images may be rotated or
translated. Also useful to mod out variations due to motion of a
weak-perspective camera.

• Application: classification (define probability densities on the shape

Registration and Landmark Shape Analysis 6

6



space or in the tangent space at the mean).

• Tangent space: linearization of the non-linear shape space about a

certain point (usually the mean of the dataset). Meaningful only if all

dataset points lie close to each other on the shape space. Use: can use

tools from linear multivariate statistics in the tangent space, e.g. can do

PCA or can define linear regressions to model shape dynamics.

• Partial Procrustes Tangent space coordinate of shapez aboutµ:

v = [I − µµ∗]zejθ̂, θ̂ = angle(z∗µ), j =
√−1 (1)

If z is a partial Procrustes shape w.r.tµ (rotated to align withµ) then

θ̂ = 0
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