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Introduction
• A particle filter approximates the optimal nonlinear filter 

as the no. of particles (Monte Carlo samples) goes to 
infinity

• A.k.a. “Bayesian bootstrap filtering” [Gordon,Salmond, 
Smith], “Sequential Monte Carlo” [Fearnhead], 
“Condensation algorithm” [Isard, Blake]

• Given a state space model (or HMM)

• Assume distribution of Yt conditioned on Xt is absolutely 
continuous, i.e. the pdf p(Yt|xt) exists.

• Nonlinear filtering problem: find Pr(Xt є dxt |Y1:t), 
denoted by πt(dxt) for each t. Here “є” denotes “belongs 
to”
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The General HMM

State, Xt State, Xt+1

Observation, Yt+1Observation, Yt

Xt+2 …
Qt(Xt+1|Xt)

ψt(Yt|Xt)

Yt+2



The Optimal Nonlinear Filter
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Possible Solutions
• Kalman filter: linear/Gaussian sys & obs models

– Extended Kalman Filter: First order Taylor series 
approx of f & h at each time step

• Grid based filtering: discrete state space
– Approx. Grid based filtering:  fixed discretization of 

the state space

• Gaussian Sum Filter: Second order linearization 

• Particle filtering



The Basic Particle Filter 
[Gordon, Salmon, Smith]
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Block Diagram for a PF

π0
N πt|t-1

N πt|t
N = πt

N
Qt(Xt+1|Xt)

Yt

ψt(Yt|Xt)

t=t+1



Some PF Modifications
• Do not resample at each step
• Likelihood PF: sample from observation likelihood, 

weight by prior [Arulampalam et al]
• Rao Blackwellized PF: if part of the state and 

observation model is linear, perform Kalman filtering for 
that part [Chen, Liu]

• Regularised PF [Musso, Oudjane, LeGland]
– Resample from a kernel density approx. of the 

posterior
– Projection PF: Let posterior be approximated by a 

certain parametric family (e.g. exponential), learn its 
parameters using the empirical dist., and resample 
from it [Azimi-Sadjadi & Krishnaprasad]



Change detection problem

• Given a sequence of observations Y1, 
Y2,…Yt find out if a change occurred 
at some  tc < = t

• Treat as a sequential hypothesis testing 
problem where tc is a nuisance parameter



Change detection in Nonlinear systems

• Known change parameters
– CUSUM on LRT of Yt given Y1:t-1: run t PFs
– Modification of CUSUM with non-growing complexity with t
– Multimode system detect change in mode

• Unknown change parameters
– CUSUM on Generalized LRT (Y1:t) 

• Finite parameter set: run Mt PFs at time t
• Parameter set is continuous: perform GLRT using ML parameter 

estimation : relies on accuracy of the ML estimate of the 
parameter which is based on accuracy of posterior, has been 
suggested but not implemented (as far as I know!)

– Model Validation type approaches:
• Testing if {uj =Pr(Yt<yj|Y1:t-1) } are uniformly distributed
• Tracking Error (TE): error b/w Yt & its prediction 
• Negative log-likelihood of observations (OL), -logP(Yt|Y1:t-1,H0)



Slow Change, Unknown parameters

• All these approaches use observation statistics
• Do not detect slow changes since PF is stable and 

hence is able to “track a slow change”: error in posterior 
is small 

• For slow change detection, we attempt to use the fact 
that PF is stable and hence estimate of posterior is 
“correct” (error small). We propose to use:
ELL = E[-Log Likelihood(Xt)|Y1:t] 

= E[-log pt
0 (Xt)|Y1:t] 

= Eπ[-log pt
0(Xt)] 

=Kerridge Inaccuracy b/w πt (posterior) & pt
0 (prior)



Motivation for ELL
• General Hidden Markov Model (HMM): Markov state 

sequence {Xt}, Observation sequence  {Yt}

• Finite duration change in system model which causes a 
permanent change in probability distribution of state 

• Slow change: Tracking Error & Observation Likelihood 
do not detect slow changes. Use distribution of Xt|Y1;t

• Change parameters unknown: use Log-Likelihood(Xt) 

• State is partially observed: use posterior expectation of 
LL(Xt) given observations, E[LL(Xt)|Y1:t)] = ELL

• Nonlinear dynamics: Particle filtered estimate of ELL
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ELL
• Expected Log Likelihood (ELL)

– ELL = Kerridge Inaccuracy b/w πt (posterior) and pt
0 (prior)

ELL(Y1:t )=E[-log pt
0 (Xt)|Y1:t]=Eπ[-log pt

0 (Xt)]=K(πt : pt
0)

• A sufficient condition for “detectable changes” using ELL
– E[ELL(Y1:t

0)] = K(pt
0:pt

0)=H(pt
0),  E[ELL(Y1:t

c)]= K(pt
c:pt

0)
– Chebyshev Inequality: With false alarm & miss probabilities of 0.11, 

ELL detects all changes s.t.
K(pt

c:pt
0) -H(pt

0)>3 [√Var{ELL(Y1:t
c)} +√Var{ELL(Y1:t

0)}]
– Set threshold = H(pt

0)+3√Var{ELL(Y1:t
0)}

• Drastic Change: ELL does not work, use OL or TE
– OL: Neg. log of current observation likelihood given past

OL = -log [Pr(Yt|Y0:t-1,H0) ] = -log[<πt|t-1 , ψt>]
– TE: Tracking Error. If white Gaussian observation noise, TE ≈ OL



ELL & OL: Slow & Drastic Change
• ELL fails to detect drastic changes: large approx. error

– Approximating posterior for changed system observations using a 
PF optimal for unchanged system: error large for drastic changes

– OL relies on the error introduced due to the change to detect it

• OL fails to detect slow changes
– Particle Filter tracks slow changes “correctly”
– Assuming change till t-1 was tracked “correctly” (error in posterior 

small), OL only uses change introduced at t, which is also small
– ELL uses total change in posterior till time t & the posterior is 

approximated “correctly” for a slow change: so ELL detects a slow 
change when its total magnitude becomes “detectable”

• ELL detects change before loss of track, OL detects after
• OL relies on the fact that there is large error in posterior 

introduced by the change. ELL relies on the fact that PF is 
stable and hence error in posterior is small



A Simulated Example
• Yt = Xt

3 + wt, wt: truncated Gaussian
• Xt = Xt-1 + nt + rtσ,  nt ~ N(0,σ2)
• No change: rt = 0, Change: rt not equal to 0 from t=5 to t=15

ELL OL



Change Detection

Yt πt|t-1
N

πt|t
N = πt

N

ELL=Eπ[-log pt
0(Xt)] > Threshold?

PF

OL= -log[<πt|t-1 , ψt>] > Threshold? Change
(Drastic)

Yes

Change
(Slow)

Yes



Approximation Errors

• Total error < Bounding error + Exact filtering error + PF error

– Bounding error: Stability results hold only for bounded fn’s but 
LL is unbounded. So approximate LL by min{-log pt

0(Xt),M} 
(Huber’s M-estimate of LL)

– Exact filtering error: Error b/w exact filtering with changed 
system model & with original model. Evaluating  πt

c,0 (using 
Qt

0 ) instead of πt
c,c (using Qt

c)

– PF Error: Error b/w exact filtering with original model & particle 
filtering with original model. Evaluating πt

c,0,N which is a Monte 
Carlo estimate of πt

c,0



Complementary Behavior of ELL & OL

• ELL approx. error, et
c,0, is upper bounded by an increasing 

function of OLk
c,0, tc< k < t

• Implication: Assume “detectable” change i.e. ELLc,c large

• OL fails => OLk
c,0,tc<k<t small => ELL error, et

c,0

small=> ELLc,0 large => ELL  detects 

• ELL fails => ELLc,0 small =>ELL error, et
c,0 large => 

at least one of OLk
c,0,tc<k<t large => OL detects
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Applications
• Abnormal activity detection, Detecting motion disorders in human

actions, Activity Segmentation

• Neural signal processing: detecting changes in stimuli

• Acoustics: Direction of Arrival estimation, detect when model 
changes

• Congestion Detection

• Video Shot change or Background model change detection

• System model change detection in target tracking problems 
without the tracker losing track


	Particle Filtering and Change Detection
	Introduction
	The General HMM
	The Optimal Nonlinear Filter
	Possible Solutions
	The Basic Particle Filter �[Gordon, Salmon, Smith]
	Block Diagram for a PF
	Some PF Modifications
	Change detection problem
	Change detection in Nonlinear systems
	Slow Change, Unknown parameters
	Motivation for ELL
	ELL
	ELL & OL: Slow & Drastic Change
	A Simulated Example
	Change Detection
	Approximation Errors
	Complementary Behavior of ELL & OL
	Applications

