Importance Sampling and Particle Filtering

Namrata Vaswani, namrata@iastate.edu

I. PROBLEM

A. Sate Space Model: HMM
Given a nonlinear state space model, satisfyingHinéden Markov Model (HMM) assumptions:
1) State sequence;,t =0,1,2,.. is a Markov process, i.ex(z¢|z;—1, past) = p(x|zi—1).
2) Observations, Y;,t = 1,2,.. “conditionally independent given state at”, i.e.
p(yi|xe, past, future) = p(y;|z;) wherepast = {Yi4 1, X141}, future 2 {Yiy1.1, Xep1.1}
3) p(xo), p(a¢|xi—1), p(y|z:) are known: often expressed using a system and observatiatelmo

format.

B. Goal
1) Denotexo.; = {xo,x1,..2:} andyiy = {y1,y2, .. ys }
2) Find a good approximation t@(xo.¢|y1..) or at least tap(z¢|y;1.¢) referred to as theosterior. Goal

is to estimate
I(ft) —/ft(fct)P(fct!ylzt)dwt (1)

for any function of the statg;

C. Some Other Techniques

1) If the state space model weli@ear and Gaussian, thenp(x;|y;.;) is also Gaussian and its mean
and variance are calculated using the Kalman filter.

2) Nonlinear and Gaussian : Extended Kalman Filter (EKF), Gaussian sum filter. Problem:
use first or second order Taylor series approximation to maigionlinear system, error in Jacobian
estimates propagates over time, may be unstable in ceragsqerror keeps increasing): loss of
track. If one bad observation: loss of track, cannot come bac

Cannot track heavily non-Gaussian or multimodal postserior



3) Multimodal systems: Multiple Hypothesis tracker (MHT), Probabilistic Data Asgdon Filters,
Iterated Multiple Mode (IMM) etc
Need to know or be able to estimate number of posterior modes

4) Unscented Kalman filter

5) Sigma point filters

6) Numerical integration techniques such as Quadraturesfiteee Chapter 5 of [1]
Practical only for small dimensional state space,

7) Grid-based filtering (discretizing the state space and treating the system as a finite state HMM)
- see [2]
Practical only for small dimensional state space, small

8) Markov Chain Monte Carlo

Practical only for small dimensional state space, small

II. IMPORTANCE SAMPLING

A Particle Filter is a Sequential Monte Carlo method. It is a ification of the Sequential Importance

Sampling method. Need to first understand (read first few pagg3] of Chapter 1 of [1])

1) Monte Carlo sampling from a pdf(x)

2) Importance sampling whenis known in closed form, but cannot sample from it. So sammenfr
a ¢ (satisfying certain assumptions given in [3] and also in.[1]

3) Importance sampling whein(z) = % only a is known in closed formg is not (because the

denominator cannot be evaluated analytically).

The third case is treated as follows:

I(f):/f(x)a(x)dx = W

Y.
A Zf(x’) ]\? md( ok with z' ~ g(z) (2)
=1 Zj:l q(x )
or in other words (some misuse of notation),
@ s alad) 4
alx) Y —x——0w—a'), @' &= with 2 ~ g(x) (3)



whered denotes the Dirac delta function (that you learn in Signats @ystems). Note a more commonly
used (and perhaps mathematically correct) notation is tie wfdx) ~ Zfi 1 ﬁ&x (dz). The above

is a biased estimate as explained in [3], [1]. But it is asytgally (for N — oo) unbiased.

[1l. SEQUENTIAL IMPORTANCE SAMPLING (SIS)

Sequential Importance Sampling (SIS) to approximata.|vyo.): uses the above idea with= z,
anda(zo.;) £ p(xo., y1t) andq(zo.) = 7(zo.¢|y1.). TO get a recursive algorithm that can be applied at

anyt using only observations unti, we need to choosg = = that satisfies

q(.) = m(zo:t|y1:) = 7(To:t—1|y1:6—1)7(@e|T0:4-1, Y0:t) (4)
Using the HMM assumptions given abovecan be re-written as

a(.) = p(wo:t, y1:¢) = P(Yr:t—1, To—1)p(Ye|ze)p(we|Ts—1) (5)

Thus

i a(.) _ p(ﬂﬁé;tayl:t) g p(yt‘ﬁ)l’(l’%’x%fl)
W= "=y W1
q(.) (2.4 |Y1:t) (|0, 15 Yo:t)

This gives the SIS algorithm. See the algorithm on Page 6 of [3].

’ with lef ~ W(:Ui|x6:t_1, y0:t> (6)

A. Different choices for 7

1) The Bayesian Boostrap filter [4] usedz;|zo.t—1,yo:t) = p(x¢|xi—1) andw(zg) = p(xg). This is

also the most commonly used implementation. Then the repufsr weights is
@ = @) _1p(yel) (7)

2) The optimal importance density (minimizes variance ofghies given previous states and all
observations tillt) is to usen(x¢|xo.t—1, yot) = p(a¢|xi—1,y:) and w(zg) = p(xo). Actually note
that p(x¢|zi—1, ye) = p(ze|ro.t—1,y0:r) because of HMM assumptions. Often cannot compute this,
but if we know it is unimodal, then can try to use Gaussian axiprations to it (details in [3]).

In this case

W :wz_lp@/t‘ zt)pz( ¢ t—1) )
p(xtlxt—lvyo

If using exactp(z¢|x—1,y:), thenw; = o} _p(y:|z; ).

3) Many other choices exist in literature.



IV. PARTICLE FILTER

SIS as described above becomes impractical after a few tieps,ssince the variance af. become
very large (order of magnitude difference between largest smallest weights), consequently in the
normalized weights only one weight is significantly non-zesthers are practically zero. This is called
“particle inefficiency” - the particles with practically zeweights are being “wasted” - not approximating
the posterior in high probability regions, while there asrwfew (often just one) particles in the high
probability region.

Particle filter (or Bayesian Boostrap filter) is Sequential Imgoce Sampling along with a Resampling
step which is described in detail in Section 3 of [3], and itraddes the above issue. See the algorithm
on page 13 of [3].

Under mild assumptions, the particle filtering estimate ef plosterior distribution of; giveny;.; can
be shown to converge weakly to the true posterior as the nuoflygarticles,N — oo (see [1], chapters

2 and 3, if interested).

V. VARIANTS OF THE BASICPARTICLE FILTER (PF)

1) Rao Blackwellized PF: runs a Kalman Filter for a linear/Garssubsystem. See [2].
2) Regularized PF
3) Unscented PF, Sigma point PF

4) PF with approximating the optimal Importance Samplingritigtion in different ways. See [3],

[2].
5) Auxiliary PF
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