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Calculus of Variations
Namrata Vaswani, namrata@iastate.edu

These notes are still under preparation. Please email me if you find any mistakes and typos.

These notes are based on Chapter 1 of [1] and some web sources.

Consider the problem of minimizing an energy functionalE(u) which is an integral of a function of an

unknown functionu(x) and its derivatives w.r.t.x. u and its derivatives are only known at the boundaries

of the integration domain.

Calculus of variations is used to find the gradient of a functional (hereE(u)) w.r.t. a function (here

u(x)), which we denote by∇uE. Setting∇uE = 0 gives theEuler-Lagrange equation and this is

a necessary condition for the minimizing function to satisfy. In some cases the Euler-Lagrange can be

solved directly in closed form. For other cases one uses numerical techniques for gradient descent, which

gives rise to a Partial Differential Equation (PDE). In effect, Calculus of Variations extends vector calculus

to enable us to evaluate derivatives of functionals.

A. Evaluating∇uE

I explain here the simplest case: how to evaluate∇uE when E can be written as a definite integral

of u and its first partial derivativeux , ∂u
∂x andx is a scalar, i.e.

E(u) =
∫ b

a
L(u, ux)dx (1)

andu(a) andu(b) are known (fixed), whileu(x), x ∈ (a, b) is variable. HereL(u, ux) is referred to as

the Lagrangian.

1) Defining∇uE: From vector calculus (ifu were a vectoru = [u1, u2, ..un]), then the directional

derivative in a directionα is

∂E

∂α
= lim

ε→0

E(u + εα)− E(u)
ε

= ∇uE · α (2)

where the dot product expands as

∇uE · α =
n∑

i=1

(∇uE)iαi (3)
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One way to evaluate∇uE is to write out a first order Taylor series expansion ofE(u + εα) and define

(∇uE)i by comparison as the term multiplyingαi.

We use this same methodology for calculus of variations, but nowu is a continuous function of a

variablex andα is also a continuous function ofx with unit norm (||α||2 =
∫ b
a α(x)2dx = 1). The dot

product is now defined as

∇uE · α =
∫ b

a
(∇uE)(x)α(x)dx. (4)

The boundary conditions,u(a) and u(b) are fixed and soα(a) = α(b) = 0.

2) The solution method:ExpandE(u + εα) using first order Taylor series as

E(u + εα) ≈ E(u) + ε∇uE · α = E(u) + ε

∫ b

a
(∇uE)(x)α(x)dx (5)

and (∇uE)(x) is the term multiplyingα(x) in this expansion.

Applying this to (1), we get

E(u + εα) =
∫ b

a
L(u + εα, ux + εαx)dx

≈
∫ b

a
L(u, ux)dx + ε

∫ b

a
(
∂L

∂u
)(x)α(x)dx + ε

∫ b

a
(

∂L

∂ux
)(x)αx(x)dx

= E(u) + ε(T1 + T2) (6)

Now T1 is already in the form of a dot product withα. We need to bringT2 =
∫ b
a

∂L
∂ux

αxdx also in this

form. We do this usingintegration by parts. Recall that
∫ b

a
f(x)gx(x)dx = f(b)g(b)− f(a)g(a)−

∫ b

a
fx(x)g(x)dx (7)

We apply this toT2 with f = ∂L
∂ux

, g = α andα(a) = α(b) = 0, so that the first two terms of (7) vanish.

T2 =
∫ b

a

∂L

∂ux
αxdx = (

∂L

∂ux
)(b)α(b)− (

∂L

∂ux
(a))α(a)−

∫ b

a

∂

∂x

∂L

∂ux
αdx

= 0− 0−
∫ b

a

∂

∂x

∂L

∂ux
αdx (8)

Thus combining (6) with (8), we get

E(u + εα) = E(u) + ε

∫ b

a
[(

∂L

∂u
)− ∂

∂x

∂L

∂ux
]αdx (9)

and thus by comparison with (5), we have

(∇uE)(x) = [(
∂L

∂u
)− ∂

∂x

∂L

∂ux
](x) (10)
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Thus theEuler Lagrange equation (necessary condition for a minimizer) is

[(
∂L

∂u
)− ∂

∂x

∂L

∂ux
] = 0 (11)

This can be either solved directly or using gradient descent. When using gradient descent to find the

minimizing u, we get a PDE with an artificial time variablet as

∂u

∂t
= −(∇uE) = −[(

∂L

∂u
)− ∂

∂x

∂L

∂ux
] (12)

B. Extensions

The solution methodology can be easily extended to cases where (i)u is a function of multiple

variables, i.e.x is a vector (x = [x1, x2, ..xk]T ) or (ii) when u itself is a vector of functions, i.e.u(x) =

[u1(x), u2(x)...um(x)]T or (iii) whenE depends on higher order derivatives ofu. Please UNDERSTAND

the basic idea in the above derivation carefully, some of these extensions may be Exam questions.

Exercise: Show that ifu = u(x, y) i.e. u is a function of two scalar variablesx and y, then

(∇uE) = (
∂L

∂u
)− ∂

∂x

∂L

∂ux
− ∂

∂y

∂L

∂uy
(13)

A trivial extension of this shows that ifE is a function of two functionsu(x, y) and v(x, y), then the

Euler-Lagrange equation is given by

(∇uE) = (
∂L

∂u
)− ∂

∂x

∂L

∂ux
− ∂

∂y

∂L

∂uy
= 0

(∇vE) = (
∂L

∂v
)− ∂

∂x

∂L

∂vx
− ∂

∂y

∂L

∂vy
= 0

(14)

One application of this is in estimating Optical Flow using Horn and Schunk’s method [2] (see Optical

flow handout). More applications will be seen in Segmentation problems, which attempt to find the

object contourC(p) = [Cx(p), Cy(p)] (wherep is a parameter that goes from0 to 1 over the contour

andC(0) = C(1) for closed contour) that minimizes an image dependent energy functionalE(C).
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