Calculus of Variations

Namrata Vaswani, namrata@iastate.edu

These notes are still under preparation. Please email me if you find any mistakes and typos.
These notes are based on Chapter 1 of [1] and some web sources.
Consider the problem of minimizing an energy functional $E(u)$ which is an integral of a function of an unknown function $u(x)$ and its derivatives w.r.t. $x . u$ and its derivatives are only known at the boundaries of the integration domain.

Calculus of variations is used to find the gradient of a functional (here $E(u)$) w.r.t. a function (here $u(x)$), which we denote by $\nabla_{u} E$. Setting $\nabla_{u} E=0$ gives the Euler-Lagrange equation and this is a necessary condition for the minimizing function to satisfy. In some cases the Euler-Lagrange can be solved directly in closed form. For other cases one uses numerical techniques for gradient descent, which gives rise to a Partial Differential Equation (PDE). In effect, Calculus of Variations extends vector calculus to enable us to evaluate derivatives of functionals.

A. Evaluating $\nabla_{u} E$

I explain here the simplest case: how to evaluate $\nabla_{u} E$ when E can be written as a definite integral of u and its first partial derivative $u_{x} \triangleq \frac{\partial u}{\partial x}$ and x is a scalar, i.e.

$$
\begin{equation*}
E(u)=\int_{a}^{b} L\left(u, u_{x}\right) d x \tag{1}
\end{equation*}
$$

and $u(a)$ and $u(b)$ are known (fixed), while $u(x), x \in(a, b)$ is variable. Here $L\left(u, u_{x}\right)$ is referred to as the Lagrangian.

1) Defining $\nabla_{u} E$: From vector calculus (if u were a vector $u=\left[u_{1}, u_{2}, . . u_{n}\right]$), then the directional derivative in a direction α is

$$
\begin{equation*}
\frac{\partial E}{\partial \alpha}=\lim _{\epsilon \rightarrow 0} \frac{E(u+\epsilon \alpha)-E(u)}{\epsilon}=\nabla_{u} E \cdot \alpha \tag{2}
\end{equation*}
$$

where the dot product expands as

$$
\begin{equation*}
\nabla_{u} E \cdot \alpha=\sum_{i=1}^{n}\left(\nabla_{u} E\right)_{i} \alpha_{i} \tag{3}
\end{equation*}
$$

One way to evaluate $\nabla_{u} E$ is to write out a first order Taylor series expansion of $E(u+\epsilon \alpha)$ and define $\left(\nabla_{u} E\right)_{i}$ by comparison as the term multiplying α_{i}.

We use this same methodology for calculus of variations, but now u is a continuous function of a variable x and α is also a continuous function of x with unit norm $\left(\|\alpha\|^{2}=\int_{a}^{b} \alpha(x)^{2} d x=1\right)$. The dot product is now defined as

$$
\begin{equation*}
\nabla_{u} E \cdot \alpha=\int_{a}^{b}\left(\nabla_{u} E\right)(x) \alpha(x) d x \tag{4}
\end{equation*}
$$

The boundary conditions, $u(a)$ and $u(b)$ are fixed and so $\alpha(a)=\alpha(b)=0$.
2) The solution method: Expand $E(u+\epsilon \alpha)$ using first order Taylor series as

$$
\begin{equation*}
E(u+\epsilon \alpha) \approx E(u)+\epsilon \nabla_{u} E \cdot \alpha=E(u)+\epsilon \int_{a}^{b}\left(\nabla_{u} E\right)(x) \alpha(x) d x \tag{5}
\end{equation*}
$$

and $\left(\nabla_{u} E\right)(x)$ is the term multiplying $\alpha(x)$ in this expansion.
Applying this to (1), we get

$$
\begin{align*}
E(u+\epsilon \alpha) & =\int_{a}^{b} L\left(u+\epsilon \alpha, u_{x}+\epsilon \alpha_{x}\right) d x \\
& \approx \int_{a}^{b} L\left(u, u_{x}\right) d x+\epsilon \int_{a}^{b}\left(\frac{\partial L}{\partial u}\right)(x) \alpha(x) d x+\epsilon \int_{a}^{b}\left(\frac{\partial L}{\partial u_{x}}\right)(x) \alpha_{x}(x) d x \\
& =E(u)+\epsilon\left(T_{1}+T_{2}\right) \tag{6}
\end{align*}
$$

Now T_{1} is already in the form of a dot product with α. We need to bring $T_{2}=\int_{a}^{b} \frac{\partial L}{\partial u_{x}} \alpha_{x} d x$ also in this form. We do this using integration by parts. Recall that

$$
\begin{equation*}
\int_{a}^{b} f(x) g_{x}(x) d x=f(b) g(b)-f(a) g(a)-\int_{a}^{b} f_{x}(x) g(x) d x \tag{7}
\end{equation*}
$$

We apply this to T_{2} with $f=\frac{\partial L}{\partial u_{x}}, g=\alpha$ and $\alpha(a)=\alpha(b)=0$, so that the first two terms of (7) vanish.

$$
\begin{align*}
T_{2}=\int_{a}^{b} \frac{\partial L}{\partial u_{x}} \alpha_{x} d x & =\left(\frac{\partial L}{\partial u_{x}}\right)(b) \alpha(b)-\left(\frac{\partial L}{\partial u_{x}}(a)\right) \alpha(a)-\int_{a}^{b} \frac{\partial}{\partial x} \frac{\partial L}{\partial u_{x}} \alpha d x \\
& =0-0-\int_{a}^{b} \frac{\partial}{\partial x} \frac{\partial L}{\partial u_{x}} \alpha d x \tag{8}
\end{align*}
$$

Thus combining (6) with (8), we get

$$
\begin{equation*}
E(u+\epsilon \alpha)=E(u)+\epsilon \int_{a}^{b}\left[\left(\frac{\partial L}{\partial u}\right)-\frac{\partial}{\partial x} \frac{\partial L}{\partial u_{x}}\right] \alpha d x \tag{9}
\end{equation*}
$$

and thus by comparison with (5), we have

$$
\begin{equation*}
\left(\nabla_{u} E\right)(x)=\left[\left(\frac{\partial L}{\partial u}\right)-\frac{\partial}{\partial x} \frac{\partial L}{\partial u_{x}}\right](x) \tag{10}
\end{equation*}
$$

Thus the Euler Lagrange equation (necessary condition for a minimizer) is

$$
\begin{equation*}
\left[\left(\frac{\partial L}{\partial u}\right)-\frac{\partial}{\partial x} \frac{\partial L}{\partial u_{x}}\right]=0 \tag{11}
\end{equation*}
$$

This can be either solved directly or using gradient descent. When using gradient descent to find the minimizing u, we get a PDE with an artificial time variable t as

$$
\begin{equation*}
\frac{\partial u}{\partial t}=-\left(\nabla_{u} E\right)=-\left[\left(\frac{\partial L}{\partial u}\right)-\frac{\partial}{\partial x} \frac{\partial L}{\partial u_{x}}\right] \tag{12}
\end{equation*}
$$

B. Extensions

The solution methodology can be easily extended to cases where (i) u is a function of multiple variables, i.e. x is a vector $\left(x=\left[x_{1}, x_{2}, \ldots x_{k}\right]^{T}\right)$ or (ii) when u itself is a vector of functions, i.e. $u(x)=$ $\left[u_{1}(x), u_{2}(x) \ldots u_{m}(x)\right]^{T}$ or (iii) when E depends on higher order derivatives of u. Please UNDERSTAND the basic idea in the above derivation carefully, some of these extensions may be Exam questions.

Exercise: Show that if $u=u(x, y)$ i.e. u is a function of two scalar variables x and y, then

$$
\begin{equation*}
\left(\nabla_{u} E\right)=\left(\frac{\partial L}{\partial u}\right)-\frac{\partial}{\partial x} \frac{\partial L}{\partial u_{x}}-\frac{\partial}{\partial y} \frac{\partial L}{\partial u_{y}} \tag{13}
\end{equation*}
$$

A trivial extension of this shows that if E is a function of two functions $u(x, y)$ and $v(x, y)$, then the Euler-Lagrange equation is given by

$$
\begin{align*}
\left(\nabla_{u} E\right) & =\left(\frac{\partial L}{\partial u}\right)-\frac{\partial}{\partial x} \frac{\partial L}{\partial u_{x}}-\frac{\partial}{\partial y} \frac{\partial L}{\partial u_{y}}
\end{align*}=0, ~\left(\nabla_{v} E\right)=\left(\frac{\partial L}{\partial v}\right)-\frac{\partial}{\partial x} \frac{\partial L}{\partial v_{x}}-\frac{\partial}{\partial y} \frac{\partial L}{\partial v_{y}}=0 ~ \$
$$

One application of this is in estimating Optical Flow using Horn and Schunk's method [2] (see Optical flow handout). More applications will be seen in Segmentation problems, which attempt to find the object contour $C(p)=\left[C^{x}(p), C^{y}(p)\right]$ (where p is a parameter that goes from 0 to 1 over the contour and $C(0)=C(1)$ for closed contour) that minimizes an image dependent energy functional $E(C)$.

References

[1] G.Sapiro, Geometric Partial Differential Equations and Image Analysis, Cambridge University Press, 2001.
[2] B.K.P. Horn and B.G.Schunk, "Determining optical flow," Artificial Intelligence, vol. 17, pp. 185-203, 1981.

