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Although the mean–variance control was initially formulated for financial portfolio
management problems in which one wants to maximize the expected return and control
the risk, our motivations stem from highway vehicle platoon controls that aim to
maximize highway utility while ensuring zero accident. This paper develops near-
optimal mean–variance controls of switching diffusion systems. To reduce the
computational complexity, with motivations from earlier work on singularly perturbed
Markovian systems [Sethi and Zhang, Hierarchical Decision Making in Stochastic
Manufacturing Systems, Birkhäuser, Boston, MA, 1994; Yin and Zhang, Continuous-
Time Markov Chains and Applications: A Singular Pertubation Approach, Springer-
Verlag, New York, 1998 and Yin et al., Ann. Appl. Probab. 10 (2000), pp. 549–572],
we use a two-time-scale formulation to treat the underlying system, which is
represented by the use of a small parameter. As the small parameter goes to 0, we
obtain a limit problem. Using the limit problem as a guide, we construct controls for the
original problem, and show that the control so constructed is nearly optimal.
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1. Introduction

This paper focuses on near-optimal controls of switching diffusions. Originating from

the mean–variance portfolio optimization problems, our aim concentrates on reduction

of computational complexity for switching diffusions where the discrete component

(switching process) has a large state space. Decomposing the state space of the switching

process into weakly connected subspaces and aggregating the states in each subspace

into one state yield a limit system. Using the optimal controls of the limit system, we

build controls for the original system, leading to near optimality. In addition to the

traditional financial engineering applications, our motivation stems from formulations of

platoon controls modelled by regime-switching systems involving two-time-scale

Markov chains, which presents a twist of the mean–variance portfolio optimization. This

paper is written in memory of our colleague and friend Michael Taksar, who had made

significant contributions to stochastic control, financial mathematics and insurance risk

theory; see [1] and numerous papers Michael published. The topic covered in this paper
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is related to what Michael had been working on. Meanwhile, the application in platoon

control is a nice bifurcation from the usual finance applications.

Although the mean–variance control was initially formulated for financial

portfolio management problems in which one wants to maximize the expected return

and control the risk, our motivations also stem from highway vehicle platoon controls that

aim to maximize highway utility while ensuring zero accident. As motivations, we

identify three different but highly related aspects of platoon control problems that lead

to different forms of the mean–variance type of problems that are investigated in this

paper.

First, we consider the longitudinal inter-vehicle distance control. To increase highway

utility, it is desirable to reduce the total length of a platoon, which intends to reduce inter-

vehicle distances. This strategy, however, will increase the risk of collision in the presence

of vehicle traffic uncertainties. A trade-off of these factors leads to a desired nominal

length. Deviation from this nominal platoon length compromises either safety or highway

utility. Since vehicle movements are subject to many random factors on road, weather and

traffic conditions, the total platoon length is actually a stochastic process. The desire to

control the platoon length towards its designated target (its mean) with small deviations

(its variance) can be mathematically modelled as a mean–variance optimization problem

with subsystem states as inter-vehicle distances.

The second scenario is communication resource allocation of bandwidths for vehicle-

to-vehicle (V2V) communications. For a given maximum throughput of a platoon

communication system, the communication system operator must find a way to assign this

resource to different V2V channels. If the total bandwidth used is lower than assigned

bandwidth, there will be resource waste. Conversely, usage of bandwidths over the budget

may incur high costs or interfere with other platoons’ operation. In this case, each

channel’s bandwidth usage is the state of the subsystem. Their summation is a random

process and is desired to approach the maximum throughput (the desired mean at the

terminal time) with small variations. Consequently, it becomes a mean–variance control

problem.

Finally, we may view platoon fuel consumption (or similarly, total emission). The

platoon fuel consumption is the summation of vehicle fuel consumptions. Due to variations

in vehicle sizes and speeds, each vehicle’s fuel consumption is a controlled random process.

Trade-off between a platoon’s team acceleration/manoeuvre capability and fuel

consumption can be summarized in a desired platoon fuel consumption rate. Assigning

fuels to different vehicles results in coordination of vehicle operations modelled by

subsystem fuel rate dynamics. To control the platoon fuel consumption rate to be close to

the designated value, one may formulate this as a mean–variance control problem.

Although the mean variance (MV) approach has never been applied to platoon

controls, it has distinct advantages: (1) unlike heuristic methods such as neural network

optimization and genetic algorithms, the MV method is simple but rigorous, (2) the MV

method is computationally efficient, and (3) the form of the solution (i.e. efficient frontier)

is readily applicable to assessing risks in platoon formation, hence is practically appealing.

The origin of the mean–variance optimization problem can be traced back to the

Nobel-prize-winning work of Markowitz [5]. The salient feature of the model is that, in the

context of finance, it enables an investor to seek desired expected return after specifying

the acceptable risk level quantified by the variance of the return. The mean–variance

approach has become the foundation of modern finance theory and has inspired numerous

extensions and applications. Using the ideas of backward stochastic differential equations,

the mean–variance problem for a continuous-time model was studied in [10] (see also

Z. Yang et al.2
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related work [3]). Note that in the mean–variance problems, the matrix related to the

control (known as control weight) is not positive definite. To take into consideration the

random environments not representable using the usual stochastic differential equation

set-up, we developed more complex models with random switching in [11].

In this paper, we consider the case when the random process representing the discrete

events (e.g., those in the environment) has a large state space. The physical system is

such that not all of the discrete event states change at the same rate. Some of them vary

rapidly and others change slowly. The fast and slow variations are in high contrast

resulting in a two-timescale formulation. Taking advantage of the timescale separation,

we use an averaging approach to analyse the system, which largely explores the weak

and strong interactions of the switching diffusion due to the Markov chain. The rationale

is to aggregate the states according to their jump rates and replace the actual system with

its average. Using optimal control of the limit problem as a bridge, we then construct

controls for the original system leading to feasible approximation schemes. In [4] and

[9], we treated a class of linear quadratic problems with switching by concentrating on

the associated Riccati systems of equations, whereas in this paper, we focus on mean–

variance controls and examine certain associated systems of differential equations. We

consider the case that the Markov chains have recurrent states as well as inclusion of

transient states. These approximation schemes give us nearly optimal controls. Focusing

on approximated optimality, we succeed in reducing the complexity of the underlying

systems substantially.

The rest of the paper is arranged as follows. Section 2 begins with the formulation of

the two-time-scale platoon problems. Section 3 proceeds with the study of the underlying

mean–variance problem. Using completing square techniques, we derive the

corresponding Riccati equations and optimal control for the non-definite control problem.

Section 4 focuses on near-optimal controls of the mean–variance problems. First, Markov

chains with recurrent states are treated and then inclusion of transient states is considered.

Using probabilistic arguments and analytic techniques, the approximation schemes are

shown to be nearly optimal. Finally, we conclude this paper with further thoughts and

additional remarks in Section 5.

2. Formulation

We begin with a complete probability space ðV;F ;PÞ. Consider a time-homogeneous

Markov chain in continuous time taking values in the state spaceM ¼ f1; 2; . . . ;m} and a
standard d-dimensional standard Brownian motion wðtÞ ¼ ðw1ðtÞ;w2ðtÞ; . . . ;wdðtÞÞ0
(where a0 denotes the transpose of a [ Rl1£l2 with li $ 1) that is independent of the

Markov chain aðtÞ. The Markov chain is used to represent discrete events and random

environment. In [11], we considered the Markowitz’s mean–variance portfolio selection

problem in which the environment is allowed to vary randomly leading to a regime-

switching model. In this paper, we continue using the set-up as in that of [11]. In addition

to the finance applications, we have in mind the platoon control problems as mentioned in

Section 1. Mathematically, the new feature considered here is that the state space of the

discrete event process að�Þ is large. Treating mean–variance control problems thus

requires handling of large-scale systems. Such a case naturally arises in the networked

system formulation. The large-scale feature, however, renders the optimal control a

difficult task. To reduce the computational complexity, we note that for the discrete event

process (the Markov chain), not all states are varying at the same rate. Some clusters of

states vary rapidly and others change slowly. Using the relative transition rates, we

Stochastics: An International Journal of Probability and Stochastic Processes 3
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decompose the state spaceM into subspacesMi such that within eachMi, the transitions

happen frequently and among different clusters the transitions are relatively infrequently.

To reflect the different transition rates, we let aðtÞ ¼ a1ðtÞ where 1 . 0 is a small

parameter so that the generator of the Markov chain is given by

Q1 ¼ 1

1
~Qþ Q̂: ð2:1Þ

Define F t ¼ s fWðsÞ;a1ðsÞ : 0 # s # t}. Denote

Q1f ð�ÞðiÞ ¼
X
j–i

q1ijðf ð�; jÞ2 f ð�; iÞÞ ð2:2Þ

for a suitable f ð�Þ. Suppose that x1i ð�Þ are real-valued functions with i ¼ 0; . . . ; d1 such
that

dx10ðtÞ ¼ rðt;a1ðtÞÞx10ðtÞ dt; x10ð0Þ ¼ x0; a1ð0Þ ¼ a ð2:3Þ

for a1ðtÞ [ f1; 2; . . . ;m}. The flows of the other d1 nodes follow geometric Brownian

motion:

dx1i ðtÞ ¼ x1i ðtÞriðt;a1ðtÞÞ dt þ x1i ðtÞs iðt;a1ðtÞÞ dwðtÞ; x1i ð0Þ ¼ xi; a1ð0Þ ¼ a

for i ¼ 1; 2; . . . ; d1; a [ M;
ð2:4Þ

where s iðt;a1ðtÞÞ ¼ ðs i1ðt;a1ðtÞÞ;s i2ðt;a1ðtÞÞ; . . . ;s idðt;a1ðtÞÞÞ [ R1£d. In the finance

application, x10ð�Þ represents an investor’s bank account value, whereas x1i ð�Þ for each
i ¼ 1; . . . ; d1 is his wealth devoted to the ith stock. In the networked control problems, we

use x1i ð�Þ to represent the flows of the ith node. We can represent the wealth of the investor

or the total flows of the entire system as x1ðtÞ.
For consistency with the current literature on the MV problems, we shall still use the

term ‘portfolio’ in our network problems. In the traditional market analysis setting, a

portfolio is a vector consisting of the dollar values of different stocks. When applied to our

network systems, a portfolio will be the vector of inter-vehicle distances in platoon

control, or individual channel throughput in communication resource allocation, or

individual vehicle fuel consumption in platoon fuel management. The portfolio selection

involves finding the strategy to select the proportion nið�Þ of the ith stock investment.

Similarly, for the platoon problem, we need to decide the proportion niðtÞ of the flow x1i ðtÞ
on node i. In these cases, we denote their sum as

x1ðtÞ ¼
Xd1
i¼0

niðtÞx1i ðtÞ:

Then we have

dx1ðtÞ ¼ ½rðt;a1ðtÞÞx 1ðtÞ þ Bðt;a1ðtÞÞuðtÞ� dt þ u0ðtÞs ðt;a1ðtÞÞ dwðtÞ;

t [ ½0; T�; x1ð0Þ ¼ x ¼
Xd1
i¼0

nið0Þxi; a1ð0Þ ¼ a;
ð2:5Þ

Z. Yang et al.4
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where

Bðt;a1ðtÞÞ ¼ r1ðt;a1ðtÞÞ2 rðt;a1ðtÞÞ; r2ðt;a1ðtÞÞ2 rðt;a1ðtÞÞ; . . . ; rd1 ðt;a1ðtÞÞ2 rðt;a1ðtÞÞ� �
;

s ðt;a1ðtÞÞ¼ðs 1ðt;a1ðtÞÞ; . . . ;s d1ðt;a1ðtÞÞÞ0 [ Rd1£d uðtÞ ¼ðu1ðtÞ; . . . ; ud1 ðtÞÞ0 [ Rd1£1,
and uiðtÞ ¼ niðtÞxiðtÞwhere uiðtÞ is the total amount of wealth in the ith stock or the amount

of flow for node i at time t, for i ¼ 1; 2; . . . ; d1. We assume throughout this paper that

rðt; iÞ, Bðt; iÞ, s ðt; iÞ are measurable and uniformly bounded in t and we also assume that

the non-degeneracy condition is satisfied, i.e. there is some d . 0, aðt; iÞ ¼
s ðt; iÞs 0ðt; iÞ $ dI for any t [ ½0; T� and each i [ M. We denote by L2F ð0; T;Rl0 Þ the
set of all Rl0 valued, measurable stochastic processes f ðtÞ adapted to fF t}t$0 such that

E
Ð T
0
j f ðtÞj2 dt , 1.

Let U, the set of control, be a compact subset inRd1£1. The uð�Þ is said to be admissible

if for a U-valued control uð�Þ [ L2F ð0; T ;Rd1 Þ, Equation (2.5) has a unique solution x 1ð�Þ
corresponding to uð�Þ. In this case, we refer to ðx1ð�Þ; uð�ÞÞ as an admissible pair. Our

objective was to find an admissible control uð�Þ among all the admissible controls given

that the expected terminal flow value of the whole system is Ex 1ðTÞ ¼ z for some given

z [ R, so that the risk measured by the variance of terminal of the flow is minimized.

Thus, we have the following goal:

min Jðx;a; uð�ÞÞ ¼ E½x1ðTÞ2 z�2 subject to Ex1ðTÞ ¼ z: ð2:6Þ

Recall that the problem is called feasible if there is at least one portfolio satisfying all the

constraints. The problem is called finite if it is feasible and the infimum of Jðx;a; uð�ÞÞ is
finite. An optimal portfolio to the above problem, if it ever exists, is called an efficient

portfolio corresponding to z, and the corresponding ðVar x1ðTÞ; zÞ [ R2 is called an efficient

point. The set of all the efficient points is called the efficient frontier. The solution of the

problemcanbeobtained byusing the result of [11]. In fact,we canobtain the efficient frontier

as well as the so-called mutual fund theorems. This, however, is not the end of the story but

rather the starting point of this paper. In this paper, we consider the case that jMj ¼ m is

large, thuswehave to solve a systemofm equationswherem is large.Computationally, this is

rather cumbersome. Therefore, our effort is devoted to reducing the complexity.

3. Preliminary results

This section presents preliminary results concerning the solutions of systems. The results

include feasibility, existence and uniqueness of the solution, and continuity. For the

feasibility part of our problem, we present the following lemma. The detailed proof can be

found in [11] (Theorem 3.3).

Lemma 3.1. The mean–variance problem (2.6) is feasible for every z [ R if and only if

E
Ð T
0
jBðt;a1ðtÞÞj2 dt . 0: ð3:1Þ

Now let us proceed to the study of optimality. To handle the constraint part in problem

(2.6), we apply the Lagrange multiplier technique and get unconstrained problem (see, e.g.

Stochastics: An International Journal of Probability and Stochastic Processes 5
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[11]) with multiplier l [ R:

min Jðx;a; uð�Þ; lÞ ¼ E½x1ðTÞ þ l2 z�2 2 l2

subject to Ex1ðTÞ ¼ z; with ðx1ð�Þ; uð�ÞÞ admissible:
ð3:2Þ

To find the minimum of Jðx;a; uð�Þ; lÞ, it suffices to choose uð�Þ so that Eðx1ðTÞ þ l2 zÞ2
is minimized. We regard this part as J 1ðx;a; uð�ÞÞ in what follows. In this section, we will
proceed to solve the unconstrained problem (3.2). Let v1ðx;aÞ ¼ infuð�ÞJ 1ðx;a; uð�ÞÞ be the
value function. First we define

rðt; iÞ ¼ Bðt; iÞ½s ðt; iÞs 0ðt; iÞ�21B0ðt; iÞ; i [ f1; 2; . . . ;m}: ð3:3Þ

Consider the following two systems of ODEs for i ¼ 1; 2; . . . ;m:

_P1ðt; iÞ ¼ P1ðt; iÞ½rðt; iÞ2 2rðt; iÞ�2
Xm
j¼1

q1ijP
1ðt; jÞ; P1ðT ; iÞ ¼ 1: ð3:4Þ

and

_H1ðt; iÞ ¼ H 1ðt; iÞrðt; iÞ2 1

P1ðt; iÞ
Xm
j¼1

q1ijP
1ðt; jÞH 1ðt; jÞ þ H 1ðt; iÞ

P1ðt; iÞ
Xm
j¼1

q1ijP
1ðt; jÞ;

H 1ðT ; iÞ ¼ 1:

ð3:5Þ

The existence and uniqueness of solutions to the above two systems of equations are

evident as both are linear with uniformly bounded coefficients. Applying the generalized

Itô’s formula to

v1ðt; x1ðtÞ; iÞ ¼ P1ðt; iÞðx1ðtÞ þ ðl2 zÞH 1ðt; iÞÞ2

and using the completing square techniques, we obtain

dP1ðt; iÞ x 1ðtÞ þ ðl2 zÞH 1ðt; iÞ� �
2

¼ 2P1ðt; iÞ x 1ðtÞ þ ðl2 zÞH 1ðt; iÞ� �
dx1ðtÞ þ P1ðt; iÞðdx1ðtÞÞ2

þ
Xm
j¼1

q1ijP
1ðt; jÞ x 1ðtÞ þ ðl2 zÞH 1ðt; jÞ� �

2 dt

þ _P1ðt; iÞ x 1ðtÞ þ ðl2 zÞH 1ðt; iÞ� �
2 dt

þ 2P1ðt; iÞ x 1ðtÞ þ ðl2 zÞH 1ðt; iÞ� �ðl2 zÞ _H1ðt; iÞ dt:

ð3:6Þ

Z. Yang et al.6
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Therefore, by plugging in the dynamic equation satisfied by P1ðt; iÞ and H 1ðt; iÞ, we have
the following expression:

dP1ðt; iÞ x 1ðtÞ þ ðl2 zÞH 1ðt; iÞ� �
2

¼ P1ðt; iÞ u0ðtÞs ðt; iÞs 0ðt; iÞuðtÞ þ 2u0ðtÞB0ðt; iÞ x 1ðtÞ þ ðl2 zÞH 1ðt; iÞ� ��
þ2rðt; iÞx1ðtÞ x1ðtÞ þ ðl2 zÞH 1ðt; iÞ� ��

dt

2
Xm
j¼1

q1ijP
1ðt; jÞ x 1ðtÞ þ ðl2 zÞH 1ðt; iÞ� �

2 dt

þ 2P1ðt; iÞ x 1ðtÞ þ ðl2 zÞH 1ðt; iÞ� �ðl2 zÞ

� H 1ðt; iÞrðt; iÞ2 1

P1ðt; iÞ
Xm
j¼1

q1ijP
1ðt; jÞH 1ðt; jÞ

(
þH 1ðt; iÞ

P1ðt; iÞ
Xm
j¼1

q1ijP
1ðt; jÞ

)
dt

þ
Xm
j¼1

q1ijP
1ðt; jÞ x1ðtÞ þ ðl2 zÞH 1ðt; jÞ� �

2 dt þ ½rðt; iÞ2 2rðt; iÞ�P1ðt; iÞ

� x1ðtÞ þ ðl2 zÞH 1ðt; iÞ� �
2 dt þ ð· · ·Þ dwðtÞ

¼ P1ðt; iÞ uðtÞ þ ðs ðt; iÞs 0ðt; iÞÞ21B0ðt; iÞ x1ðtÞ þ ðl2 zÞH 1ðt; iÞ� �� �0 ½s ðt; iÞs 0ðt; iÞ�
n

£ uðtÞ þ ðs ðt; iÞs 0ðt; iÞÞ21B0ðt; iÞ x 1ðtÞ þ ðl2 zÞH 1ðt; iÞ� �� ��
dt

þ ðl2 zÞ2
Xm
j¼1

q1ijP
1ðt; jÞ H 1ðt; jÞ2 H 1ðt; iÞ� �

2 dt þ ð· · ·Þ dwðtÞ:

ð3:7Þ

Integrating both sides of the above equation from 0 to T and taking expectation, we obtain

E½x1ðTÞ þ l2 z�2 ¼ P1ð0;aÞ xþ ðl2 zÞH 1ð0;aÞ� �
2 þ E

ðT
0

ðl2 zÞ2
Xm
j¼1

q1ijP
1ðt; jÞ

� H 1ðt; jÞ2 H 1ðt; iÞ� �
2 dt

þ E

ðT
0

P1ðt; iÞ uðtÞ2 u1;*ðtÞ� �0 ½s ðt; iÞs 0ðt; iÞ� uðtÞ2 u1;*ðtÞ� �
dt:

ð3:8Þ

Thus, the optimal control u1;* has the form

u1;*ðt;a1ðtÞ; x1ðtÞÞ ¼ 2 s ðt;a1ðtÞÞs 0ðt;a1ðtÞÞ� �
21B0ðt;a1ðtÞÞ

� x 1ðtÞ þ ðl2 zÞH 1ðt;a1ðtÞÞ� �
: ð3:9Þ

Now we introduce the following two lemmas here for the subsequent use.

Stochastics: An International Journal of Probability and Stochastic Processes 7
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Lemma 3.2. The solution of Equations (3.4) and (3.5) satisfies 0 , P1ðt; iÞ # c and

0 , H 1ðt; iÞ # 1 for all t [ ½0; T�; i ¼ 1; 2; . . . ;m.

Proof. For the H 1ðt; iÞ, by employing the idea similar to [11] (Proposition 4.1), we can get

the claim above. Here, we consider the case for P1ðt; iÞ. First, by applying a variation of

constant formula to (3.4) we have

P1ðt; iÞ ¼ e
2
Ð T

t
½rðs;iÞ22rðs;iÞ2q1ii� ds þ

ðT
t

e
2
Ð s

t
½rðt;iÞ22rðt;iÞ2q1ii� dt

Xm
j–i

q1ijP
1ðs; jÞ ds:

Construct a Picard sequence of P1
kð�; iÞ for t [ ½0; T�; i ¼ 1; 2; . . . ;m; k ¼ 0; 1; . . . as

follows:

P1
0ðt; iÞ ¼ 1; P1

kþ1ðt; iÞ ¼ e
2
Ð T

t
½rðs;iÞ22rðs;iÞ2q1ii� ds þ

ðT
t

e
2
Ð s

t
½rðt;iÞ22rðt;iÞ2q1ii� dt

Xm
j–i

q1ijP
1
kðs; jÞ ds:

Noting that q1ij $ 0 for all j – i, we have for k ¼ 0; 1; . . .

P1
kðt; iÞ $ e

2
Ð T

t
½rðs;iÞ22rðs;iÞ2q1ii� ds . 0:

Realizing that P1ðt; iÞ is the limit of the Picard sequence P1
kðt; iÞ as k!1, thus

P1ðt; iÞ . 0. To get the upper bound, we first consider the bounds of value function

v1ðx;aÞ. Clearly, v1ðx;aÞ $ 0 since J 1ðx;a; uð�ÞÞ $ 0 for all admissible uð�Þ. We choose

u0ðtÞ ¼ 2ax1ðtÞ, a is a non-zero vector in Rd1 and x1ðtÞ ¼ ~x, then we have Eðx1ðTÞÞ2 #
~x2 þ k

Ð T
t
Eðx1ðsÞÞ2 ds according to Itô’s formula. We further have Eðx1ðTÞÞ2 # ~x2 ekT by

virtue of Gronwall’s inequality for all t [ ½0; T�. Now, note that for 0 # t # T ,

v1ð~x; iÞ # J 1ð~x; i; uð�ÞÞ # E½x1ðTÞ þ l2 z�2 # 2~x2 ekT þ 2ðl2 zÞ2:

Then we have

P1ðt; iÞð~xþ ðl2 zÞH 1ðt; iÞÞ2 # 2~x2 ekT þ 2ðl2 zÞ2:

Dividing both sides of this inequality by ~x2 and setting ~x!1, we have

P1ðt; iÞ # 2 ekT . A

Lemma 3.3. For i [ M, the solutions of (3.4) and (3.5) are uniformly Lipschitz on ½0; T�.

Z. Yang et al.8
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Proof. Let us just consider the part of P1ðt; iÞ since the proof for the case of H 1ðt; iÞ is
similar. Given that the solution for Equation (3.4) is

P1ðt; iÞ ¼ e
2
Ð T

t
½rðs;iÞ22rðs;iÞ� ds þ

ðT
t

e
2
Ð s

t
½rðt;iÞ22rðt;iÞ� dtXm

j¼1

q1ijP
1ðs; jÞ ds

¼ e
2
Ð tþD

t
½rðs;iÞ22rðs;iÞ� ds2

Ð T

tþD
½rðs;iÞ22rðs;iÞ� ds

þ
ðtþD

t

e
2
Ð s

t
½rðt;iÞ22rðt;iÞ� dtXm

j¼1

q1ijP
1ðs; jÞ ds

þ
ðT
tþD

e
2
Ð tþD

t
½rðt;iÞ22rðt;iÞ� dt2

Ð s
tþD

½rðt;iÞ22rðt;iÞ� dtXm
j¼1

q1ijP
1ðs; jÞ ds:

Given that

P1ðt þ D; iÞ ¼ e
2
Ð T

tþD
½rðs;iÞ22rðs;iÞ� ds þ

ðT
tþD

e
2
Ð s

tþD
½rðt;iÞ22rðt;iÞ� dtXm

j¼1

q1ijP
1ðs; jÞ ds:

Then we have

jP1ðt; iÞ2 P1ðt þ D; iÞj ¼ e
2
Ð T

tþD
½rðs;iÞ22rðs;iÞ� ds

12 e
2
Ð tþD

t
½rðs;iÞ22rðs;iÞ� ds

� 	




þ
ðT
tþD

e
2
Ð s

tþD
½rðt;iÞ22rðt;iÞ� dt

12 e
2
Ð tþD

t
½rðt;iÞ22rðt;iÞ� dt

� 	Xm
j¼1

q1ijP
1ðs; jÞ ds

þ
ðtþD

t

e
2
Ð s

t
½rðt;iÞ22rðt;iÞ� dtXm

j¼1

q1ijP
1ðs; jÞ ds






:
As D! 0,

12 e
2
Ð tþD

t
½rðt;iÞ22rðt;iÞ� dt ! 0

and

ðtþD

t

e
2
Ð s

t
½rðt;iÞ22rðt;iÞ� dtXm

j¼1

q1ijP
1ðs; jÞ ds! 0

hold for any t [ ½0; T� uniformly, therefore, P1ðt; iÞ is uniformly Lipschitz on ½0; T�. A

Due to the large dimensionality, it is highly computation intensive to obtain the

optimal controls. To overcome the difficulty, we design a near-optimal control scheme

(see related work [6]). We will show that as 1! 0, there is a limit problem. For the limit

problem, we can obtain optimal controls as given in [11]. Then we use the optimal control

of the limit problem to construct controls of the original problem and show that the

constructed control is asymptotically optimal.

Stochastics: An International Journal of Probability and Stochastic Processes 9
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4. Near-optimal controls

4.1 Recurrent states

Assume that ~Q can be put into a block-diagonal form ~Q ¼ diagð ~Q1; . . . ; ~QlÞ in which
~Qk [ Rmk£mk are irreducible for k ¼ 1; 2; . . . ; l and

Pl
k¼1 mk ¼ m. ~Qk denotes the kth

block matrix in ~Q. Denote byMk ¼ fsk1; sk2; . . . ; skmk
} the states corresponding to ~Qk and

note

M ¼ M1 <M2 < · · ·<Ml:

Note that the ~Qk ¼ ð~qkijÞmk£mk
and Q̂ ¼ ðq̂ijÞm£m are generators.

The slow and fast components are coupled through weak and strong interactions in the

sense that the underlying Markov chain fluctuates rapidly within a single-group Mk and

jumps less frequently among groups Mk and Mj for k – j. By aggregating the states

in Mk as one state k, we obtain an aggregated process �a1ð�Þ defined by �a1ðtÞ ¼ k

when a1ðtÞ [ Mk. Although �a1ðtÞ is generally not Markovian, by virtue of [7]

(Theorem7.4), �a1ð�Þ converges weakly to a Markov chain �að�Þ with generator �Q ¼ ð�qijÞ
satisfying

�Q ¼ diagðm1;m2; . . . ;m lÞQ̂ diagð1m1
; 1m2

; . . . ; 1ml
Þ;

where m k is the stationary distribution associated with ~Qk; k ¼ 1; 2; . . . ; l, and 1n ¼
ð1; 1; . . . ; 1Þ [ Rn£1. For subsequent use, we define �Fðt; kÞ ¼Pmk

j¼1 m
k
j Fðt; skjÞ for

Fðt; skjÞ ¼ rðt; skjÞ;Bðt; skjÞ and rðt; skjÞ. The following theorems are concerned with the

convergence and nearly optimal control.

Theorem 4.1. For k ¼ 1; 2; . . . ; l and j ¼ 1; 2; . . . ;mk, P1ðt; skjÞ! �Pðt; kÞ and

H 1ðt; skjÞ! �Hðt; kÞ uniformly on ½0; T� as 1! 0, where �Pðt; kÞ and �Hðt; kÞ are the unique
solutions of the following differential equations for k ¼ 1; 2; . . . ; l,

�P
_ ðt; kÞ ¼ ð �rðt; kÞ2 2�rðt; kÞÞ �Pðt; kÞ2 �Q �Pðt;�ÞðkÞ; �PðT ; kÞ ¼ 1: ð4:1Þ

and

�H
_ ðt; kÞ ¼ �rðt; kÞ �Hðt; kÞ2 1

�Pðt; kÞ �Q �Pðt;�Þ �Hðt;�ÞðkÞ þ �Hðt; kÞ
�Pðt; kÞ �Q �Pðt;�ÞðkÞ;

�HðT ; kÞ ¼ 1:

ð4:2Þ

Proof. We prove the convergence of P1 (the proof of H 1 is similar). By virtue of

Lemmas 3.2 and 3.3, P1ðt; skjÞ is equicontinuous and uniformly bounded, it follows from

Arzela–Ascoli theorem that, for each sequence of 1! 0, a further subsequence exists (we

still use the index 1 for the sake of simplicity) such that P1ðt; skjÞ converges uniformly on

½0; T� to a continuous function, say, P0ðt; skjÞ. First, we show P0ðt; skjÞ is independent of j.
Given that

P1ðt; skjÞ ¼ 12

ðT
t

P1ðs; skjÞ rðs; skjÞ2 2rðs; skjÞ
� �

2 Q1P1ðs;�ÞðskjÞ
� �

ds:

Z. Yang et al.10
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Multiplying both sides of above equation by 1 yields

0 ¼ lim
1!0

Ð T
t
~QkP1ðs;�ÞðskjÞ ds ¼

Ð T
t
~QkP0ðs;�ÞðskjÞ ds:

Thus, in view of the continuity of P0ðt;�ÞðskjÞ, we obtain

~QkP0ðt;�ÞðskjÞ ¼ 0 for t [ ½0; T�: ð4:3Þ
Given the fact that ~Qk is irreducible, we have P0ðt; skjÞ ¼ P0ðt; kÞwhich is independent

of j. Now let us multiply P1ðt; skjÞ by mk
j and then add the index j. Recall the definition of

�Fðt; kÞ, we have the following equation:

Xmk

j¼1

mk
j P

1ðt; skjÞ ¼ 12
Xmk

j¼1

mk
j

ðT
t

P1ðs; skjÞðrðs; skjÞ2 2rðs; skjÞÞ2 Q1P1ðs;�ÞðskjÞ
� �

ds:

Letting 1! 0 and noting that uniform convergence of P1ðt; skjÞ! P0ðt; kÞ and m k is the

stationary distribution corresponding to ~Qk, we have

Xmk

j¼1

mk
j Q̂1mk

 !
P0ðt;�ÞðkÞ ¼ �QP 0ðt;�ÞðkÞ:

Therefore, we obtain

P0ðt; kÞ ¼ 12

ðT
t

P0ðs; kÞð �rðs; kÞ2 2�rðs; kÞ2 �QP 0ðs;�ÞðkÞ� �
ds:

Then the uniqueness of solution of the Riccati equation implies P0ðs; kÞ ¼ �Pðs; kÞ.
Therefore, P1ðt; skjÞ! �Pðt; kÞ and the proof is thus concluded. A

It follows that P1ðt; skjÞ! �Pðt; kÞ and H 1ðt; skjÞ! �Hðt; kÞ. We thus have v1ðt; skj; xÞ!
�vðt; k; xÞ as 1! 0, in which �vðt; k; xÞ ¼ �Pðt; kÞðxþ ðl2 zÞ �Hðt; kÞÞ2, where �vðt; k; xÞ
corresponds to the value function of a limit problem. Let U denote the control set for the

limit problem: U ¼ fU ¼ ðU 1;U 2; . . . ;U lÞ : Uk ¼ ðuk1; uk2; . . . ; ukmk Þ; ukj [ Rd1}.

Define

f ðt; x; k;UÞ ¼
Xmk

j¼1

mk
j rðt; skjÞxþ

Xmk

j¼1

mk
j Bðt; skjÞukjðtÞ

and

gðt; k;UÞ ¼ ðg1ðt; k;UÞ; . . . ; gdðt; k;UÞÞ with

giðt; k;UÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXmk

j¼1

mk
j

Xd1
n¼1

u
kj
n s niðt;a1ðtÞÞ

 !
2

vuut :
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Recall that s ðt;a1ðtÞÞ ¼ ðs niðt;a1ðtÞÞÞ [ Rd1£d and note that ukjn is the nth component of

the d1-dimensional variable. The corresponding dynamic system of the state is

dxðtÞ ¼ f ðt; xðtÞ; �aðtÞ;UðtÞÞ dt þ
Xd
i¼1

giðt; �aðtÞ;UðtÞÞ dwiðtÞ: ð4:4Þ

where �að�Þ [ f1; 2; . . . ; l} is a Markov chain generated by �Q with �að0Þ ¼ a. Calculation
similar to (3.6) and (3.7) shows that the optimal control for this limit problem is

U *ðtÞ ¼ U 1*ðt; xÞ;U 2*ðt; xÞ; . . . ;U l*ðt; xÞ� �
; with

Uk*ðt; xÞ ¼ uk1*ðt; xÞ; uk2*ðt; xÞ; . . . ; ukmk*ðt; xÞ� �
;

ukj*ðt; xÞ ¼ 2 s ðt; skjÞs 0ðt; skjÞ
� �

21B0ðt; skjÞ½xþ ðl2 zÞ �Hðt; kÞ�:

In the following, we denote nth component of the optimal control for this limit system

as ukj*n ðt; xÞ. Using such controls, we construct

u1ðt;a1ðtÞ; xÞ ¼
Xl
k¼1

Xmk

j¼1

Ifa 1ðtÞ¼skj}u
kj*ðt; xÞ ð4:5Þ

for the original problem. This control can also be written as if a1ðtÞ [ Mk;
u1ðt;a1ðtÞ; xÞ ¼ 2ðs ðt;a1ðtÞÞs 0ðt;a1ðtÞÞÞ21B0ðt;a1ðtÞÞ½xþ ðl2 zÞ �Hðt; �a1ðtÞÞ�. To pro-

ceed, we present the following lemmas first.

Lemma 4.2. For a positive T and any k ¼ 1; 2; . . . ; l; j ¼ 1; 2; . . . ; mk,

sup
0#t#T

E

ðt
0

Ifa 1ðsÞ¼skj} 2 mk
j If �a1ðsÞ¼k}

h i
x1ðsÞrðs; skjÞ ds










2 ! 0 as 1! 0: ð4:6Þ

The proof is omitted for brevity.

Lemma 4.3. For any k ¼ 1; 2; . . . ; l; j ¼ 1; 2; . . . ;mk,

E If �a1ðsÞ¼k} 2 If �aðsÞ¼k}

� �
2 ! 0 as 1! 0: ð4:7Þ

Proof. Similar to [7] (Theorem 7.30), we can show that ðIf �a1ð�Þ¼1}; . . . ; If �a1ð�Þ¼l}Þ
converges weakly to ðIf �að�Þ¼1}; . . . ; If �að�Þ¼l}Þ in ðD½0; T� : RlÞ as 1! 0. By means of

Cramér-Word’s device, for each i [ M, If �a1ð�Þ¼i} converges weakly to If �að�Þ¼i}. Then by

virtue of the Skorohod representation (with a slight abuse of notation), we may assume

If �a1ð�Þ¼i} ! If �að�Þ¼i} w.p.1. without change of notation. Now by dominance convergence

theorem, we can conclude the proof. A

Theorem 4.4. The control u1ðtÞ defined in (4.5) is nearly optimal in that

lim1!0jJ 1ða; x; u1ð�ÞÞ2 v1ða; xÞj ¼ 0:

Z. Yang et al.12
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Proof. Recall the definition of rðt; skjÞ in (3.3) and note that the constructed control is

given as u1ðt; x;a1ðtÞÞ ¼ 2ðs ðt;a1ðtÞÞs 0ðt;a1ðtÞÞÞ21B0ðt;a1ðtÞÞ ½xþ ðl2 zÞ �Hðt; �a1ðtÞÞ�.
Then x1ðtÞ follows:

dx1ðtÞ ¼
Xl
k¼1

Xmk

j¼1

rðt; skjÞx1ðtÞ2 rðt; skjÞx1ðtÞ2 rðt; skjÞðl2 zÞ �Hðt; kÞ� �
Ifa1ðtÞ¼skj} dt

þ
Xd
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXl
k¼1

Xmk

j¼1

Xd1
n¼1

u1nðt; x1ðtÞ;a1ðtÞÞs niðt;a1ðtÞÞ
 !

2Ifa1ðtÞ¼skj}

vuut dwiðtÞ; x1ð0Þ ¼ x̂:

The cost function J 1ða; x; u1ð�ÞÞ ¼ E½x 1ðTÞ þ l2 z�2. Let x *ðtÞ be the optimal trajectory

of the limit problem. Recall the definition of f ð�Þ and gð�Þ in Theorem 4.1. Then

dx*ðtÞ ¼ f ðt; x *ðtÞ; �aðtÞ;U *ðtÞÞ dt þ
Xd
i¼1

giðt; �aðtÞ;U *ðtÞÞ dwiðtÞ; x *ð0Þ ¼ x̂:

Similar to the methods in [7] (Theorem 9.8), for all a [ Mk, and k ¼ 1; 2; . . . ; l,

lim
1!0

v1ðx;aÞ ¼ �vðx; kÞ:

Here �vðx; kÞ is the value function of the limit problem. For any a [ Mk; k ¼ 1; 2; . . . ; l,

0 # jJ 1ðx; u1ð�Þ;aÞ2 v1ðx;aÞj ¼ jJ 1ðx; u1ð�Þ;aÞ2 �vðx; kÞ þ �vðx; kÞ2 v1ðx;aÞj:

To establish the assertion, it suffices to show that

jJ 1ðx; u1ð�Þ;aÞ2 �vðx; kÞj! 0;

jJ 1ðx; u1ð�Þ;aÞ2 �vðx;aÞj ¼ jE½x1ðTÞ þ l2 z�2 2 E½x*ðTÞ þ l2 z�2j
¼ jEx 1ðTÞ2 þ 2ðl2 zÞEx 1ðTÞ2 Ex *ðTÞ2 2ðl2 zÞEx *ðTÞj

# CE 1=2½x1ðTÞ2 x*ðTÞ�2
ð4:8Þ

for some constant C. Here, Hölder inequality and finite second moment of x1ðTÞ and x *ðTÞ
are used. Note that we can write Eðx1ðTÞ2 x*ðTÞÞ2 as follows:

Eðx1ðTÞ2 x*ðTÞÞ2

# K
Xl
k¼1

Xmk

j¼1

E

ðT
0

rðs; skjÞx1ðsÞ Ifa1ðsÞ¼skj} 2 mk
j If �a1ðsÞ¼k}

� 
h i
ds

� 	
2

þ K
Xl
k¼1

Xmk

j¼1

E

ðT
0

mk
j rðs; skjÞðx1ðsÞ2 x*ðsÞÞIf �a 1ðsÞ¼k}

h i
ds

� 	
2

þ K
Xl
k¼1

Xmk

j¼1

E

ðT
0

mk
j rðs; skjÞx*ðsÞ If �a1ðsÞ¼k} 2 If �aðsÞ¼k}

� �h i
ds

� 	
2

ð4:9Þ
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2K
Xl
k¼1

Xmk

j¼1

E

ðT
0

rðs; skjÞx 1ðsÞ Ifa1ðsÞ¼skj} 2 mk
j If �a1ðsÞ¼k}

� 

ds

� 	
2

þK
Xl
k¼1

Xmk

j¼1

E

ðT
0

mk
j rðs; skjÞðx1ðsÞ2 x*ðsÞÞIf �a1ðsÞ¼k}

h i
ds

� 	
2

þK
Xl
k¼1

Xmk

j¼1

E

ðT
0

mk
j rðs; skjÞx*ðsÞ If �a1ðsÞ¼k} 2 If �aðsÞ¼k}

� �
ds

� 	
2

2K
Xl
k¼1

Xmk

j¼1

E

ðT
0

rðs; skjÞðl2 zÞ �Hðs; kÞ Ifa1ðsÞ¼skj} 2 mk
j If �a1ðsÞ¼k}

� 
h i
ds

� 	
2

þK
Xl
k¼1

Xmk

j¼1

E

ðT
0

rðs; skjÞðl2 zÞ �Hðs; kÞmk
j If �a1ðsÞ¼k} 2 If �aðsÞ¼k}

� �h i
ds

� 	
2 þ D;

ð4:9Þ

where

D ¼ KE

ðT
0

Xd
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXl
k¼1

Xmk

j¼1

ð
Xd1
n¼1

u1nðs; x1ðsÞ;a1ðsÞÞs niðs;a1ðsÞÞÞ2Ifa1ðsÞ¼skj}

vuut
2
4

2
4

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXl
k¼1

Xmk

j¼1

mk
j

Xd1
n¼1

u
kj*
n ðs; x *ðsÞ; �aðsÞÞs niðs;a1ðsÞÞ

 !
2If �aðsÞ¼k}

vuut
3
5 dwiðsÞ

3
52:

First, we use Lemma 4.2, Lemma 4.3 and Hölder inequality repeatedly to handle the drift

part. For the diffusion part, we realize that

D # KE

ðT
0

Xd
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXl
k¼1

Xmk

j¼1

Xd1
n¼1

u1nðs; x1ðsÞ;a1ðsÞÞs niðs;a1ðsÞÞ
 !

2 Ifa 1ðsÞ¼skj} 2 mk
j If �a 1ðsÞ¼k}

h ivuut
2
4

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXl
k¼1

Xmk

j¼1

mk
j

Xd1
n¼1

u
kj*
n ðs; x *ðsÞ; �aðsÞÞs niðs;a1ðsÞÞ

 !
2 If �a 1ðsÞ¼k} 2 If �aðsÞ¼k}

� �vuut
þ x 1ðsÞ2 x *ðsÞ� ��

2 ds:

Here, we plugged in the control constructed in (4.5) for the last term above and utilized

the non-degeneracy assumption mentioned in the previous section. Then we can use

property of stochastic integral, dominance convergence theorem, similar techniques

involved in dealing with the drift part and the finite second moment of x1ð�Þ and x*ð�Þ
to proceed with the diffusion part. Finally, after detailed calculation, we

have Eðx1ðTÞ2 x*ðTÞÞ2 # oð1Þ þ K
Ð T
0
Eðx1ðsÞ2 x *ðsÞÞ2 ds. Now with the help of

Gronwall’s inequality, we obtain Eðx1ðTÞ2 x*ðTÞÞ2 ! 0 as 1! 0. The proof is thus

concluded. A

Z. Yang et al.14
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Remark 4.5. Note that efficient frontier, efficient portfolio and minimum variance for the

limit system can be obtained similar to [11] (Theorems 5.1–5.3). We provide the

discussion below and omit the detailed proofs. The discussions below also carry over to

the case in which the Markov chain has transient states to be studied in the next section.

(1) If (3.1) holds, we have

�Pð0;aÞ �Hð0;aÞ2 þ u2 1 , 0: ð4:10Þ

and the efficient control corresponding to z is

ukj*ðt; xÞ ¼ 2 s ðt; skjÞs 0ðt; skjÞ
� �

21B0ðt; skjÞ xþ ðl* 2 zÞ �Hðt; kÞ� �
ð4:11Þ

in which

l* 2 z ¼ z2 �Pð0;aÞ �Hð0;aÞx̂
�Pð0;aÞ �Hð0;aÞ2 þ u2 1

: ð4:12Þ

We can further show that among all the flow of the network system satisfying that

the expected terminal flow value is z, the optimal variance of xðTÞ is

Eðx*ðTÞ2 zÞ2 ¼ �Pð0;aÞ �Hð0;aÞ2 þ u

12 u2 �Pð0;aÞ �Hð0;aÞ2 z2
�Pð0;aÞ �Hð0;aÞ

�Pð0;aÞ �Hð0;aÞ2 þ u
x̂

� �
2

þ �Pð0;aÞu
�Pð0;aÞ �Hð0;aÞ2 þ u

x̂2:

ð4:13Þ

Therefore, the minimum terminal variance is

Eðx*ðTÞ2 zÞ2 ¼ �Pð0;aÞu
�Pð0;aÞ �Hð0;aÞ2 þ u

x̂2 $ 0 ð4:14Þ

with the minimum expected terminal flow of the system

zmin ¼
�Pð0;aÞ �Hð0;aÞ

�Pð0;aÞ �Hð0;aÞ2 þ u
x̂ ð4:15Þ

and corresponding Lagrange multiplier l*min ¼ 0.

(2) Assume that an efficient portfolio u*1ðtÞ is given by (4.11) corresponding to

z ¼ z1 . zmin. Then a control u*ðtÞ is efficient if and only if there is a p $ 0 such

that

u*ðtÞ ¼ ð12 pÞu*minðtÞ þ pu*1ðtÞ: ð4:16Þ
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where t [ ½0; T� and

u*minðtÞ ¼ 2 s ðt; skjÞs 0ðt; skjÞ
� �

21B0ðt; skjÞ x2 zmin
�Hðt; kÞ� �

: ð4:17Þ

Assertion (2) is known as ‘mutual fund theorem’ in the financial market problems. In

platoon control problems, this result offers a practical way of selecting the optimal flow

controls so that the total platoon length can be as close to the designated value in the sense

that the variance of the platoon length is minimized. Similarly, in platoon communication

resource allocation problems, this strategy is optimal in the sense that the designated total

throughput for the platoon communication network is most efficiently used.

4.2 Inclusion of transient states

In this section, we consider the case in which the Markov chain has transient states. We

assume that

~Q ¼
~Q1 0

~Q0
~Q*

0
@

1
A;

where ~Q1 ¼ diagf ~Q1; ~Q2; . . . ; ~Ql}, ~Q0 ¼ ð ~Q1

*
; . . . ; ~Q

l

*
Þ. For each k ¼ 1; 2; . . . ; l, ~Qk is a

generator with dimension mk £ mk, ~Q* [ Rm*£m* , ~Q
k

*
[ Rm*£mk and

m1 þ m2 þ · · ·þ m* ¼ m. The state space of the underlying Markov chain is given by

M ¼ M1 <M2 < · · ·<M* ¼ fs11; . . . ; s1m1
; . . . ; sl1; . . . ; slml

; s*1; . . . ; s*m*
}, where

M* ¼ fs*1; s*2; . . . ; s*m*
} consists of the transient states. Suppose that for

k ¼ 1; 2; . . . ; l, ~Qk are irreducible, and ~Q* is Hurwitz, i.e., all of its eigenvalues have

negative real parts.

Let

Q̂ ¼
Q̂11 Q̂12

Q̂21 Q̂22

0
@

1
A;

where Q̂ 11 [ Rðm2m*Þ£ðm2m*Þ, Q̂12 [ Rðm2m*Þ£m* , Q̂21 [ Rm*£ðm2m*Þ and Q̂22 [ Rm*£m* .

We define

�Q* ¼ diagðm1; . . . ;m lÞðQ̂11 ~1þ Q̂12ðam1
; am2

; . . . ; aml
ÞÞ

with ~1 ¼ diagð1m1
; . . . ; 1ml

Þ, 1mj
¼ ð1; . . . ; 1Þ0 [ Rmj£1 and, for k ¼ 1; . . . ; l,

amk
¼ ðamk ;1; . . . ; amk ;m*

Þ0 ¼ 2 ~Q
21

*
~Q
k

*
1mk

:

Let j be a random variable uniformly distributed on ½0; 1� that is independent of a1ð�Þ.
For each j ¼ 1; 2; . . . ;m*, define an integer-valued random variable jj by

jj ¼ If0#j#am1 ;j}
þ 2Ifam1 ;j,j#am1 ;jþam2 ;j}

þ · · ·þ lIfam1 ;jþ· · ·þaml21 ;j
,j#1}:
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Now define the aggregated process �a1ð�Þ by

�a1ðtÞ ¼
k; if a1ðtÞ [ Mk;

jj; if a1ðtÞ ¼ s*j:

(

Note the state space of �a1ðtÞ is �M ¼ f1; 2; . . . ; l} and �a1ð�Þ [ D½0; T�. In addition,

Pð �a1ðtÞ ¼ ija1ðtÞ ¼ s*jÞ ¼ ami;j:

Then according to [8] (Theorem 4.2), �a1ð�Þ converges weakly to �að�Þ such that �að�Þ [
f1; 2; . . . ; l} is a Markov chain generated by �Q*.

Theorem 4.6. As 1! 0, we have P1ðs; skjÞ! �Pðs; kÞ and H 1ðs; skjÞ! �Hðs; kÞ, for

k ¼ 1; 2; . . . ; l, j ¼ 1; 2; . . . ;mk, P1ðs; s*jÞ! �P*ðs; jÞ and H 1ðs; s*jÞ! �H*ðs; jÞ, for j ¼
1; 2; . . . ;m* uniformly on ½0; T� where

�P*ðs; jÞ ¼ am1;j
�Pðs; 1Þ þ · · ·þ aml;j

�Pðs; lÞ ;
�H*ðs; jÞ ¼ am1;j

�Hðs; 1Þ þ · · ·þ aml;j
�Hðs; lÞ

and �Pðs; kÞ and �Hðs; kÞ are the unique solutions to the following equations. For

k ¼ 1; 2; . . . ; l,

�P
_ ðt; kÞ ¼ ð �rðt; kÞ2 2�rðt; kÞÞ �Pðt; kÞ2 �Q*

�Pðt;�ÞðkÞ; �PðT ; kÞ ¼ 1 ð4:18Þ
and

�H
_ ðt; kÞ ¼ �rðt; kÞ �Hðt; kÞ2 1

�Pðt; kÞ �Q*
�Pðt;�Þ �Hðt;�ÞðkÞ þ �Hðt; kÞ

�Pðt; kÞ �Q*
�Pðt;�ÞðkÞ;

�HðT ; kÞ ¼ 1:

ð4:19Þ

The convergence of P1 and H 1 leads to v 1ðt; skj; xÞ! �vðt; k; xÞ, for

k ¼ 1; 2; . . . ; l; j ¼ 1; 2; . . . ;mk, v
1ðt; s*j; xÞ! v*ðt; j; xÞ for j ¼ 1; 2; . . . ;m*, where

v*ðt; j; xÞ ¼ am1;j �vðt; 1; xÞ þ · · ·þ aml;j �vðt; l; xÞ

and �vðt; k; xÞ ¼ �Pðt; kÞðxþ ðl2 zÞ �Hðt; kÞÞ2. The control set for the limit problem is the

same as that for recurrent case and is given by

U ¼ U ¼ ðU 1;U 2; . . . ;U lÞ : Uk ¼ ðuk1; uk2; . . . ; ukmk Þ; ukj [ Rd1
� �

:

Then the corresponding limit problem is

dxðtÞ ¼ f ðxðtÞ; �aðtÞ;UðtÞÞ dt þ
Xd
i¼1

giðt; �aðtÞ;UðtÞÞ dwiðtÞ;

where �að�Þ [ f1; 2; . . . ; l} is a Markov chain generated by �Q* with �að0Þ ¼ a. The optimal

control for this limit problem is

U *ðtÞ ¼ U 1*ðt; xÞ;U 2*ðt; xÞ; . . . ;U l*ðt; xÞ� �
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with

Uk*ðt; xÞ ¼ uk1*ðt; xÞ; uk2*ðt; xÞ; . . . ; ukmk*ðt; xÞ� �
and

ukj*ðt; xÞ ¼ 2 s ðt; skjÞs 0ðt; skjÞ
� �

21B0ðt; skjÞ xþ ðl2 zÞ �Hðt; kÞ� �
:

Using such controls, we construct

u1ðt;a1ðtÞ; xÞ ¼
Xl
k¼1

Xmk

j¼1

Ifa 1ðtÞ¼skj}u
kj*ðt; xÞ þ

Xm*

j¼1

Ifa1ðtÞ¼s*j}
u*j*ðt; xÞ ð4:20Þ

for the original problem where u*j*ðs; xÞ ¼ 2ðs ðt; s*jÞs 0ðt; s*jÞÞ21B0ðt; s*jÞ
½xþ ðl2 zÞ �H*ðs; jÞ�.

Proof. Following the proof of Theorem 4.1 to (4.3), we have for s [ ½0; T�, ~QkP0ðs;�Þ �
ðskjÞ ¼ 0 for k ¼ 1; 2; . . . ; l, j ¼ 1; 2; . . . ;mk

~Q
1

*
; . . . ; ~Q

l

*
; ~Q*

� 

P0ðs; s11Þ; . . . ;P0ðs; s1m1

Þ; . . . ;�
P0ðs; sl1Þ; . . . ;P0ðs; slml

Þ;P0ðs; s*1Þ; . . . ;P0ðs; s*m*Þ
�0 ¼ 0:

The irreducibility of ~Qk for any k implies

ðP0ðs; sk1Þ; . . . ;P0ðs; skmk
ÞÞ0 ¼ P0ðs; kÞ1mk

:

Let P*ðsÞ ¼ ðP0ðs; s*1Þ; . . . ;P0ðs; s*m*ÞÞ0, we have

~Q
1

*
1m1

P0ðs; 1Þ þ · · ·þ ~Q
l

*
1ml

P0ðs; lÞ þ ~Q*P*ðsÞ ¼ 0:

Here,

P*ðsÞ ¼ 2 ~Q
21

*
~Q
1

*
1m1

P0ðs; 1Þ þ · · ·þ ~Q
l

*
1ml

P0ðs; lÞ
� 


¼ am1
P0ðs; 1Þ þ · · ·þ aml

P0ðs; lÞ:

Then P*ðsÞ [ Rm* and its jth component is P*ðs; jÞ. The rest of the proof is similar to that of

Theorem 4.1, except replacing �Q by �Q*. A

Theorem 4.7. The control u1ðtÞ defined in (4.20) is nearly optimal in that

lim1!0jJ 1ða; x; u1ð�ÞÞ2 v1ða; xÞj ¼ 0:

Proof. The proof is similar to that of Theorem 4.4 with the use of the estimate

EjÐ t
0
Ifa1ðsÞ¼s*j}

dsj2 ! 0 as 1! 0 from [8] (Theorem 3.1). A
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5. Further remarks

This work has focused on the near-optimal controls for non-definite control problems. Our

primary motivation stems from networked systems. Our approach provides a systematic

approach to reducing the complexity of the underlying system. In lieu of treating the large

dimensional systems directly, we solve a set of limit Riccati equations that have much

smaller dimensions. Using the limit problem as a guide to design controls for the original

system leads to near-optimal controls of the original system. Although the paper is devoted

to platoon controls, the results can be readily applied to the portfolio optimization in

financial engineering. Future research efforts can be directed to the study of non-definite

control problems in the hybrid systems, in which the Markov chain aðtÞ is a hidden process
and the Wonham filter is involved. A combination of weak convergence methods ([2] and

[7]) and optimal control is another worthwhile effort. More thoughts and further

considerations are needed.
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