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Adaptive Instantiation of the Protocol Interference Model in Wireless
Networked Sensing and Control
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Interference model is the basis of MAC protocol design in wireless networked sensing and control, and it directly affects the

efficiency and predictability of wireless messaging. To exploit the strengths of both the physical and the protocol interference

models, we analyze how network traffic, link length, and wireless signal attenuation affect the optimal instantiation of the

protocol model. We also identify the inherent tradeoff between reliability and throughput in the model instantiation. Our

analysis sheds light on the open problem of efficiently optimizing the protocol model instantiation. Based on the analyti-

cal results, we propose the physical-ratio-K (PRK) interference model as a reliability-oriented instantiation of the protocol

model. Via analysis, simulation, and testbed-based measurement, we show that PRK-based scheduling achieves a network

throughput very close to (e.g., 95%) what is enabled by physical-model-based scheduling while ensuring the required packet

delivery reliability. The PRK model inherits both the high fidelity of the physical model and the locality of the protocol

model, thus it is expected to be suitable for distributed protocol design. These findings shed new light on wireless interfer-

ence models; they also suggest new approaches to MAC protocol design in the presence of uncertainties in network and

environmental conditions as well as application QoS requirements.
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General Terms: Design, Performance, Experimentation, Measurement, Algorithms
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1. INTRODUCTION

With the development of networked embedded sensing and control, wireless networks are increas-
ingly applied to mission-critical applications such as industrial monitoring and control [Chintalapudi
and Venkatraman 2008]. This is evidenced by the recent industry standards such as WirelessHART
[Chen et al. 2010] and ISA SP100.11a [ISA SP100.11a ] which target wireless networked sensing
and instrumentation. In supporting real-time, mission-critical tasks, these wireless networks are re-
quired to ensure real-time, reliable data delivery. Nonetheless, wireless communication is subject to
various dynamics and uncertainties. Due to the broadcast nature of wireless communication, in par-
ticular, concurrent transmissions may interfere with one another and introduce co-channel interfer-
ence. Co-channel interference not only reduces the reliability and throughput of wireless networks,
it also increases the variability and uncertainty in data communication [Tobagi and Kleinrock 1975;
Zhou et al. 2005; Zhang et al. 2009]. Therefore, effectively scheduling concurrent transmissions
to control co-channel interference has become critical for enabling reliable, predictable wireless
communication.

A basis of interference control is the interference model which predicts whether a set of con-
current transmissions may interfere with one another. Two commonly used models are the physical
interference model and the protocol interference model [Gupta and Kumar 2000]. In the physical
model, a set of concurrent transmissions (Si, Ri), i = 1 . . . N, are regarded as not interfering with
one another if the following conditions hold:

P (Si, Ri)

Ni +
∑

j=1...N,j 6=i P (Sj , Ri)
≥ γ0, i = 1 . . . N,
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where P (Si, Ri) and P (Sj , Ri) is the strength of signals reaching the receiver Ri from the trans-
mitter Si and Sj respectively, Ni is the background noise power at receiver Ri, and γ0 is the signal-

to-interference-plus-noise-ratio (SINR) threshold required to ensure a certain link reliability1. In the
protocol model, a transmission from a node S to its receiver R is regarded as not being interfered
by a concurrent transmitter C if

D(C,R) ≥ K ×D(S,R),

where D(C,R) and D(S,R) is the geographic distance from C and S to R respectively, and K is a
constant number.2. For simplicity, we also call the physical model the SINR model and the protocol
model the ratio-K model in this paper, and we regard scheduling based on the SINR model and the
ratio-K model SINR-based scheduling and ratio-K-based scheduling respectively.

The SINR model is based on communication theory, and it can be regarded as an instantiation
of the graded-SINR model [Maheshwari et al. 2008] for satisfying certain minimum link reliabil-
ity. The SINR model is a high fidelity model in general, but the interference relations defined by
it are non-local and combinatorial. This is because whether one transmission interferes with an-
other is modeled as explicitly depending on all the other transmissions in the network. Accordingly,
SINR-based scheduling usually requires network-wide coordination. Since the coordination delay
slows down protocol convergence [Brar et al. 2008; Yi et al. 2007] and increases uncertainty [Ying
and Shakkottai 2009], it is difficult to use the SINR model in distributed protocol design. This
is especially the case when network traffic pattern and environmental conditions are dynamic and
potentially unpredictable.

Unlike the SINR model, the ratio-K model defines local, pair-wise/non-combinatorial interfer-
ence relations where interference is regarded as existent only between nodes in a local neighbor-
hood. Accordingly, the ratio-K model is suitable for distributed protocol design since ratio-K-based
scheduling only requires coordination among nodes in their local neighborhood. The locality of
ratio-K-based scheduling can also enable agile protocol adaptation for addressing the challenges of
unpredictable traffic pattern and environmental dynamics. Nonetheless, the ratio-K model is an ap-
proximate model in nature, and it does not ensure reliable data delivery in general. For instance, the
RTS-CTS-based channel access control can only enable a data delivery ratio of ∼50% in our field
wireless sensor networks [Arora et al. 2005; Zhang et al. 2007]; via testbed-based measurement
study of event-detection sensor networks, Choi et al. have also shown that CSMA- and RTS-CTS-
based channel access control mechanisms may only enable a data delivery ratio of 16.9% and 36.8%
respectively [Choi et al. 2010].

To enable the design of distributed MAC protocols for agile, predictable interference control, an
open question is whether it is possible to develop an interference model that has both the locality of
the ratio-K model and the high fidelity of the SINR model. Given that the ratio-K model is local and
can enable agile, distributed protocols, we explore the possibility of extending the ratio-K model
to preserve its locality while addressing the low performance issue of ratio-K-based scheduling. To
this end, we first study the behavior of ratio-K-based scheduling, and a summary of our findings are
as follows:

— We analyze how network traffic load, link length, and wireless signal attenuation affect the effec-
tive instantiation of the ratio-K model. We find that fixing K to a constant number, as in most
existing studies [Chafekar et al. 2008; Maheshwari et al. 2008; Moscibroda et al. 2006], can lead
to significant performance loss when network and environmental settings change. For instance,
deviation from the optimal K by up to 1 can cause up to 68% throughput loss, and fixing K to
2 may lead to a link reliability less than 80%. These findings suggest that, when designing and

1By “link reliability”, we mean the probability for a packet to be correctly received by its receiver(s) without errors; in this
paper, we only consider packet transmission errors due to perturbations to data packet signals that are caused by background
noise and/or interference signals.
2We replace the original notation of (1 + ∆) [Gupta and Kumar 2000] with K for simplicity. Also note that the commonly
used K-hop model [Sharma et al. 2006] is a special case of the protocol model in geometric graphs.
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evaluating ratio-K-based scheduling algorithms, it is important to choose the right parameter K
according to network and environmental conditions.

— We also find that there is inherent tradeoff between reliability and throughput when instantiating
the ratio-K model. Maximum network throughput is usually achieved not at the minimum K for

ensuring certain link reliability, but at a smaller K. For instance,
√
2 is the optimal K for maximiz-

ing throughput in many scenarios, but, with non-negligible probability,
√
2 is unable to guarantee

an 80% link reliability. Moreover, as K increases from the minimum one required for satisfy-
ing certain link reliability, network throughput tends to decrease, especially when link reliability
requirement is high.

Our findings (in particular, those on the reliability-throughput tradeoff in ratio-K-based scheduling)
suggest that, in wireless networked sensing and control where high link reliability is critical not
only for reliable data delivery but also for small latency and latency jitter, we can use link reliability
requirement as the basis of instantiating the ratio-K model. Accordingly, we propose the physical-
ratio-K (PRK) interference model as a reliability-oriented instantiation of the ratio-K model, where
the link-specific choice of K adapts to network and environmental conditions as well as application
QoS requirements to ensure certain minimum reliability of every link.

To understand the potential effectiveness of PRK-based medium access control, we analyze the
performance of PRK-based scheduling. We find that, for a given requirement on link reliability,
PRK-based scheduling achieves a network spatial throughput very close to what is enabled by SINR-
based scheduling, for instance, at least 95% in many scenarios we study. Moreover, as link reliability
requirement increases, the throughput loss in PRK-based scheduling further decreases. Since link
reliability is a locally measurable metric, reliability-oriented selection of K in PRK-based medium
access control enables link-specific, local search of K via feedback on packet delivery reliability.
This suggests new approaches to MAC protocol design in the presence of unpredictable traffic pat-
terns, for instance, by letting the receiver of each link locally choose a K for satisfying application-
specific link reliability requirement. This also addresses the challenge of how to efficiently adapt
K according to dynamic, potentially unpredictable network and environmental settings, which has
been recognized as an open problem by Shi et al. [Shi et al. 2009] who studied the ratio-K model
in parallel with our work.

The above analytical results give us insight into the behavior of ratio-K-based scheduling in
uniform grid and random networks with a wide range of system configurations on factors such
as traffic load, link length, and wireless signal attenuation. We have verified these insight through
simulation as well as measurement study in both the NetEye and the MoteLab wireless sensor
network testbeds which reflect real-world properties such as non-uniform network settings. As we
will discuss in Section 4.2, even though the PRK model is conceived based on observations from
the analysis of uniform network and environmental conditions, the locality of the PRK model and
the existence of purely local procedures of adapting the PRK model parameter based on in-situ
network and environmental conditions (as shown in our preliminary study [Zhang et al. 2012])
enable the PRK model to adapt to potentially heterogeneous conditions (e.g., in traffic load and
wireless channel path loss) in different parts of a network, thus making the PRK model suitable for
networks with heterogeneous conditions too.

The rest of the paper is organized as follows. In Section 2, we present the wireless channel and
radio models used in the analytical part of this paper. We develop closed-form performance models
of ratio-K-based scheduling in Section 3 and then study how system properties and optimization
objectives affect the ratio-K model instantiation in Section 4. We also propose the PRK interference
model in Section 4, and then we examine the optimality of PRK-based scheduling in Section 5. We
corroborate our analytical results through testbed-based measurement and simulation in Sections 6
and 7, and we also examine similar issues for ultra-wideband (UWB) networks in Section 7. We
discuss related work in Section 8 and make concluding remarks in Section 9. As a central point of
reference, Table I summarizes the major notations used in the paper.
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Notations first introduced in Sections 1 or 2

P (Si, Ri) Strength of signals reaching the receiver Ri from the transmitter Si

Ni Background noise power at a receiver Ri

D(S,R) Geographic distance from a node S to another node R
γ Signal-to-interference-plus-noise-ratio (SINR) at a receiver

γ0 Minimum SINR for satisfying a required link reliability (i.e., packet delivery rate)

K The parameter of the ratio-K interference model

Pt Transmission power

α Wireless channel path loss exponent

BER Bit error rate

PDR Packet delivery rate

Notations first introduced in Sections 3 or 4

L An arbitrary link in the network

ℓ Geometric length of link L in grid networks; average geometric link length in Poisson
random networks.

ℓ′(L) Geometric length of link L; its mean is ℓ for both grid and random networks.

ER(L,K) Exclusion region of link L in ratio-K-based scheduling

TL(t) Throughput along a link L at time t
Tnet Network spatial throughput

Tnet,grid Tnet in grid networks

Tnet,Poisson Tnet in Poisson random networks

q(t) Indicator function on whether there exist data packets queued for transmission along L at
time t

β Average probability that there exist data packets queued for transmission along L at any
time instant

tx(t) Indicator function on whether a transmission, if any, is successful at time t
I Expected total interference at a receiver

λ Node distribution density in Poisson random networks

λt Density of the spatial distribution of concurrent transmitters in Poisson random networks

Kns,nr ,Tpdr The parameter of the Physical-Ratio-K (PRK) interference model

sd(T,R) 1
P (T,R)

, i.e., the s-distance from a node T to another node R, with P (T,R) being the

strength of signals reaching R from T .

Notations first introduced in Section 5

γ′
0 Minimum SINR for satisfying a required ACK reliability

Sprk, Ssinr Nodes in the exclusion region of link L in PRK- and SINR-based scheduling respectively

It, I
′
t Maximum tolerable interference at the receiver and the transmitter of link L respectively

Iprk, Isinr Actual interference at the receiver in PRK- and SINR-based scheduling respectively

I ′prk, I ′sinr Actual interference at the transmitter in PRK- and SINR-based scheduling respectively

Tprk, Tsinr Network spatial throughput in PRK- and SINR-based scheduling respectively

Tloss Throughput loss in PRK-based scheduling as compared with SINR-based scheduling

∆X Average number of nodes per exclusion region that are silenced in PRK-based scheduling
but not in SINR-based scheduling

Table I: Major notations used in the paper

2. PRELIMINARIES

Here we present the wireless channel and radio models used in the analytical part of this paper.

Channel model. To characterize signal attenuation in wireless networks, we use the log-normal
path loss model [Rappaport 2002] which is widely adopted in protocol design and analysis. By this
model, the expected power P (S,R) of the received signal at a node R that is of geographic distance
D(S,R) away from the transmitter S is computed as follows:

P (S,R) =
Pt

D(S,R)α
, (1)
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where Pt is the transmission power, α is the path loss exponent. In our study, we use different
instantiations of α to represent different wireless environments.

Radio model. The reception capability of a radio can be characterized by the bit error rate (BER)
and the packet delivery rate (PDR) in decoding signals with specific signal-to-interference-plus-
noise-ratios (SINR). Focusing on wireless sensing and control networks, we base our study mainly
on the commonly-used, IEEE 802.15.4-compatible CC2420 radios; we also study low-power UWB
radios which are expected to be used for intra-vehicular sensing and control [Niu et al. 2008], and
we present the results in Section 7. Based on the modulation and coding schemes of CC2420 radios,
the BER for a packet reception is computed as follows [IEEE 802.15.4 2006]:

BER(γ) =
8

15
× 1

16
×

16
∑

k=2

(−1)k
(

16

k

)

e(20×γ×( 1
k−1)), (2)

where γ is the signal-to-noise-plus-interference-ratio (SINR) for the received packet signal. Assum-
ing independent bit errors as in existing analytical studies [Zuniga and Krishnamachari 2007], the
PDR is computed as follows:

PDR(γ, f) = (1− BER(γ))8f (3)

where γ is the SINR of the received packet signal, and f is the packet length (in units of bytes)
including overhead such as packet header.

Remark. For analytical tractability, the aforementioned models do not capture all the real-world
phenomena such as the irregularity in wireless communication [Zhou et al. 2006]. But the analysis
based on these models gives us insight into wireless interference models, and the analytical results
have also been verified through testbed-based measurement which captures complex real-world
phenomena as we discuss in Section 6.

3. PERFORMANCE OF RATIO-K-BASED SCHEDULING

To explore effective methods of instantiating the ratio-K model, here we analyze network throughput
and link reliability in ratio-K-based scheduling when the ratio-K model is instantiated with different
Ks. Focusing on link-layer behavior, we consider the optimization objective of maximizing channel
spatial reuse (i.e., maximizing the number of concurrent transmissions) in ratio-K-based scheduling.
In this section and in Sections 4 and 5 accordingly, we mean, by network throughput, the network
spatial throughput as defined by Equation (6); in our measurement study in Section 6, we consider
end-to-end throughput which directly reflects network-wide behavior.

Towards characterizing the computational complexity of ratio-K-based scheduling in general, we
first prove that the ratio-K-based scheduling is NP-hard as follows:3

PROPOSITION 3.1. The problem of maximizing the number of interference-free concurrent
transmissions is NP-hard when the interference model is the ratio-K model. ✷

PROOF. We consider the case when K > 1, as is usually the case in practice. Then, the NP-
hardness of ratio-K-based scheduling with maximum spatial reuse can be proved through a poly-
nomial time reduction from the 3-CNF-SAT problem to ratio-K-based scheduling. The proof is the
same as the proof for Theorem 2 of [Sharma et al. 2006] (which shows the NP-hardness of the Max-
imum Weighted K-Valid Matching problems) except for the following changes to the reduction:

— Instead of an abstract graph, the graph G is embedded onto a 2D plane where each node has a
fixed location in the plane.

— For the subgraph corresponding to the s-th (s = 1..m) clause of the 3-CNF boolean for-
mula, locate the nodes such that the links (vsi,f , v

s
i,b)(i = 1..3) are orthogonal to the links

3Even though the NP-hardness of K-hop-interference-model-based scheduling has been proved [Sharma et al. 2006], the
NP-hardness of ratio-K-based scheduling has not been analyzed yet.
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(vsi,f , v
s
i+1,f )(i = 1, 2) and that links (vs1,f , v

s
2,f ) and (vs2,f , v

s
3,f ) are along the same line. In

addition, make the lengths of the links (vsi,f , v
s
i,b)(i = 1..3) and (vsi,f , v

s
i+1,f )(i = 1, 2) to be of

one unit.
— Place all the subgraphs on the plane (e.g., in a big circle) such that every link connecting two

subgraphs is at least K(K > 1) units long.

Based on this new reduction method for constructing the graph G, the rest of the proof for Theorem
2 of [Sharma et al. 2006] is applicable to our proof here without any change. Due to the limitation
of space, we skip the details here.

We consider both grid and Poisson random networks in our analysis, but, given the NP-hardness
of general ratio-K-based scheduling, we only consider the following special cases of the problem
for computational tractability and for deriving closed-form formula for scheduling performance:

— To avoid the complication introduced by boundary effects in small, finite networks, we only con-
sider infinite-sized networks so that the conditions (e.g., interference power) at any part of a net-
work represent those of the rest of the network and that our analysis can focus on the conditions at
any part of the network. (Note that infinite-sized networks also approximate large networks such
as those envisioned for industrial control in large oil fields.)

— For grid networks, we only consider cases where the data transmission links are of equal length
ℓ and ℓ is a multiple of grid hop length. We also assume a uniform traffic pattern where all the
transmissions follow the same direction along the grid-line, which enables the maximum degree
of spatial reuse in grid networks as we show in Appendix B. (Note that every node in the network
is a potential transmitter.)

— For 2D Poisson random networks, we assume that nodes are distributed with an average density of
λ nodes per unit area. The traffic pattern is such that the average link length is ℓ; each transmitter
T sends packets to a receiver R such that the distance between T and R is the closest to ℓ, and if
multiple such receivers exist, T randomly picks one as its receiver.

— For both grid and random networks, we assume that each transmitter has data packets buffered for
transmission with an average probability β at any moment in time.4

The analytical results derived based on the above assumptions give us insight into the behavior of
ratio-K-based scheduling in uniform grid and random networks with a wide range of system con-
figurations on factors such as traffic load, link length, and wireless signal attenuation; the analytical
insight will be verified in Sections 6 and 7 through testbed-based measurement and simulation where
finite networks and non-uniform traffic patterns are considered without the above assumptions.

In data transmission scheduling, we consider both reliable reception of data at receivers and
reliable reception of link-layer acknowledgments at transmitters. Let the length of a link L be ℓ, and
T and R be the transmitter and receiver of L respectively. Then ratio-K-based scheduling defines
two circular exclusion regions centered at T and R respectively, each with a radius Kℓ, such that
no other node in the exclusion regions can transmit concurrently with T . We regard the union of the
transmitter- and receiver-side exclusion regions as the exclusion region of link L, and we denote it
by ER(L,K). For instance, Figure 1 shows the exclusion region of link L in a grid network when K
= 2. For convenience, we also use ER(L,K) to denote the set of nodes within the exclusion region,
not including those on the boundary.

For the uniform network and traffic conditions considered in the analytical part of this paper (i.e.,
this section and Sections 4 and 5), the degree of channel spatial reuse is characterized by the size
of exclusion regions, i.e., the number of nodes silenced by the transmission along a link L, and we
denote it by |ER(L,K)|. For link L, let BW be the radio transmission rate in terms of number of
packets per unit time, q(t) be the indicator function on whether there exist data packets queued for

4As we will discuss in Section 4.2 and corroborate via testbed-based measurement in Section 6, the PRK interference model
to be formulated based on observations from the analysis of uniform network and environmental conditions is also applicable
to networks with heterogeneous conditions such as heterogeneous traffic load.
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Figure 1: Scheduling based on the ratio-2 model in grid networks

transmission along L at time t, and tx(t) be the indicator function on whether a transmission, if any,
is successful at time t, then the number of packets successfully delivered along link L at time unit t
is BW × q(t) × tx(t). Considering the distance that successfully delivered packets travel (i.e., the
length of link L) , we define the throughput along an arbitrary link L at time t, denoted by TL(t), as
follows:

TL(t) = (BW × q(t)× tx(t))× ℓ′(L), (4)

where ℓ′(L) is the length of link L, and the unit for TL(t) is “packet-distance-product per unit time”.
Then, the time average of TL(t) can be computed as

Et[TL(t)] = (BW × Et[q(t)]× Et[tx(t)])× ℓ′(L) = (BW × β × PDR(L))× ℓ′(L), (5)

where β be the average probability that there exist data packets queued for transmission along L at
any time instant, and PDR(L) is the packet delivery reliability over L. Accordingly, the network-
wide link-layer throughput that considers both channel spatial reuse and per-link throughput can be
characterized by5

Tnet = EL,t[
TL(t)

|ER(L,K)| ] = EL[
Et[TL(t)]

|ER(L,K)| ]. (6)

Note that the unit for Tnet is “packet-distance-product per unit time per node”, and the definition
of Tnet is similar to the concept of spatial throughput which is commonly used in the literature of
wireless network scheduling [Tabet and Knopp 2004]. Tnet characterizes the average throughput
from every node to its one-hop neighbors in the network; even though Tnet only indirectly reflects
the achievable multi-hop throughput, our testbed-based measurement study in Section 6 will show
that the insight gained in the analysis applies to the case of multi-hop convergecast. Also note that
Tnet is of direct interest to the applications of inter-vehicle sensing and control, where one typi-
cal traffic pattern is single-hop communication between neighboring vehicles. For grid networks,

Et[TL(t)] and |ER(L,K)| are the same for all Ls, thus Tnet,grid = Et[TL(t)]
|ER(L,K)| . For Poisson random

networks, Tnet,Poisson = EL[
Et[TL(t)]
|ER(L,K)| ] =

BW×β×ℓ×EL[PDR(L)]
λtc

, where λt and c are properties of

the spatial distribution of concurrent transmitters in ratio-K-based scheduling for Poisson networks
as we will discuss in Proposition 3.3 shortly.

Our objective is to study how the choice of K affects throughput Tnet and link reliability PDR
in ratio-K-based scheduling that maximizes channel spatial reuse. To compute Tnet, the key is to
compute the PDR along L. Using the radio model discussed in Section 2, we only need to derive

5We consider the expected value of
TL(t)

|ER(L,K)|
to account for non-deterministic factors such as probabilistic packet trans-

missions over time and probabilistic node distribution over space in random networks. Focusing on link-layer behavior, this
section and Sections 4 and 5 adopt this notion of network throughput; in our measurement study in Section 6, we consider
end-to-end throughput which directly reflects network-wide behavior.
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the SINR value at the receiver of L in order to compute the PDR. Since it is easy to compute the
reception signal strength according to Equation 1, what remains is computing the interference at
the receiver. In what follows, we present the method of computing receiver-side interference when
transmissions are scheduled to maximize spatial reuse without violating the ratio-K model. In the
analysis, we assume that the transmission power at each transmitter is Pt.

Grid networks. Given a specific parameter K, we analyze the spatial distribution of concurrent
transmitters in ratio-K-based scheduling algorithms that maximize channel spatial reuse. Then we
derive the interference incurred at a receiver according to the spatial distribution of concurrent trans-
mitters. For K = 2, we have

PROPOSITION 3.2. With ratio-2-based scheduling that maximizes channel spatial reuse, the ex-
pected total interference I at a receiver R in an infinite grid network is as follows:

I = Pt × β × ℓ−α×
(

∑∞
m=1(

2
((2m)2+1)α/2 + 1

(3m+1)α/2 + 1
(3m−1)α/2 )+

2×∑∞
m=1

∑∞
n=1

(

1
[(2m)2+(3n+1)2]α/2 + 1

[(2m)2+(3n−1)2]α/2

)

)

(7)

where Pt is the transmission power, β is the node transmission probability, ℓ is the link length, and
α is the wireless path loss exponent. I is finite as long as α > 2. ✷

PROOF. To maximum channel spatial reuse, we need to generate the tightest tessellation of con-
current transmissions while conforming to the specification of the ratio-K interference model. For
K = 2 and the transmission along an arbitrary link L as shown in Figure 1, six nodes (i.e., A - F )
on the boundary of the exclusion region of L can be involved, either as a transmitter or a receiver,
in concurrent transmissions. In a tightest tessellation of concurrent transmissions in ratio-2-based
scheduling, this pattern of four concurrent transmissions/receptions around L applies to every other
transmission in the network, thus we can derive the set Si of concurrent transmitters that serve as
interferers to the transmission along L.

If we define a coordinate system where the coordinates of R and T are (0, 0) and (0, ℓ) respec-
tively, then

Si = {(2mℓ, (3n+ 1)ℓ) : m ∈ Z, n ∈ Z,m2 + n2 6= 0} (8)

where Si is identified by the locations of the nodes in it, and Z is the set of all integers. In Figure 1,
for instance, transmitter C’s location is (2ℓ, ℓ) and the corresponding m and n are 1 and 0 respec-
tively. The expected total interference I at the receiver R is the sum of the expected interference
introduced by each concurrent transmitter ni in Si. Based on the link model discussed in Section 2,
we have

I =
∑

ni∈Si
Ii

= Pt × β ×∑ni∈Si
d(ni, R)−α

= Pt × β × ℓ−α ×
(

∑

m

∑

n(
1

[(2m)2+(3n+1)2] )
α/2

) (9)

After some simple derivations, Equation 9 becomes Equation 7.
When α > 2, the following holds:

∞
∑

m=1

1

((2m)2 + 1)α/2
<

∞
∑

m=1

1

mα/2

The right hand side of the above inequality is a type of p-series where p = α
2 , and it converges when

p > 1. Accordingly,
∑∞

m=1
1

((2m)2+1)α/2 converges when α > 2. Using similar approach, we can

prove that the other items of Equation 7 converges if α > 2. Therefore, I converges and is finite as
long as α > 2.
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Note that, in grid networks, the total interference I is a function of link length ℓ but not the node
distribution density (e.g., as characterized by the grid-hop length ℓ

n for some positive integer n).
Using Equation 7, we can compute the interference and thus the SINR at R, based on which we

can compute link reliability and network throughput for the case of K = 2. Following approaches
similar to the one for K = 2, we can derive the spatial distribution of concurrent transmitters
and thus the receiver-side interference for cases when K takes other values. For conciseness of
presentation, we refer readers to Appendix A for the detailed derivations.

Random networks. A random network where the number of nodes per unit area is a Poisson
random variable with mean λ can be regarded as a stationary spatial Poisson process Φ with density
λ [Stoyan et al. 1995]. Then the spatial distribution of concurrent transmitters in ratio-K-based
scheduling can be modeled as a thinning spatial process that contains only a subset of the nodes
in Φ (i.e., some nodes in Φ are thinned/silenced by transmissions from other nodes). For ratio-K-
based scheduling that maximizes spatial reuse, in particular, the spatial distribution of concurrent
transmitters can be modeled as a marked thinning process as follows [Stoyan et al. 1995; Baccelli
and Blaszczyszyn 2010]:6

— We mark each node X of Φ with a random number m(X) uniformly distributed over (0, 1), and

then we mark each link L with transmitter T and receiver R with a number m(L) = m(T )+m(R)
2 ;

— We define the links incident to a node X as the set of links whose transmitter or receiver is X ,
and we denote it by L(X); we also denote the link whose transmitter is X by L(X). Then, the
thinning process retains a transmitter X ∈ Φ if the mark of L(X) is the smallest among those of
all the links incident to some node within the exclusion region ER(L(X),K) of link L(X). That
is, the thinning process of concurrent transmitters is defined as follows:

Φt = {X ∈ Φ : m(L(X)) < m(L), ∀L ∈ ∪Y ∈ER(L(X),K)L(Y )} (10)

The thinning process Φt as defined above can be approximated by a spatial Poisson process [Stoyan
et al. 1995], and we derive its density λt as follows:

PROPOSITION 3.3. The density λt of the thinning process Φt of concurrent transmitters com-
putes as follows:

λt =
1− exp(−λc)

c
(11)

where c = C(ℓ,K)+(C(ℓ,K+1)−C(ℓ,K))
∫ ℓ

0

2arccos( ℓ2+ℓ′2+2Kℓℓ′

2ℓ(kℓ+ℓ′)
)

360ℓ dℓ′, C(ℓ,K) and C(ℓ,K+1)
is the area of the exclusion region ER(L,K) and ER(L,K + 1) of a ℓ-long link L respectively. ✷

PROOF. From the results in Section 5.4 of [Stoyan et al. 1995], the intensity λt of Φt is given by

λt = ptλ

where pt is the probability for a typical point of Φ to be retained in the thinning process Φt, and it
is also called the Palm retaining probability in stochastic geometry [Stoyan et al. 1995]. As we will
derive next, the retaining probability pt computes as follows:

pt =

∫ 1

0

r(t)dt =
1− exp(λc)

λc
(12)

where c = C(ℓ,K) + (C(ℓ,K + 1)−C(ℓ,K))
∫ ℓ

0

2arccos( ℓ2+ℓ′2+2Kℓℓ′

2ℓ(kℓ+ℓ′)
)

360ℓ dℓ′, and r(t) = exp(−cλt)
is the probability for the thinning process Φt to retain a node T whose associated link L(T ) has
mark t (i.e., m(L(T )) = t).

6This marked thinning process is an extension/variant of the basic Matern hard-core process, where each hard-core is a disk-
area around a node such that only this node in the hard-core is retained in the thinning process, to cases where the hard-cores
are the exclusion regions around links instead of circular disks [Stoyan et al. 1995].
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Figure 2: Probability that a transmitter T ′ ∈ ER(L,K+1)\ER(L,K) has its receiver in ER(L,K)

The equation for r(t) follows from the observation that the point process

{X ∈ Φ : m(X) < t}
is a t-thinning of the Poisson process Φ, hence itself is a Poisson process of intensity λt. Therefore,
r(t) is the probability that an exclusion region ER(L,K +1) of a ℓ-long link contains no node who
has an associated link with mark less than t, that is, containing no nodes of the t-thinning process.

In computing r(t), the reason why c equals C(ℓ,K) + (C(ℓ,K + 1) −
C(ℓ,K))

∫ ℓ

0

2arccos( ℓ2+ℓ′2+2Kℓℓ′

2ℓ(kℓ+ℓ′)
)

360ℓ dℓ′ instead of C(ℓ,K) is because ∪Y ∈ER(L(X),K)L(Y ) may

well contain links whose transmitter is in ER(L,K + 1) but not in ER(L,K). For a transmitter
T ′ ∈ ER(L,K + 1) \ ER(L,K) that is Kℓ + ℓ′ (0 < ℓ′ ≤ ℓ) from the transmitter T of link L as
shown in Figure 2,

the probability that T ′ transmits to a node in ER(L,K) is 2θ
360 since the receiver of T ′ is at any

θ = arccos( +ℓ +2Kℓℓ

direction aro
ℓ

u
2

nd 
′

T
2 

′ with
′ 
equal probability. Since (Kℓ)2 = ℓ2 + (Kℓ + ℓ′)2 − 2ℓ(Kℓ + ℓ′)cosθ,

2ℓ(Kℓ+ℓ′) ). Therefore, the probability that an arbitrary transmitter in ER(L,K+1)\

ER(L,K) has its receiver in ER(L,K) is
∫ ℓ

0
2α
360

1
ℓ dℓ′

∫ ℓ

0

2arccos( ℓ2+ℓ′2+2Kℓℓ′

2ℓ(kℓ+ℓ′)
)

360ℓ dℓ′, and the expected

number of nodes in ER(L,K + 1) \ ER(L,K) whose receivers are in ER(L,K) is λ(C(ℓ,K +

1)− C(ℓ,K))
∫ ℓ

0

2arccos( ℓ2+ℓ′2+2Kℓℓ′

2ℓ(kℓ+ℓ′)
)

360ℓ dℓ′. Thus we have the formula for c.

Then we can compute the total interference I at an arbitrary receiver R as follows:

PROPOSITION 3.4. With ratio-K-based scheduling that maximizes channel spatial reuse, the
expected total interference I at a receiver R in an infinite Poisson random network is as follows:

I =
2πλtPtβ

(α− 2)
(Kℓ)2−α (13)

where λt is given by Equation 11, Pt is the transmission power, β is the node transmission proba-
bility, α is the wireless path loss exponent, and ℓ is the link length. ✷

PROOF. Given that, in ratio-K-based scheduling that maximizes channel spatial reuse, the spatial
distribution of concurrent transmitters is a spatial Poisson process, we leverage the existing results
on the interference power in Poisson interference fields to derive the receiver-side interference in
ratio-K-based scheduling. When the interferers are Poisson distributed with density λ and when each
interferer transmits with probability one (i.e., β = 1), in particular, Weber et. al [Weber et al. 2005]
have shown that, for an arbitrary receiver, the total interference from nodes more than r distance
away from the receiver can be computed as follows:

m(λ) =
2πλPt

(α− 2)
r2−α. (14)
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Accordingly, for an arbitrary transmission probability β, the total interference is

m(λ, β) =
2πλPtβ

(α− 2)
r2−α. (15)

Based on the analysis earlier in this section, the set of concurrent transmitters in ratio-K-based
scheduling that maximizes spatial reuse are Poisson distributed with density λt as shown in Equa-
tion 11. The concurrent transmitters are also more than Kℓ distance away from the receiver. There-
fore, we can see from Equation 15 that the receiver-side interference I can be computed as follows:

I = m(λt, β) =
2πλtPtβ

(α− 2)
(Kℓ)2−α.

With the closed-form performance models of ratio-K-based scheduling developed in this section,
we will examine in the next section the behavior of ratio-K-based scheduling in a wide range of
network and environmental settings; based on the behavior of ratio-K-based scheduling, we will
then propose the Physical-Ratio-K (PRK) interference model as the basis of instantiating the ratio-
K model in interference-oriented wireless transmission scheduling.

4. THE PHYSICAL-RATIO-K (PRK) INTERFERENCE MODEL

Using the performance models of Section 3, we first numerically study how system properties and
design objectives affect the effective instantiation of the ratio-K model, and then we propose the
Physical-Ratio-K (PRK) interference model.

4.1. Numerical analysis of ratio-K-based scheduling

Using Equations 5 and 6, the CC2420 radio model described in Section 2, and the equations for
computing interference (e.g., Equations 7 and 13), we numerically analyze the impact of parameter
K on the network throughput and link reliability in ratio-K-based scheduling, and we analyze the
impact that different network and environmental settings have on the effective choice of parameter
K.

4.1.1. Methodology. To examine the impact of wireless attenuation in different environments,
we consider the set {2.1, 2.6, 3, 3.3, 3.6, 3.8, 4, 4.5, 5} of wireless path loss exponents αs, which
represent a wide range of real-world environments [Sohrabi et al. 1999]. For the grid networks
and Poisson random networks, we vary their parameters such as traffic load, link length, and node
distribution density to examine the impact of network properties. Traffic load is controlled by the
transmission probability β, and we consider the set {0.05, 0.1, 0.15, . . . , 1} of βs. Link length is
chosen so that the link reliability varies from 1% to 100% in the absence of interference. More
specifically, for each specific path loss exponent α, we choose a link length ℓ0 corresponding to an
interference-free packet delivery rate (PDR) of 1%, and another link length ℓ1 corresponding to a
signal-to-noise-ratio (SNR) of 5dB more than the minimum SNR for ensuring 100% interference-
free PDR; then we take 60 sample link lengths that are uniformly distributed between ℓ0 and ℓ1.
(Note that the transmission power level is set at -25dBm in our study.) For each average link length
ℓ in random networks, we select a set of node distribution densities λs so that the average number
of nodes in a circular area of radius ℓ is 5, 10, 15, 20, 30, and 40 respectively.

For convenience, we regard each setting of network and environment parameters as a system
configuration hereafter. Thus our study examines 75,600 different system configurations, and the
boxplots, medians, and distributions to be presented in the rest of the paper are mostly based on the
distribution of the corresponding metrics across different system configurations. For each system
configuration, we analyze the network performance when the ratio-K model is instantiated with

different Ks. The set of Ks we consider are {
√
2, 2,

√
5,

√
8, 3,

√
10,

√
13, 4,

√
18,

√
20, 5,

√
26,
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Common to grid and Poisson random networks

α {2.1, 2.6, 3, 3.3, 3.6, 3.8, 4, 4.5, 5}
β {0.05, 0.1, 0.15, . . . , 1}
ℓ For each α, take 60 sample link lengths that are uniformly distributed between link lengths

ℓ0 and ℓ1, with the link length ℓ0 corresponding to an interference-free packet delivery rate
(PDR) of 1% and the link length ℓ1 corresponding to a signal-to-noise-ratio (SNR) of 5dB
more than the minimum SNR for ensuring 100% interference-free PDR.

For grid networks only

K {
√
2, 2,

√
5,

√
8, 3,

√
10,

√
13, 4,

√
18,

√
20, 5,

√
26,

√
29,

√
34, 6}

For Poisson random networks only

λ For each average link length ℓ, select a set of node distribution densities λs so that the aver-
age number of nodes in a circular area of radius ℓ is 5, 10, 15, 20, 30, and 40 respectively.

K {1, 1.5, 2, 2.5, . . . , 10}

Table II: Parameter settings for numerical analysis

√
29,

√
34, 6}7 for grid networks, and {1, 1.5, 2, 2.5, . . . , 10} for Poisson random networks. As a

quick reference, Table II summarizes the parameter settings used in the numerical analysis.
Using the numerical results on network throughput and link reliability in the 75,600 system con-

figurations, we analyze 1) the impact of different factors on the best ratio-K model instantiation, 2)
the sensitivity of model instantiation, and 3) the tradeoff between reliability and throughput in in-
stantiating the ratio-K model. The observations in grid networks and random networks are similar,
thus here we only present results for grid networks; detailed results for random networks can be
found in our technical report [Zhang et al. 2012].

4.1.2. Sensitivity of ratio-K-based scheduling. We have analyzed how different network and envi-
ronmental factors affect the optimal K that maximizes network throughput and the minimum K for
ensuring certain link packet delivery rate (PDR). We have found that network and environmental
properties significantly affect the best instantiation of the ratio-K model. Due to the limitation of
space, we relegate the detailed discussion to our technical report [Zhang et al. 2012]; but to illus-
trate the drawbacks of choosing a constant K for ratio-K-based scheduling as in most existing study,
we present in what follows the summary results on the sensitivity of network throughput and link
reliability with respect to network and environmental dynamics.

Throughput. Given that the optimal K for maximizing network throughput changes with net-
work and environmental properties, using any constant K in ratio-K-based scheduling may lead
to throughput loss since the chosen K may not always be optimal. To quantify the impact of not
adapting K to network and environmental dynamics, we compute, for each system configuration,
the loss in network throughput when using a K that is ∆K away from the optimal K, denoted by
Kopt, for this system configuration.8 For different ∆K’s, Figure 3 shows the boxplot9 of throughput
loss across different system configurations, where the loss is defined as the reduction in throughput
divided by the optimal throughput. We see that, in general, throughput loss increases as |∆K| in-
creases. If the used K differs from the optimal one by up to 1, throughput loss can be up to 68%,
which is non-negligible.

7These Ks are chosen in a continuous manner in the sense that, given a receiver, the inner area enclosed by the boundaries
of the exclusion regions associated with every two closest Ks does not contain any node.We find that, for ratio-K-based
scheduling in grid networks, increasing K after K is already greater than 5 can only increase link reliability but not network
throughput. Thus 6 is large enough to serve as the largest K in our study.
8For each system configuration, we compute the network spatial throughput when different Ks are used. Then we set Kopt

as the K whose corresponding network throughput is the largest.
9Note that, for clarity of presentation, we group data by the rounded ∆K instead of ∆K directly because there are too many
∆K’s to present individually in a single figure.

ACM Transactions on Sensor Networks, Vol. 0, No. 0, Article 0, Publication date: 0.



0:13

-4 -3 -2 -1 0 1 2 3 4 5
0

20

40

60

80

100

T
hr

ou
gh

pu
t l

os
s 

(%
)

round(∆k)

Figure 3: Throughput loss when using K =
Kopt + ∆K for the ratio-K model, where Kopt

is the optimal K for maximizing throughput in a
system configuration. ∆K is rounded for clarity
of presentation.
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Figure 4: Possible throughput loss by choosing a
constant K
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Figure 5: Impact of using a constant K: PDR req. = 80%

To understand the impact of choosing a fixed K, Figure 4 shows, for different fixed Ks, the
possible throughput loss across different system configurations. We see that the throughput loss
can be significant. For instance, fixing K to 2 can lead to a throughput loss of up to 86.73% and a
median loss of 23.68%.

Therefore, using a constant K across different network and environmental settings may well
lead to significant loss in network throughput, and, to avoid biased evaluation against ratio-K-based
scheduling, we need to take this into account in both protocol design and performance analysis.

Reliability. To understand the impact of using a constant K on link reliability, we consider system
configurations where a proper choice of K can ensure a link reliability of at least 20%, 40%, 60%,
80%, and 100%. Due to the limitation of space, here we only present the data for configurations
where a link reliability of at least 80% can be achieved by choosing a proper K. (Similar phenomena
as what we will present have been observed for other configurations too.) Figure 5 shows, for
using different Ks, the boxplot of the PDR (i.e., packet delivery rate) gain across different system

configurations, where the PDR gain is defined as PDRk−0.8
0.8 and PDRk is the PDR resulting from

using a specific constant K in a system configuration.
We see that values of K less than or equal to 2 tend not to be a good constant number for

ensuring reliable data delivery (e.g., 80% link PDR): a constant K of 2 is unable to guarantee 80%

link reliability with non-negligible probability; a constant K of
√
2 is mostly unlikely to guarantee

80% reliability, even though
√
2 is the optimal K for maximizing throughput in a wide variety

of system configurations we study. On the other hand, using larger Ks (e.g., 4) can improve link
reliability, but this usually comes at the cost of reduced network throughput due to reduced spatial
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Figure 6: ∆k vs. performance gain

reuse of channel resources (as can be seen from Figure 4). We study this tradeoff between reliability
and throughput in detail next.

4.1.3. Tradeoff between reliability and throughput. The above discussion has alluded to the inher-
ent tradeoff between link reliability and network throughput in instantiating the ratio-K model. In
what follows, we examine the issue in detail. We numerically study the tradeoff because it is difficult
to derive the closed-form formula for the relationship between link reliability and network through-
put in general. For each link reliability requirement (e.g., 80%) and each system configuration that
can ensure the reliability by using certain minimum K = K0, we compute the performance gain
in packet delivery rate (PDR) and throughput when changing K to K ′ = (K0 + ∆K) for various

∆K’s. The performance gain is defined as
XK′−X0

X0
, where X0 is the PDR (or throughput) when

K = K0 and XK′ is the PDR (or throughput) when K = K ′.
Figure 6 shows the median performance gains for system configurations where a certain minimum

PDR can be ensured. We observe the following:

— Maximum network throughput is usually not achieved at the minimum K for ensuring certain a
link reliability but at a smaller K; (This is because smaller Ks increase channel spatial reuse.)

— As K increases from the minimum one for ensuring certain link reliability, network throughput
tends to decrease with high probability even though link reliability does improve; (This is because
increasing K reduces channel spatial reuse.)

— As PDR requirement increases, moreover, the probability of improving throughput by increasing
K from the minimum one of ensuring the PDR requirement further decreases, in addition to being
small all the time. (This is because a higher PDR requirement implies a larger minimum K for
ensuring the required PDR and thus less channel spatial reuse already; further increasing K leads
to further reduction in channel spatial reuse and thus the reduction in network spatial throughput
with higher probability.)

Implications. These findings suggest that we should use, in protocol design, the minimum K that
ensures the required link reliability, since this helps avoid throughput reduction (e.g., due to the
use of unnecessarily large Ks) while ensuring enough reliability at the same time. In general, the
minimum link reliability required is application dependent, and it relates to the question of how to
balance properties such as throughput, reliability, delay, and energy efficiency. In low-power wire-
less sensing and control networks such as those for industrial sensing and control, however, it is
usually desirable to have high link reliability for the following reasons: 1) reliable data delivery
itself is usually important for mission-critical sensing and control; 2) higher reliability implies less
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Figure 7: ∆k vs. delay increase: TDMA

variability and better predictability in data delivery performance (e.g., timeliness); this is because,
given a link reliability p, the coefficient-of-variation of packet transmission status (i.e., success or

failure) is
√

1−p
p which decreases as p increases; 3) higher reliability implies fewer number of

packet retransmissions and thus less energy consumption. Given that, for high reliability require-
ment, the probability of throughput loss is high when we increase K beyond the minimum one
required for ensuring reliability, PDR requirement can serve as a good basis for a node to choose
the right K to use.

Choosing the minimum K that ensures the required link reliability also tends to help reduce
data delivery delay. For grid networks with TDMA channel access control, for instance, Figure 7
shows the highly-likely increase in one-hop data delivery delay as K deviates, by ∆K, from the
minimum one K0 that ensures a required link reliability. (Interested readers can find the delay
analysis in Appendix C.) As K increases from K0, the delay increases because the number of
nodes in a link’s exclusion region increases, which introduces larger contention delay in channel
access. As K decreases from K0, the contention delay decreases, but the overall delay still tends to
increase because retransmissions are required to ensure the same link-layer data delivery reliability
as what is enabled by K0 without retransmission. Similar phenomena are observed for random
networks and contention-based channel access control mechanisms (see Appendix C).Given that
the performance (e.g., convergence rate) of networked control usually decreases dramatically with
increasing network delay, it is important to ensure small network delay in mission-critical sensing
and control, which further emphasizes the need for high link reliability.

4.2. The PRK interference model

Summary of ratio-K-based scheduling. Through the above detailed study with different config-
urations of grid and random networks, we find that both network throughput and link reliability are
sensitive to the choice of K in instantiating the ratio-K model. Thus it is important to take this into
account in protocol design, for instance, by adapting K to network and environmental dynamics.
We also observe that there is inherent tradeoff between link reliability and network throughput. In
ratio-K-based scheduling, therefore, it is desirable to use the minimum K that ensures the required
link reliability, since this tends to avoid throughput loss caused by using any unnecessarily large K.
This observation suggests that link reliability requirement can serve as a good basis for each node
to choose the right K to use in ratio-K-based scheduling.

PRK interference model. Based on the above observations on the behavior of ratio-K-based
scheduling, we propose the physical-ratio-K (PRK) interference model as a link-reliability-based
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instantiation of the ratio-K model as follows: “Given a transmission from node ns to node nr, a
concurrent transmitter ni does not interfere with the reception at nr if and only if the following
holds:

P (ni, nr) <
P (ns, nr)

Kns,nr,Tpdr

(16)

where P (ni, nr) and P (ns, nr) is the strength of signals reaching nr from ni and ns respectively,
and Kns,nr,Tpdr

is chosen such that the probability of nr successfully receiving packets from ns is
at least Tpdr in the presence of interference from all concurrent transmitters.” It is usually difficult
to derive closed-form formula for computing the parameter Kns,nr,Tpdr

in general. But Kns,nr,Tpdr

is amenable to online, distributed instantiation, because link reliability is a locally measurable met-
ric and can even be identified through real-time, data-driven, passive measurement [Zhang et al.
2009]. In particular, the problem of identifying parameter Kns,nr,Tpdr

can be modeled as a classi-
cal regulation control problem [Hellerstein et al. 2004], where the “reference input” is the required
link reliability Tpdr, the “control input” is the parameter Kns,nr,Tpdr

, and the “feedback” is the
current link reliability from ns to nr. That is, given a “reference input” of the required link reli-
ability Tpdr, the receiver nr can adapt the “control input” of Kns,nr,Tpdr

so that the actual link
reliability from ns to nr converges to Tpdr, where the adaptation of Kns,nr,Tpdr

can be based on
feedback control theory [Hellerstein et al. 2004]. Our preliminary study [Zhang et al. 2012] shows
that this control-theoretic approach to instantiating the PRK model parameter Kns,nr,Tpdr

is quite
promising; through purely local adaptation, for instance, the distributed controllers converge to a
state where the desired link reliability is guaranteed for each link while ensuring close-to-optimal
concurrency in scheduling. Because the adaptation of K is local and the signal strength between
nearby nodes is a pairwise, locally measurable metric too, we expect the PRK model to be a good
basis for designing distributed scheduling/MAC protocols. Since our focus in this paper is under-
standing the behavior of ratio-K-based scheduling instead of protocol design, we relegate the design
of distributed, PRK-based scheduling protocols to our future work. But we will study the potential
performance of PRK-based scheduling in Section 5.

Based on the above discussion, we see that the PRK model has the locality of the ratio-K model.
The PRK model also has the high fidelity of the SINR model, since it is based on link reliability
which captures the properties and constraints of wireless communication. Even though the param-
eter Kns,nr,Tpdr

of the PRK model depends on interference from all concurrent transmitters in
the network as in the SINR model, the PRK model is simpler than the SINR model in terms of
distributed protocol design. This is because, unlike the SINR model which explicitly characterizes
interference from each concurrent transmitter in the whole network, interference is modeled implic-
itly in the PRK model through locally measurable link reliability without worrying about who the
concurrent transmitters are. Thus, the PRK model enables a receiver to locally adapt the parameter
K for satisfying its local link reliability requirement without explicit network-wide coordination.
Note that the link-reliability-based definition of the PRK model also implicitly reflects many net-
work and environmental factors such as network topology, traffic pattern, and wireless channel path
loss, since the impact of these factors on interference control is reflected in the resulting link re-
liability. Also note that, even though the PRK model is conceived based on observations from the
analysis of uniform network and environmental conditions, the locality of the PRK model and the
existence of purely local procedures of adapting the PRK model parameter based on in-situ network
and environmental conditions (as shown in our preliminary study [Zhang et al. 2012]) enable the
PRK model to adapt to potentially heterogeneous conditions (e.g., in traffic load and wireless chan-
nel path loss) in different parts of a network, thus making the PRK model suitable for networks with
heterogeneous conditions too; the applicability of the PRK model in heterogeneous network and
environmental conditions will also be corroborated via testbed-based measurement in Section 6.

We define the PRK model based on signal strength instead of geographic distance so that the
model is more generically applicable, for instance, to scenarios where transmission power varies
across nodes [Moscibroda et al. 2006] or signal attenuation is non-uniform such as in our measure-
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ment study of Section 6. Signal-strength-based definition of the PRK model also makes it readily
applicable to field implementation since the precise distance between two nodes is difficult to esti-
mate in real-world settings in general. Note that the selection of Kns,nr,Tpdr

is based on each link
of a receiver nr such that the model can also be applied to cases where different links of a receiver
vary significantly, for instance, in their senders’ transmission powers.

To relate the PRK model to the ratio-K model and to facilitate discussions in Sections 5 and
6, we define the concept s-distance as follows: the s-distance from a node T to another node
R, denoted by sd(T,R), is 1

P (T,R) where P (T,R) is the strength of signals reaching R from T .

If sd(T1, R) > sd(T2, R), then T1 is regarded as s-farther away from R than T2 is, and T2 is
regarded as s-closer to R than T1 is. Given a K0 = Kns,nr,Tpdr

, the PRK model defines an

exclusion region ER(nr,K0) around the receiver nr such that a node nj is in ER(nr,K0) if and

only if sd(nj , nr) < R(ns, nr,K0), where R(ns, nr,K0) =
K0

P (ns,nr)
is called the s-radius of the

exclusion region ER(nr,K0).

5. OPTIMALITY OF PRK-BASED SCHEDULING

While detailed study of distributed protocol design using the PRK model is a part of our future work,
we analyze in this section the optimality of PRK-based scheduling as compared with SINR-based
scheduling to gain insight into the potential effectiveness of PRK-based scheduling.10 For ensuring
data delivery reliability in wireless networked sensing and control, we conduct our comparative
analysis on the condition that the link reliability in PRK- and SINR-based scheduling be the same.

5.1. Throughput loss in PRK-based scheduling

Similar to Sections 3 and 4, our analysis here considers infinite-sized grid and Poisson random
networks with uniform traffic patterns; we will verify the analytical insight in Sections 6 and 7
through testbed-based measurement and simulation where finite networks and non-uniform traffic
patterns are considered. We consider the scheduling algorithms that maximize channel spatial reuse
while ensuring the required link reliability; in particular, given a link L, the scheduling algorithms
try to find a maximum set of concurrent transmitters whose transmissions can occur in parallel with
the transmission along link L while ensuring the required link reliability.

To satisfy a certain link reliability requirement and thus a certain packet-delivery-rate (PDR) for
data and acknowledgment (ACK) reception along a link L, we need to make sure that the SINR
at the receiver R and the transmitter T is above a certain threshold γ0 and γ′

0 respectively. For a
given received signal strength Pr and background noise N0 at R, this requirement translates into

a requirement on controlling the maximum interference It at R to be Pr

γ0
− N0. Similarly, we can

derive the maximum tolerable interference I ′t at T .11 To control interference, we need to silence the
transmission of some nodes in the network, and, to maximize channel spatial reuse (i.e., maximizing
the number of concurrent transmitters), we need to minimize the number of silenced transmitters.
To this end, we have

PROPOSITION 5.1. Silencing nodes s-closer to R (or T ) rather than those s-farther away can
minimize the number of nodes silenced for ensuring certain minimum SINR at the receiver R (or
the transmitter T ) in both PRK- and SINR-based scheduling that maximizes channel spatial reuse
while ensuring the required link reliability. ✷

PROOF. The PRK model requires silencing all the nodes within an exclusion region around the
receiver (or the transmitter), and a node s-closer to the receiver (or the transmitter) has to be silenced

10Here we do not perform detailed comparative study between PRK- and ratio-K-based scheduling because it is obvious
from Section 4 that, by adapting to network and environmental conditions as well as application requirements, PRK-based
scheduling will perform better than ratio-K-based scheduling.
11
I
′
t may or may not equal to It depending on the ACK mechanism and the wireless radios. Accordingly, the exclusion

regions around the sender and the receiver of a transmission may or may not be the same in PRK-based scheduling.
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Figure 8: Difference in PRK- and SINR-based scheduling: receiver oriented view

if any node s-farther away from the receiver (or the transmitter) is silenced. Thus the proposition
holds for PRK-based scheduling.

For SINR-based scheduling, we prove the proposition by contradiction. Suppose the receiver R
has two potential interferers A and B nearby. The s-distances from A and B to receiver R are dA
and dB respectively, with dA < dB . Assume, by contradiction, that silencing B instead of A would
reduce the number of silenced nodes to ensure the required SINR at R. The fact is, however, that the
interference that node A, if not silenced, generates is greater than that generated by B. To ensure
that the total interference incurred to R does not exceed the threshold It, therefore, the number of
nodes that have to be silenced when B but not A is silenced is no less than the number of nodes that
have to be silenced when A but not B is silenced. Thus, silencing B instead of A does not reduce
the number of silenced nodes. The same argument applies to the transmitter T . Thus the proposition
holds for the SINR-based scheduling.

Proposition 5.1 implies that, in scheduling algorithms that maximize channel spatial reuse, the set
S of nodes silenced by the data reception at receiver R are the |S| number of nodes s-closest to R,
where |S| denotes the cardinality of the set S . We denote the set of nodes silenced by R in SINR-
and PRK-based scheduling as Ssinr and Sprk respectively. For a tolerable interference It at R, we
let Isinr and Iprk be the actual interference incurred at R in SINR- and PRK-based scheduling
respectively. Similarly, for correct ACK reception at the transmitter T in SINR- and PRK-based
scheduling, we denote the set of silenced nodes as S ′

sinr and S ′
prk respectively, and, for a tolerable

interference I ′t at T , we let I ′sinr and I ′prk be the actual interference incurred at T respectively. We

also define Ssinr = Ssinr ∪ S ′
sinr and Sprk = Sprk ∪ S ′

prk to represent the set of silenced nodes

around link L in SINR- and PRK-based scheduling respectively. Then,

PROPOSITION 5.2. Given the tolerable interference It and I ′t at the receiver R and the trans-
mitter T respectively, Ssinr ⊆ Sprk, Iprk ≤ Isinr ≤ It, and I ′prk ≤ I ′sinr ≤ I ′t. ✷

PROOF. Let the longest s-distance from a node in Ssinr to R be dsinr. By the definition of
the PRK and the SINR models and Proposition 5.1, all the nodes in Ssinr and Sprk are within
dsinr s-distance away from the receiver R. The difference between the PRK model and the SINR
model is that, by the definition of the PRK model (see Inequality 16), all the nodes that are dsinr
s-distance away from R have to be silenced in the PRK model as long as at least one of them has
to be silenced; whereas in the SINR model, we only need to silence the minimum number of nodes
dsinr s-distance away from R to ensure that the SINR at R is at least γ0. For example, in Figure
8, there are four nodes dsinr s-distance away from R. While the SINR model may only need to
silence node A to guarantee the SINR threshold It, the PRK model will silence all the four nodes
dsinr away. Therefore, Ssinr ⊆ Sprk. Since Ssinr ⊆ Sprk, Iprk ≤ Isinr. SINR-based scheduling
will ensure that Isinr ≤ It. Thus, Iprk ≤ Isinr ≤ It holds.

Similar argument applies to the transmitter T . Thus, S ′
sinr ⊆ S ′

prk, and I ′prk ≤ I ′sinr ≤ I ′t. Since

Ssinr ⊆ Sprk and S ′
sinr ⊆ S ′

prk, Ssinr ⊆ Sprk.
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Now, we are ready to derive the upper bound on the throughput loss in PRK-based scheduling as
compared with SINR-based scheduling. By Equations 6 and 5, the throughput of PRK- and SINR-
based scheduling, denoted by Tprk and Tsinr respectively, can be computed as follows:

Tprk =
TR,prk

|Sprk|
, Tsinr =

TR,sinr

|Ssinr|
where TR,prk and TR,sinr are the link throughput to R in PRK- and SINR-based scheduling respec-
tively. From Proposition 5.2, we know that the average link reliability in SINR-based scheduling is
no higher than that in PRK-based scheduling (since the actual interference incurred in SINR-based
scheduling is no less than that in PRK-based scheduling). Thus, TR,sinr ≤ TR,prk. Then, we can
define the throughput loss Tloss in PRK-based scheduling as

Tloss =
Tsinr − Tprk

Tsinr
=

TR,sinr

|Ssinr|
− TR,prk

|Sprk|

TR,sinr

|Ssinr|

≤
TR,sinr

|Ssinr|
− TR,sinr

|Sprk|

TR,sinr

|Ssinr|

=
|Sprk| − |Ssinr|

|Sprk|
(17)

Let nb be the node in Ssinr that is s-farthest away from the receiver R, P0 be the power of signals
that reach R from nb, and Nb be the number of nodes in the network whose s-distance to R is
sd(nb, R). Similarly, let n′

b be the node in S ′
sinr that is s-farthest away from the transmitter T , P ′

0
be the power of signals that reach T from n′

b, and N ′
b be the number of nodes whose s-distance to

T is sd(n′
b, T ). Then,

PROPOSITION 5.3. The expected Tloss is less than or equal to 1
|Sprk|

(min{ It−Iprk
P0×β , Nb} +

min{ I′

t−I′

prk

P ′

0×β , N ′
b}). ✷

PROOF. Let dist(nb, R) be the s-distance from nb to R, and dist(n′
b, T ) be the s-distance from

n′
b to T . Then from the proof of Proposition 5.2, we know that the s-distance d from every node

in Sprk \ Ssinr to R is dist(nb, R) since the PRK model silences all the nodes on the boundary of
the exclusion region around R. Similarly, the s-distance d′ from every node in S ′

prk \ S ′
sinr to T is

dist(n′
b, T ).

Given the interference tolerance It and I ′t at R and T respectively, the set of silenced nodes Sprk
is fixed for a tightest tessellation of concurrent transmitters in a specific network and environmental
setting. To understand the upper bound on Tloss, we need to understand the upper bound on (|Sprk|−
|Ssinr|) (see Inequality 17). By the definition of Sprk and Ssinr, we know that |Sprk| − |Ssinr| ≤
(|Sprk|−|Ssinr|)+(|S ′

prk|−|S ′
sinr|). To upper bound (|Sprk|−|Ssinr|), we analyze in what follows

the upper bound on (|Sprk| − |Ssinr|) and (|S ′
prk| − |S ′

sinr|).
We first derive the upper bound on (|Sprk| − |Ssinr|). Since all the nodes in Sprk \ Ssinr are on

the boundary of the exclusion region around R and are dist(nb, R) s-distance away from R, each
such node introduces an expected interference of P0 × β at receiver R. To ensure that the expected
interference at R is no more than It (a.k.a., the SINR at R is above γ0), one necessary condition is
that the expected interference introduced by nodes in Sprk \Ssinr should be no more than It−Iprk,

that is, the number of nodes in Sprk \ Ssinr should be no more than
It−Iprk
P0×β . Note that this upper

bound is usually not tight and not a sufficient condition because the interference at R tends to exceed
It if the interference from nodes in Sprk \ Ssinr reaches It − Iprk. This is because, if we add, for

every area of the same size of the exclusion region around R,
It−Iprk
P0×β more transmitters on average

in SINR-based scheduling than in PRK-based scheduling, the interference at R will exceed It−Iprk
when the area covered by the network is larger than the exclusion region around R (which is usually

the case). Therefore, an upper bound on the number of nodes in Sprk \Ssinr is
It−Iprk
P0×β . In addition,

the number of nodes on the boundary of the exclusion region around R is no more than Nb, thus

(|Sprk| − |Ssinr|) ≤ min{ It−Iprk
P0×β , Nb}.
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Similarly, we can derive that (|S ′
prk| − |S ′

sinr|) ≤ min{ I′

t−I′

prk

P ′

0×β , N ′
b}. Putting the above analysis

together, the expected Tloss is no more than 1
|Sprk|

(
It−Iprk
P0×β +

I′

t−I′

prk

P ′

0×β ).

Proposition 5.3 enables us to compute the upper bound, denoted by Tlb, on the throughput loss

in PRK-based scheduling. For convenience, we let ∆X = min{ It−Iprk
P0×β , Nb}+min{ I′

t−I′

prk

P ′

0×β , N ′
b},

and thus Tlb = ∆X
|Sprk|

. Note that ∆X represents an upper bound on |Sprk \ Ssinr|, that is, the

average number of nodes per exclusion region that are silenced in PRK-based scheduling but not in
SINR-based scheduling. In the next subsection, we numerically analyze the properties of ∆X and
Tlb.

5.2. Numerical analysis

Using the same network and environmental settings of Section 4.1.1 and based on Proposition 5.3,
we analyze the throughput loss in PRK-based scheduling as compared with SINR-based scheduling.
For each of the system configurations we study, more specifically, we first find It, I

′
t, and the mini-

mum K value of the PRK model for satisfying certain link reliability requirement, then we compute
|Sprk|, Iprk, and I ′prk which in turn enable us to compute ∆X and Tlb according to Proposition 5.3.

The observations in grid networks and random networks are similar, thus here we only present re-
sults for grid networks; detailed results for random networks can be found in our technical report
[Zhang et al. 2012].

For each system configuration, we compute the ∆X and throughput loss in PRK-based schedul-
ing. For different requirements on packet delivery rate (PDR), Figure 9 shows the boxplot
of throughput loss in PRK-based scheduling in different system configurations. We see that the
throughput loss is small in general, and it also tends to decrease as the PDR requirement increases.
For instance, the median throughput loss is less than 5% when the required PDR is 50%, and the
median throughput loss is less than 1% when the required PDR is 90%. These findings imply that,
for mission-critical wireless networking where the PDR requirement is usually high, PRK-based
scheduling can enable a performance very close to what is possible with SINR-based scheduling.

The reason why throughput loss is low in the PRK model is because ∆X tends to be small. For
instance, Figure 10 shows, for different PDR requirements, ∆X in different system configurations.
We see that ∆X is less than 1 in more than 99% of the system configurations we study.

Our findings suggest that PRK-based scheduling can perform very well compared with SINR-
based scheduling: PRK-based scheduling enables a network throughput very close to what is pos-
sible in SINR-based scheduling while ensuring the same required PDR. The performance of PRK-
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based scheduling also improves as the PDR requirement increases, which implies that PRK-based
scheduling can perform well in mission critical wireless networks such as those for real-time, reli-
able sensing and control.

6. MEASUREMENT STUDY OF PRK- AND SINR-BASED SCHEDULING

Our analytical results show that the PRK model serves well as the basis of instantiating the ratio-K
model in different network and environmental settings and that PRK-based scheduling achieves a
spatial throughput close to what is possible in SINR-based scheduling. To corroborate these results,
we experimentally compare the performance of PRK- and SINR-based scheduling using the NetEye
wireless sensor network testbed [Ju et al. 2012] at Wayne State University and the MoteLab testbed
[Werner-Allen et al. 2005] at Harvard University, and we also experimentally verify the tradeoff
between reliability and throughput in both PRK- and SINR-based scheduling. To reflect the impact
of link-layer behavior on network-wide behavior, we also consider end-to-end throughput in this
section. The purposes of this measurement evaluation are to verify the analytical insight and to
correct the misconceptions about the potential performance of ratio-K-based scheduling, thus our
evaluation will be based on the centralized scheduling algorithm Longest-Queue-First (LQF) that
has been used to compare different wireless interference models by Maheshwari et al. [Maheshwari
et al. 2008]. Distributed protocol design via the PRK model is a part of our future work.

6.1. Methodology

We use both the NetEye and the MoteLab testbeds so that we can evaluate PRK- and SINR-based
scheduling in different network and environmental settings. In what follows, we first describe prop-
erties of the two testbeds, then we discuss the traffic patterns and the scheduling objectives studies
here.

NetEye testbed. NetEye [Ju et al. 2012] is deployed in an indoor office as shown in Figure 11.
We use a 10 × 12 grid of TelosB motes in NetEye, where every two closest neighboring motes are
separated by 2 feet. Each of these TelosB motes is equipped with a 3dB signal attenuator and a
2.45GHz monopole antenna. In our measurement study, we set the radio transmission power to be
-25dBm (a.k.a. power level 3 in TinyOS) such that multihop networks can be created. In addition
to grid networks, the 10 × 12 grid enables us to experiment with random networks, where a ran-
dom network is generated out of the 10 × 12 grid by removing each mote of the grid with certain
probability.

Part of the input to PRK- and SINR-based scheduling algorithms (to be discussed in Section 6.2)
are radio model, background noise at every node, and strength of signals from any one node to
every other node. To collect these information about the 10 × 12 grid in NetEye, we perform
the following experiment: let the 120 motes take turns to be a transmitter one at a time; when a
mote is a transmitter, it broadcasts 600 128-byte packets with a transmission power of -25dBm
and an inter-packet interval of 100ms (note: each packet transmission takes ∼4ms); while a mote is
transmitting packets, every other mote keeps sampling its radio RSSI once every 2ms whether or not
it can receive packets from the transmitter, and, if a mote can receive packets from the transmitter, it

Figure 11: NetEye wireless sensor network testbed
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logs the received packets. Using the data collected in this experiment, we can derive the background
noise power at each node,12 the strength of signals from any node to every other node, and the packet
delivery rate (PDR) from any node to every other node as well as the associated SINR. These data
also enable us to derive the empirical radio model for the TelosB motes in NetEye, and the radio
model shows the relation between PDR and SINR. We will use this radio model in our scheduling
algorithms for two purposes: 1) to choose the SINR threshold for satisfying certain link reliability,
and 2) to compute the expected PDR for a given SINR at a receiver. For the transmission power of
-25dBm, Figure 12 shows the boxplot of PDR for links of different length, and Figure 13 shows the
histogram of background noise power in NetEye. We see that there is a high degree of variability
in PDR for links of equal length and in background noise power. Thus the testbed enables us to do
experiments in non-uniform settings.

MoteLab testbed. MoteLab is deployed at three floors of the EECS building of Harvard. Our
experiments use all of the 101 operational Tmote Sky motes, with 32, 39, and 30 motes distributed
at the first, second, and third floors respectively. We use a transmission power of −1dBm (a.k.a.
power level 27) to generate a well-connected multi-hop networks.

Using a method similar to that for NetEye, we have characterized the empirical radio model,
background noise at every node, and strength of signals from any node to every other node in
MoteLab. Figure 14 shows the histograms of the PDRs of all the wireless links, and Figure 15
shows the histogram of background noise power in MoteLab. We see that there is a high degree of
variability in link PDRs and background noise power. Thus the testbed enables us to do experiments
in non-uniform settings too.

Traffic patterns. To generate the traffic load for scheduling, we consider convergecast in wireless
sensor networks where data packets generated by all the nodes need to be delivered to a base station
node.

For NetEye, we consider convergecast in both grid and random networks. For grid network, we
let the node at one corner serve as the base station to which the remaining nodes of the 10 × 12
grid deliver their packets (mostly via multi-hop paths); we generate the random network out of the
10 × 12 grid by removing a mote in the grid with 30% probability, and then we let a mote closest
to a corner of the original grid be the base station (with ties broken randomly). In both the grid and
random networks, an approximate routing tree is built by letting each mote choose as its parent the
mote having the minimum ETX (i.e., expected transmission count) value to the base station among
all the motes within 6 feet distance. Given a routing tree, we generate the traffic load as follows:
each node generates a packet with 50% probability, and then the number of packets that need to be
delivered across a link is the number of packets generated in the subtree rooted at the transmitter

12It is derived from RSSI readings in the absence of packet transmission.
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of the link. Then the traffic load is used as the input to PRK- and SINR-based scheduling. (Note
that this traffic load can simulate event detection and may also be repeated to simulate periodic data
collection in sensor networks.)

For MoteLab, we let mote #115 at the center of the second floor be the base station to which the
remaining 100 motes deliver their packets (mostly via multi-hop paths). Then the routing tree and
network traffic are generated in the same manner as in NetEye.

Scheduling objectives. When scheduling the aforementioned traffic load, we consider three differ-
ent scheduling objectives: 1) Obj-5: to guarantee a 5dB minimum SINR at transmitters and receivers
(with throughput maximization as a second-order objective), which corresponds to a link PDR of
∼88% and ∼97% in NetEye and MoteLab respectively; 2) Obj-8: to guarantee an 8dB minimum
SINR at transmitters and receivers, which corresponds to a link PDR of ∼95% and ∼98% in NetEye
and MoteLab respectively; and 3) Obj-T: to maximize network throughput. When comparing PRK-
and SINR-based scheduling for different objectives and networks, we consider both link PDR and
network throughput.

Overall, we have 12 different experiment configurations, where each configuration specifies a
scheduling objective, a topology, and an interference model. A schedule is generated by our schedul-
ing algorithms for each system configuration, where the schedule S = {S1, S2, . . . , Sτ}, with Sj

being a set of links scheduled in j-th time slot and τ being the schedule length. Experiment with
each schedule is repeated 10 times to gain statistical insight. To experiment with a schedule in Net-
Eye, we select a mote not in the 10×12 grid to be the commander that broadcasts the schedule, slot
by slot, to the motes involved (as either a transmitter or a receiver) in each slot such that the links
in the same lot are synchronized to transmit at the same time; each slot is repeated 30 times before
moving onto the next slot so that we can get 30 samples on the transmission status (i.e., success or
failure) along each link of the slot to understand the behavior of each slot.

In the next subsection, we describe the scheduling algorithms used in our evaluation.

6.2. Scheduling algorithms

Optimal SINR- and ratio-K-based scheduling are NP-complete in general [Chafekar et al. 2008;
Sharma et al. 2006], thus we use the greedy, approximate scheduling framework, denoted by
Longest-Queue-First (LQF) [Joo et al. 2008; Le et al. 2010; Blough et al. 2008],13 that has been

13Note that the LQF scheduling framework has been shown to achieve close-to-optimal throughput in many practical scenar-
ios [Joo et al. 2008; Le et al. 2010] and has been a research focus in recent years. Besides LQF, we have also experimented
with other scheduling algorithms such as the commonly-used GreedyPhysical [Brar et al. 2006; Wang et al. 2006] and the re-
cently proposed iOrder [Che et al. 2011] algorithm. Similar phenomena have been observed for different algorithms, and here
we only present the results based on LQF for conciseness; interested readers can find the results based on GreedyPhysical
and iOrder in Appendix D.
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used to compare different wireless interference models in literature [Maheshwari et al. 2008]. In
addition to interference model, LQF takes as input the link demand vector f = (f1, f2, . . . , fL) for
L number of links, where the demand fi for the i-th link is the number of packets to be transmitted
across the link. The output of LQF is a schedule S = {S1, S2, . . . , Sτ}, where Sj is a set of links
scheduled in the j-th time slot. LQF works as follows to generate the output schedule:

1. Order and rename links such that f1 ≥ f2 ≥ . . . ≥ fL.
2. Set i = 1, S = ∅, τ = 0. (Note: initial schedule is empty.)
3. Schedule link i in the very first available time slot to which link i can be added based on certain

scheduling objective (e.g., guaranteeing certain minimum link reliability or maximizing network
throughput) and interference model. If no such slot exists, increment τ and schedule link i in the
newly created slot. (Note: increasing τ is equivalent to creating a new empty slot at the end of
the current schedule.)

4. Repeat step 3 fi times.
5. Increment i. Go back to step 3 until i > L.

For scheduling based on the SINR model, we can use LQF without any modification [Maheshwari
et al. 2008; Maheshwari et al. 2009], and we only need to instantiate LQF in the following manner:
at step 3, link i can be added to a slot j if 1) the SINR at all the receivers and senders of the slot
is above certain threshold γ0 when the scheduling objective is to guarantee certain minimum link
reliability, or 2) if adding link i can increase the expected throughput in slot j when the scheduling
objective is to maximize network throughput only. For convenience, we denote this SINR-based
scheduling algorithm LQFsinr.

For PRK-based scheduling, we need to extend LQF to accommodate the special properties of the
PRK model. Given two links l and l′, we define the s-distance from l to l′, denoted by sd(l, l′), as
minn∈{l.t,l.r},n′∈{l′.t,l′.r} sd(n, n

′) where l.t and l′.t are the transmitter of l and l′ respectively and

l.r and l′.r are the receiver of l and l′ respectively. Accordingly, for any three links l, l′, and l′′, l′′

is regarded s-closer to l′ than l is if sd(l′′, l′) < sd(l, l′). Then, for every link i′ in a slot Sj in PRK-
based scheduling, the s-radius of the exclusion region of i′ in Sj is less than minl∈Sj ,l 6=i′ sd(l, i

′).
When link i cannot be added to any of the existing slots in step 3 of LQF, link i (more precisely,
the transmitter and/or the receiver of i) may be within the exclusion region of another link already
scheduled. When the scheduling objective is to ensure certain minimum link reliability, link i is
within the exclusion region of another link i′ in a slot Sj if 1) there is no other link i′′ ∈ Sj that is
s-closer to i′ than i is, and 2) the SINR at the transmitter or receiver of i′ becomes less than certain
threshold γ0 (to violate the link reliability requirement) if we add i to Sj . When the scheduling
objective is to maximize network throughput, link i is regarded as within the exclusion region of
link i′ in Sj if 1) there is no other link i′′ ∈ Sj that is s-closer to i′ than i is, and 2) the local
throughput of i′ decreases if we add i to Sj , where the local throughput of i′ is defined as Ti′ (see
Equation 5) divided by the number of nodes in the exclusion region of i′. If i is within the exclusion
region of i′, we say that the exclusion region of i′ covers i.

Let S′ be the set of existing slots when link i is being scheduled in step 3 of LQF but cannot
be added into any one of S′. Had S′ only include one slot Sj (j = 1, 2, . . . , |S′|), then according
to the definition of the PRK model, for every link i′ ∈ Sj whose exclusion region covers i, we
should remove from Sj every link i′′ ∈ Sj , if any, with sd(i′′, i′) = sd(i, i′) so that the exclusion
region of i′ is well defined in Sj according to the PRK model; this is because, in the PRK model,
all the concurrent transmitters of certain s-distance to a transmitter or receiver R, denoted by S0,
are regarded as interferers to R and need to be silenced as long as any node in S0 has to be silenced
for ensuring certain ACK or packet reception reliability at R; we denote all such removed links as
L(Sj , i), and note that L(Sj , i) may be empty. To make the exclusion region of every link in every
slot of S′ well defined while minimizing the number of links that have to be removed from the
existing slots (for the purpose of high throughput), we need to find the slot Sj′ such that |L(Sj′ , i)| ≤
|L(Sj , i)| for all j = 1, 2, . . . , |S′|; then we regard link i as being silenced by some link i′ ∈ Sj′ ,

ACM Transactions on Sensor Networks, Vol. 0, No. 0, Article 0, Publication date: 0.



0:25

which entails the generation of a new slot for i. We denote L(Sj′ , i) as L(i); to conform to the PRK
model, we need to reschedule every link in L(i), if non-empty, in step 3 of LQF. Therefore, the
PRK-based instantiation of LQF becomes as follows, which is the same as LQFsinr except for the
italicized part of step 3:

1. Order and rename links such that f1 ≥ f2 ≥ . . . ≥ fL.
2. Set i = 1, S = ∅, τ = 0.
3. Schedule link i in the very first available time slot to which link i can be added based on certain

scheduling objective and PRK interference model. If no such slot exists, increment τ and sched-
ule link i in the newly created slot; additionally, remove L(i), if non-empty, from an existing slot
and reschedule them using step 3.

4. Repeat step 3 fi times.
5. Increment i. Go back to step 3 until i > L.

For convenience, we denote this algorithm as LQFprk.

6.3. Experimental results

In what follows, we present the measurement results for NetEye and MoteLab respectively.

NetEye testbed. Using the scheduling algorithms LQFprk and LQFsinr, we have measured the
performance of PRK- and SINR-based scheduling using the methodology discussed in Section 6.1.
Figures 16 and 17 show the PDR and end-to-end throughput of PRK- and SINR-based scheduling
in the grid network and the random network respectively, with the error bars representing the 95%
confidence intervals (which are very small) of the corresponding metrics. The PDR is defined as
the number of successfully delivered packets divided by the number of packets transmitted in a
schedule; the end-to-end throughput is defined as the number of successfully delivered packets
divided by the schedule length (i.e., number of slots used in a schedule).14 Note that the throughput
is not that high because of the limited concurrency allowed in the testbed which is in turn due to
the wide transitional region of wireless communication as can be seen from Figure 12. For instance,
Table III shows the probability of having different number of concurrent links in a slot in PRK-based
scheduling for the random network and the Obj-8 objective.

We see that, in agreement with our analytical insight, there is inherent tradeoff between reliability
and throughput in both PRK- and SINR-based scheduling. As the scheduling objective moves from

14We have also comparatively studied the PDRs of individual links as well as the spatial throughput in PRK- and SINR-
based scheduling, and we observe similar phenomena as shown in Figures 16(a) and 17(a). Thus we only present data on
end-to-end behavior here.
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Figure 16: PDR and throughput in the grid network
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Figure 17: PDR and throughput in the random network

# of Concurrent Links 1 2 3
Probability 0.46 0.51 0.03

Table III: Probability of having different number of concurrent links in a slot: random network,
PRK, Obj-8

Obj-8 to Obj-5 and to Obj-T, for instance, the throughput in PRK- and SINR-based scheduling keeps
increasing, but the PDR keeps decreasing accordingly.

We also see that the performance of PRK-based scheduling is very close to that of SINR-based
scheduling, thus the PRK model is able to address the drawbacks of the ratio-K model as observed
in [Maheshwari et al. 2008]. The PDRs of PRK- and SINR-based scheduling are above the required
link reliability for objectives Obj-8 and Obj-5 except for cases that we will discuss in the next para-
graph. The PDR in PRK-based scheduling is slightly lower than that in SINR-based scheduling,
and, due to reliability-throughput tradeoff, the throughput tends to be slightly higher in PRK-based
scheduling. The reason why PRK-based scheduling tends to have slightly lower PDR and higher
throughput is because PRK schedules are slightly shorter (e.g., by 3-4 slots less) than SINR sched-
ules, and this is enabled by the fact that silencing/removing links closer-by in the PRK model allows
more concurrently transmitting remote links (as discussed in Proposition 5.1). Note that LQF is one
of the best known algorithms for SINR-based scheduling [Joo et al. 2008; Le et al. 2010]; the reason
why SINR-based scheduling has slightly lower throughput than PRK-based scheduling is because
of the reliability-throughput tradeoff in interference-oriented scheduling and not because of the bad
performance of LQF itself.

Note that the measured PDRs of the PRK and SINR schedules slightly differ, sometimes higher
and sometimes lower, from the PDRs predicted via the radio model and the required SINR thresh-
old when we run the scheduling algorithms LQFprk and LQFsinr. This is because 1) wireless link
properties (e.g., attenuation) change over time, and the schedule generated based on historical trace
data may well behave differently as network condition changes, 2) the radio model itself evolves
over time [Sha et al. 2009], and 3) the generated schedule may not be the tightest tessellation of
concurrent transmitters, and the SINR at receivers of a schedule may well be greater than the re-
quired minimum SINR threshold as shown in Figure 18. Therefore, it is important to adapt to in-situ
network and environment conditions in scheduling. It is expected that the locality and high fidelity
of the PRK model will enable new approaches to distributed, interference-oriented MAC protocol
design, and we will study this issue in our future work.

Together with the above factors, the fact that LQFsinr and LQFprk are approximate algorithms
and do not guarantee the optimality of the resulting schedules also explains why PRK schedules
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Figure 18: Histogram of receiver-side SINRs in a PRK schedule for the random network and Obj-8

have slightly lower PDRs and higher throughput than SINR schedules even though the latter should
have higher PDRs based on the analysis of Section 5. For instance, both PRK and SINR schedules
ensure the minimum SINR threshold at receivers, but the actual SINRs at the receivers of SINR
schedules are higher than those in PRK schedules; thus PDRs are higher in SINR schedules, and the
reliability-throughput tradeoff leads to slightly lower throughput in SINR-based scheduling.

MoteLab testbed. Even though the network, traffic, and environmental settings are different for
NetEye- and MoteLab-based measurement studies, we observe similar phenomena in MoteLab as
those in NetEye. For instance, Figure 19 shows the PDR and throughput for PRK- and SINR-
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(b) End-to-end throughput

Figure 19: PDR and throughput in MoteLab

based scheduling in MoteLab. The figure shows the tradeoff between link reliability and network
throughput in scheduling; it also shows that PRK-based scheduling enables a throughput similar to
what is feasible in SINR-based scheduling while ensuring the required link reliability.

7. DISCUSSION

In this section, we examine the ratio-K and the PRK models via simulation with finite TelosB
networks. We also analyze the interference modeling issues for UWB networks.

7.1. Simulation with finite networks

Given a set of concurrent transmissions in a finite network, the interference at different receivers
may be different depending on their positions in the network. Therefore, the link reliability tends
to vary across different links, and the throughput defined by Formula 6 becomes a local metric
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Figure 20: Throughput loss in PRK-based
scheduling: finite grid networks
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Figure 21: Throughput loss in PRK-based
scheduling: UWB grid networks

representing only the local spatial throughput around the neighborhood of a link. Accordingly, the
minimum K required to satisfy certain link reliability, denoted by Kmin, and the optimal K to
maximize the local spatial throughput, denoted by Kopt, tends to vary across different links of the
network. Usually, interference at the center of a network tends to be greater than that at network
boundary, thus Kmin and Kopt for links at network center tend to be different from those for links
at network boundary. For convenience, we call this phenomenon the boundary effect, which does
not exist in the uniform, infinite networks studied in Sections 3, 4, and 5. To understand whether
the observations in Sections 3, 4, and 5 apply to finite networks, we study the issues of boundary
effect, ratio-K instantiation, and the optimality of the PRK model in finite networks using Matlab
simulation.

We consider the same system configurations studied in Section 4.1.1 except for
the following changes: 1) to understand boundary effect, we add another network pa-
rameter N to denote network size (i.e., number of nodes in a network), and the
set of Ns we consider are {64, 144, 256, 400, 576, 784, 1024, 12961600, 1936, 2304,
2704, 3136, 3600, 4096, 4624, 5184, 5776, 6400, 7056}; 2) to reduce simulation time, we only
consider the 5 link lengths of {1m, 2m, 6m, 10m, 14m} and the 10 node transmission probabilities
(i.e., β) of {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}. The observations in grid and random
networks are similar, thus we only present the data for grid networks here.

Our simulation results show that the observations in infinite networks carry over to finite networks
despite the potential boundary effect in finite networks. Due to the limitation of space, here we only
present Figure 20 which shows the small throughput loss in PRK-based scheduling as compared
with SINR-based scheduling, especially when PDR requirement is high.

7.2. Ultra-wideband networks

To understand whether the observations for IEEE 802.15.4 networks carry over to other wireless
networks. We analyze the interference modeling issues in IEEE 802.15.4a-based ultra-wideband
(UWB) networks. When analyzing UWB networks, we use the same methods as those in Sec-
tions 3, 4, and 5, and we consider the same set of system configurations as in Section 4.1.1 except
for the following: 1) we replace the CC2420 radio model with the IEEE 802.15.4a DS-UWB radio
model used in [Zhang and Brown 2008], 2) we use the typical channel models for UWB networks
as specified in [802.15.4a Working Group ]. Our analyses show that the observations for TelosB
networks apply to UWB networks, even though the specific optimal K for maximizing throughput
and the minimum K for satisfying certain link reliability in UWB networks tend to be less than
those in TelosB networks due to the higher interference tolerance capability of UWB radios. Due to
the limitation of space, here we only present Figure 21 which shows, for grid networks, the small
throughput loss in PRK-based scheduling as compared with SINR-based scheduling, especially
when PDR requirement is high.
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8. RELATED WORK

Maheshwari et al. [Maheshwari et al. 2008] and Moscibroda et al. [Moscibroda et al. 2006] have
studied the benefits of SINR-based scheduling as compared with ratio-K-based scheduling. Without
studying the impact of different factors and the tradeoff between reliability and throughput in ratio-
K-based scheduling, however, these work did not study how to best use the ratio-K model. Focusing
on wireless sensing and control networks and based on comprehensive study of the behavior of
ratio-K-based scheduling (in particular, the tradeoff between reliability and throughput), we propose
the PRK interference model as a basis of adapting K to network and environmental dynamics in
ratio-K-based scheduling. We have also studied the optimality of PRK-based scheduling through
analysis, simulation, and testbed-based measurement.

Most closely related to our work is Shi et al. [Shi et al. 2009] who, in parallel with our study,
examined the effectiveness of the protocol interference model for frequency scheduling (together
with routing and power control). Having not focused on distributed protocol design, however, Shi
et al. left it as a challenging open problem on how to efficiently choose optimal K in instantiating
the ratio-K model, and the optimal K was searched by solving a series of centralized optimization
problems in [Shi et al. 2009]. Through detailed study on the sensitivity of and the inherent tradeoff
between throughput and reliability in ratio-K-based scheduling, we discover the simple, distributed,
link reliability-based approach to instantiating the ratio-K model, and we propose the PRK model
which has both the locality of the ratio-K model and the high fidelity of the SINR model. Orthogonal
to the focus of Shi et al. [Shi et al. 2009], our work also examines the effectiveness of ratio-K-based
scheduling from the perspective of time scheduling and distributed protocol design, studies why
PRK/ratio-K-based scheduling can be very close to the performance of SINR-based scheduling,
examines the issue in wireless sensing and control networks with a wide range of system configura-
tions (on factors such as traffic load, link length, and wireless signal attenuation), and corroborates
the analytical and simulation results with testbed-based measurement.

Other approximate interference models such as hop-based model [Rhee et al. 2006] and range-
based model [Wang et al. 2006] have also been used in the literature, but they are either similar or
inferior to the ratio-K model [Maheshwari et al. 2008]. Therefore, we did not study those approxi-
mate models in this paper. Katz et al. [Katz et al. 2008] studied the feasibility of local interference
model, where only nodes in a local neighborhood (with diameter ρ) need to coordinate with one
another to ensure minimum SINR at each receiver. But they did not study the impact of various
factors on the optimal ρ, nor did they study how to correctly instantiate ρ in dynamic, potentially
unpredictable network and environmental settings. Spatial reuse control based on the concept of
exclusion region has been studied too [Menon et al. 2006; Ma et al. 2005]. Nonetheless, the is-
sue of the optimal Ks in different scenarios and the comparison between ratio-K- and SINR-based
scheduling were not studied in these work. Most of these work have also only focused on exclusion
regions around receivers, but not on exclusion regions around both the transmitters and receivers of
data transmissions at the same time to ensure reliable delivery of both data and ACK.

Several studies [Gollakota and Katabi 2008; Halperin et al. 2008] recently proposed mechanisms
for interference cancellation where a single receiver could simultaneously receive packets from mul-
tiple senders. These results challenge the traditional paradigm where a receiver can only receive one
packet at a time, and they suggest new ways of interference management. Nonetheless, interference
still needs to be controlled due to the constraints of these interference cancellation mechanisms [Li
et al. 2010]. For instance, ZigZag decoding [Gollakota and Katabi 2008] works the best when the
number of interferers is small (e.g., less than 6). How to schedule transmissions to take advantage
of interference cancellation is an interesting problem to study, and there has been some recent effort
on this [Li et al. 2010]. But the detailed study of this issue is beyond the scope of this paper.

9. CONCLUDING REMARKS

Through detailed analysis of how different network and environmental factors, such as traffic load
and wireless signal attenuation, affect the optimal instantiation of the ratio-K model, we showed
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that the performance of ratio-K-based scheduling is highly sensitive to the choice of K and that it
is important to take this into account in both protocol design and performance evaluation. We then
comparatively studied the performance of PRK- and SINR-based scheduling and showed that, if
correctly instantiated via the PRK model, ratio-K-based scheduling can achieve a close-to-optimal
performance. Our findings on PRK-based scheduling and the inherent tradeoff between reliability
and throughput suggest that the ratio-K model can be effectively instantiated through link-reliability-
based adaptation of K, which is amenable to distributed, local implementation too. These findings
showed the feasibility of integrating the high fidelity of the SINR model with the locality of the
ratio-K model, and suggested new approaches to MAC protocol design in dynamic, unpredictable
network and environmental settings. Thus these findings opened up new opportunities and perspec-
tives on interference-oriented protocol design and analysis in wireless sensing and control networks,
and we will explore these opportunities in our future work.
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APPENDIX

A. ANALYSIS OF THE INTERFERENCE IN RATIO-K BASED SCHEDULING IN GRID

NETWORKS

In this appendix, we analyze, for the tightest tessellation of concurrent transmissions in grid net-
works, the receiver-side interference when different ratio-K models are used. The key to this analy-
sis is to identify the spatial distribution of concurrent transmitters (i.e., interferers), based on which
the interference introduced by each interferer can be derived from the distance between the inter-
ferer and the receiver. Accordingly, we use a coordinate system where the receiver R is located at
the origin and its transmitter is located at location (0,1) (i.e., we treat the link length l from R to
its transmitter as the unit of distance). So the distance between R and an interferer ni at location

(x, y) is
√

x2 + y2. Then, our main task is to identify the coordinates of all the interferers when
different ratio-K models are used for the scheduling in grid networks. In what follows, we analyze
the coordinates of interferers in scheduling based on different ratio-K models.

When K =
√
2, Figure 22 shows the spatial distribution of concurrent transmissions. Given a

link L, we can find four nodes on the boundary of the exclusion region of link L such that each is
involved in a concurrent transmission (either as a sender or as a receiver). By symmetry, we can
expand this spatial distribution of concurrent transmissions to the rest of the network, and thus the
coordinates of interferers are

{

x = 2n+Q
y = 4m+ 1 + 2Q

where m,n ∈ Z, Q ∈ {0, 1} and m2+n2+Q 6= 0. So the receiver-side interference when K =
√
2

is as follows:

I = Pt × β × ℓ−α ×
(

∑∞
m=−∞

m2+n2 6=0

∑∞
n=−∞

1
[(2n)2+(4m+1)2]α/2+

∑∞
m=−∞

∑∞
n=−∞

1
[(2n+1)2+(4m+3)2]α/2

)

For other Ks, we can derive interferers’ coordinates in a similar fashion. For conciseness, we
ignore the detailed derivation here and only give the results as follows.

When K =
√
5, the spatial distribution of concurrent transmissions is shown in Figure 23, and

the coordinates of interferers are
{

x = 4n+ 2Q
y = 4m+ 1 + 2Q
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Figure 22: Concurrent trans-

missions when K =
√
2

Figure 23: Concurrent trans-

missions when K =
√
5

Figure 24: Concurrent trans-

missions when K =
√
8

where m,n ∈ Z, Q ∈ {0, 1} and m2 + n2 +Q 6= 0. So the receiver-side interference is

I = Pt × β × ℓ−α ×
(

∑∞
m=−∞

m2+n2 6=0

∑∞
n=−∞

1
[(4n)2+(4m+1)2]α/2+

∑∞
m=−∞

∑∞
n=−∞

1
[(4n+2)2+(4m+3)2]α/2

)

When K =
√
8, the spatial distribution of concurrent transmissions is shown in Figure 24, and

the coordinates of interferers are
{

x = 4n+ 2Q
y = 6m+ 1 + 3Q

where m,n ∈ Z, Q ∈ {0, 1} and m2 + n2 +Q 6= 0. So the receiver-side interference is

I = Pt × β × ℓ−α ×
(

∑∞
m=−∞

m2+n2 6=0

∑∞
n=−∞

1
[(4n)2+(6m+1)2]α/2+

∑∞
m=−∞

∑∞
n=−∞

1
[(4n+2)2+(6m+4)2]α/2

)

When K = 3, the spatial distribution of concurrent transmissions is shown in Figure 25, and the
coordinates of interferers are

{

x = 3n
y = 4m+ 1

where m,n ∈ Z and m2 + n2 6= 0. So the receiver-side interference is

I = Pt × β × ℓ−α ×
(

∑∞
m=−∞

m2+n2 6=0

∑∞
n=−∞

1
[(3n)2+(4m+1)2]α/2

)

When K =
√
10, the spatial distribution of concurrent transmissions is shown in Figure 26 and

interferers are divided into 7 groups, denoted as G1, G2, . . . , G7, and we let I =
∑7

i=1 Ii, where Ii
is the interference from nodes of group Gi. The coordinates of nodes in G1 are

{

x = 7n
y = 14m+ 1
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Figure 25: Concurrent trans-
missions when K = 3

Figure 26: Concurrent trans-

missions when K =
√
10

Figure 27: Concurrent trans-

missions when K =
√
13

where m,n ∈ Z and m2 + n2 6= 0. And I1 is given by

I1 = Pt × β × ℓ−α ×∑∞
m=−∞

m2+n2 6=0

∑∞
n=−∞

1
[(7n)2+(14m+1)2]α/2

The coordinates of nodes in G2 are
{

x = 7n+ 4
y = 14m− 1

where m,n ∈ Z and m2 + n2 6= 0. And I2 is given by

I2 = Pt × β × ℓ−α ×∑∞
m=−∞

∑∞
n=−∞

1
[(7n+4)2+(14m−1)2]α/2

The coordinates of nodes in G3 are
{

x = 7n+ 1
y = 14m− 3

where m,n ∈ Z and m2 + n2 6= 0. And I3 is given by

I3 = Pt × β × ℓ−α ×∑∞
m=−∞

∑∞
n=−∞

1
[(7n+1)2+(14m−3)2]α/2

The coordinates of nodes in G4 are
{

x = 7n+ 5
y = 14m− 5

where m,n ∈ Z and m2 + n2 6= 0. And I4 is given by

I4 = Pt × β × ℓ−α ×∑∞
m=−∞

∑∞
n=−∞

1
[(7n+5)2+(14m−5)2]α/2

The coordinates of nodes in G5 are
{

x = 7n+ 2
y = 14m− 7

where m,n ∈ Z and m2 + n2 6= 0. And I5 is given by

I5 = Pt × β × ℓ−α ×∑∞
m=−∞

∑∞
n=−∞

1
[(7n+2)2+(14m−7)2]α/2
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Figure 28: Concurrent trans-
missions when K = 4

Figure 29: Concurrent trans-

missions when K =
√
18

Figure 30: Concurrent trans-

missions when K =
√
20

The coordinates of nodes in G6 are
{

x = 7n+ 6
y = 14m− 9

where m,n ∈ Z and m2 + n2 6= 0. And I6 is given by

I6 = Pt × β × ℓ−α ×∑∞
m=−∞

∑∞
n=−∞

1
[(7n+6)2+(14m−9)2]α/2

The coordinates of nodes in G7 are
{

x = 7n+ 3
y = 14m− 11

where m,n ∈ Z and m2 + n2 6= 0. And I7 is given by

I7 = Pt × β × ℓ−α ×∑∞
m=−∞

∑∞
n=−∞

1
[(7n+3)2+(14m−11)2]α/2

When K =
√
13, the spatial distribution of concurrent transmissions is shown in Figure 27, and

the coordinates of interferers are
{

x = 4n+ 2Q
y = 8m+ 4Q+ 1

where m,n ∈ Z, Q ∈ {0, 1} and m2 + n2 +Q 6= 0. So the receiver-side interference is

I = Pt × β × ℓ−α ×
(

∑∞
m=−∞

m2+n2 6=0

∑∞
n=∞

1
[(4n)2+(8m+1)2]α/2+

∑∞
m=−∞

∑∞
n=−∞

1
[(4n+2)2+(8m+5)2]α/2

)

When K = 4, the spatial distribution of concurrent transmissions is shown in Figure 28, and the
coordinates of interferers are

{

x = 6n
y = 5m+ 1
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Figure 31: Concurrent trans-
missions when K = 5

Figure 32: Concurrent trans-

missions when K =
√
26

Figure 33: Concurrent trans-

missions when K =
√
29

where m,n ∈ Z and m2 + n2 6= 0. So the receiver-side interference is

I = Pt × β × ℓ−α ×
(

∑∞
m=−∞

m2+n2 6=0

∑∞
n=−∞

1
[(6n)2+(7m+1)2]α/2

)

When K =
√
18, the spatial distribution of concurrent transmissions is shown in Figure 29, and

the coordinates of interferers are
{

x = 6n+ 3Q
y = 7m+ 3Q+ 1

where m,n ∈ Z, Q ∈ {0, 1} and m2 + n2 +Q 6= 0. So the receiver-side interference is

I = Pt × β × ℓ−α ×
(

∑∞
m=−∞

m2+n2 6=0

∑∞
n=−∞

1
[(6n)2+(7m+1)2]α/2+

∑∞
m=−∞

∑∞
n=−∞

1
[(6n+3)2+(7m+4)2]α/2

)

When K =
√
20, the spatial distribution of concurrent transmissions is shown in Figure 30, and

the coordinates of interferers are
{

x = 8n+ 4Q
y = 6m+ 3Q+ 1

where m,n ∈ Z, Q ∈ {0, 1} and m2 + n2 +Q 6= 0. So the receiver-side interference is

I = Pt × β × ℓ−α ×
(

∑∞
m=−∞

m2+n2 6=0

∑∞
n=−∞

1
[(8n)2+(6m+1)2]α/2+

∑∞
m=−∞

∑∞
n=−∞

1
[(8n+4)2+(6m+4)2]α/2

)

When K = 5, the spatial distribution of concurrent transmissions is shown in Figure 31, and the
coordinates of interferers are

{

x = 5n
y = 6m+ 1
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Figure 34: Concurrent trans-

missions when K =
√
32

Figure 35: Concurrent trans-

missions when K =
√
34

Figure 36: Concurrent trans-
missions when K = 6

where m,n ∈ Z and m2 + n2 6= 0. So the receiver-side interference is

I = Pt × β × ℓ−α ×
(

∑∞
m=−∞

m2+n2 6=0

∑∞
n=−∞

1
[(5n)2+(6m+1)2]α/2

)

When K =
√
26, the spatial distribution of concurrent transmissions is shown in Figure 32, and

the coordinates of interferers are
{

x = 5n+m
y = −2n+ 6m+ 1

where m,n ∈ Z and m2 + n2 6= 0. So the receiver-side interference is

I = Pt × β × ℓ−α ×
(

∑∞
m=−∞

m2+n2 6=0

∑∞
n=−∞

1
[(5n+m)2+(−2n+6m+1)2]α/2

)

When K =
√
29, the spatial distribution of concurrent transmissions is shown in Figure 33, and

the coordinates of interferers are
{

x = 5n+ 2m
y = 3n− 6m+ 1

where m,n ∈ Z and m2 + n2 6= 0. So the receiver-side interference is

I = Pt × β × ℓ−α ×
(

∑∞
m=−∞

m2+n2 6=0

∑∞
n=−∞

1
[(5n+2m)2+(3n−6m+1)2]α/2

)

When K =
√
32, the spatial distribution of concurrent transmissions is shown in Figure 34, and

the coordinates of interferers are
{

x = 8n+ 4Q
y = 10m+ 5Q+ 1
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where m,n ∈ Z, Q ∈ {0, 1} and m2 + n2 +Q 6= 0. So the receiver-side interference is

I = Pt × β × ℓ−α ×
(

∑∞
m=−∞

m2+n2 6=0

∑∞
n=−∞

1
[(8n)2+(10m+1)2]α/2+

∑∞
m=−∞

∑∞
n=−∞

1
[(8n+4)2+(10m+6)2]α/2

)

When K =
√
34, the spatial distribution of concurrent transmissions is shown in Figure 35, and

the coordinates of interferers are
{

x = 6n+ 3Q
y = 12m+ 5Q+ 1

where m,n ∈ Z, Q ∈ {0, 1} and m2 + n2 +Q 6= 0. So the receiver-side interference is

I = Pt × β × ℓ−α ×
(

∑∞
m=−∞

m2+n2 6=0

∑∞
n=−∞

1
[(6n)2+(12m+1)2]α/2+

∑∞
m=−∞

∑∞
n=−∞

1
[(6n+3)2+(12m+6)2]α/2

)

When K = 6, the spatial distribution of concurrent transmissions is shown in Figure 36, and the
coordinates of interferers are

{

x = 6n
y = 7m+ 1

where m,n ∈ Z and m2 + n2 6= 0. So the receiver-side interference is

I = Pt × β × ℓ−α ×
(

∑∞
m=−∞

m2+n2 6=0

∑∞
n=−∞

1
[(6n)2+(7m+1)2]α/2

)

B. PROOF OF MAXIMUM-SPATIAL-REUSE TRAFFIC PATTERN IN GRID NETWORKS

In what follows, we prove the fact, used in Section 3, that the uniform traffic pattern where all the
transmissions follow the same direction along the grid-line enables the maximum degree of spatial
reuse in grid networks.

For convenience, we regard the schedules generated for the traffic pattern where all the trans-
missions follow the same direction along the grid-line as the same-direction schedules, and we
regard the schedules generated for the traffic pattern where transmissions follow different direc-
tions and different grid-lines as different-direction schedules. To achieve maximal spatial reuse, we
need to minimize the average area where nodes are silenced due to transmissions along a link.
Given a ratio-K model, we find the minimum area-per-link in optimal same-direction schedules and
different-direction schedules, and we denote them by Amin(k) and A′

min(k) respectively. We will
show that Amin(k) < A′

min(k) for all the cases we study.
Given an infinite grid network, we pick one node as the origin to set up the coordinate system.

So the coordinate of any node in grid networks, say (x, y), is such that x, y ∈ Z. As discussed in
Section 3, here we only consider cases where link length ℓ is a multiple of grid hop length. For
simplicity of presentation in the following discussion, we also set the unit of variables as multiples
of ℓ.
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Suppose that the coordinates of an end-node of a link and one of its closest interferers are (x, y),
(x′, y′) respectively. In grid networks, the following holds:







|x− x′| = a

|y − y′| = b√
a2 + b2 = K

where a, b ∈ Z
+ and K is the parameter of the ratio-K model. The values of a and b in different

ratio-K models are shown in Table IV.

Table IV: a and b in ratio-K model

K (a, b) K (a, b)√
2 (1, 1) 2 (0, 2)√
5 (1, 2)

√
8 (2, 2)

3 (0, 3)
√
10 (1, 3)√

13 (2, 3) 4 (0, 4)√
18 (3, 3)

√
20 (2, 4)

5 (0, 5)/(3,4)
√
26 (1, 5)√

29 (2, 5)
√
32 (4, 4)√

34 (3, 5)
√
6 (0, 6)

For same-direction transmissions, there are four possible patterns of tightest spatial reuse, as
shown in Figures 37, 38, 39, and 40. Denote these patterns of patter I , II , III , and IV respectively.
The average area-per-link for each spatial reuse pattern is shown in Equations 18, 19, 20, and 21
below:

AI(a, b) = (a+ 1)(a+ b) + b(b− a), if a > 0, (18)

AII(a, b) = 2b× (a+ 1), if 2b >
√

a2 + b2, 2a+ 1 >
√

a2 + b2 (19)

AIII(a, b) = 2a× (b+ 1), if 2a >
√

a2 + b2, 2b+ 1 >
√

a2 + b2 (20)

AIV (a, b) = b× (b+ 1), if a = 0 (21)

To achieve the highest spatial reuse for same-direction transmissions, we define a set of can-
didate schedule types Scha,b = {i|(a, b) satisfies the requirement of schedule pattern i, i ∈
I, II, III, IV }. So the average area-per-link is Amin = min{Ai, i ∈ Scha,b}.

For different-direction transmissions, there are also four types of tightest schedules, namely V ,
V I , V II , and V III as shown in Figures 41, 42, 43, and 44 respectively. The average area-per-link
for each spatial reuse pattern is shown in Equations 22, 23, 24, and 25 as follows.

AV (a, b) =
(a+ b+ 1)2 + (b− a)2

2
, if a > 0, (22)

AV I(a, b) =
(2a+ 1)(2b+ 1)

2
, if 2a ≥

√

a2 + b2, 2b ≥
√

a2 + b2 (23)

AV II(a, b) =
b(3b+ a+ 2)

2
, if a > 0, b = a+ 1 (24)

ACM Transactions on Sensor Networks, Vol. 0, No. 0, Article 0, Publication date: 0.



0:38

�

�

�

�

�

�

�

�

�

�

�

�

Figure 37: Type I
schedule

��

�

�

� �

�

�

Figure 38: Type II
schedule

�

�

� ���

�

�

Figure 39: Type III
schedule

�

�

�

�

�

��

Figure 40: Type IV
schedule

�
��

�

� �

�

� �
�

�

Figure 41: Type V
schedule

�

�
��� �

�

�

� �
�

�

Figure 42: Type V I
schedule

�

�

�

��

� �

�

�

�

�

�

Figure 43: Type V II
schedule

�

�

� �

�

�

�

� �

�

��

�
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schedule

AV III(a, b) = (2b+ 1)(b+ 1), if a = 0 (25)

Similar to the case of same-direction transmissions, we define Sch′
a,b = {i|(a, b) satisfies the

requirement of schedule pattern i, i ∈ V, V I, V II, V III}. So the average area-per-link is A′
min =

min{Aj , j ∈ Sch′
a,b}.

We compute Amin and A′
min for different ratio-K instantiations, and Table V shows the results.

We see that same-direction schedules always have smaller area-per-link than the corresponding
different-direction schedules do. This implies that same-direction traffic patterns enable maximum
degree of spatial reuse.

C. ANALYSIS OF ONE-HOP DATA DELIVERY DELAY

Here we analyze the single-hop transmission delays when we need to ensure a link layer data deliv-
ery reliability of p0.

To ensure a link layer frame delivery reliability of p0 when the delivery rate of each transmission
is p, a frame may have to be retransmitted. The maximum number of transmissions, denoted by x0,
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Table V: Amin and A′
min in ratio-K based scheduling

K Amin(k) A′
min(k)√

2 4 4.5
2 6 7.5√
5 8 8.5√
8 12 12.5

3 12 14√
10 12 14.5√
13 16 17.5
4 20 22.5√
18 24 24.5√
20 24 26.5
5 30 33√
26 32 32.5√
29 36 36.5√
32 40 40.5√
34 36 38.5
6 42 45.5

can be computed as follows:

x0 = argmin
x≥1

(1− p)x ≤ 1− p0 < (1− p)x−1 (26)

=

{

1 if p = 1

⌈ ln(1−p0)
ln(1−p) ⌉ if 0 < p < 1

. (27)

Then, when a frame is to be delivered by the link layer, the frame will be transmitted/retransmitted
until it is successfully received by the receiver or the frame has been transmitted for x0 number of
times.

In what follows, we analyze the expected transmission delay when link scheduling is based on
TDMA and CSMA respectively.

TDMA Delay. When TDMA scheme is applied, a node will compete with Nex number of nodes in
its exclusion region. We assume that the TDMA scheme is fair to all the nodes within the exclusion
region. We also assume that each node will only transmit one packet each time it gains the channel

and each packet transmission takes one slot time. Then a transmitter has to wait Nex

2 slots for the
first transmission attempt on average, and Nex−1 for every re-transmission attempt after that. Thus,
the expectation of a single packet transmission delay, denoted as Td,tdma, is

E[Td,tdma] =E[t1] · p+ E[t2] · p(1− p) + ...+ E[tx0−1] · p(1− p)x0−1 + E[tx0
] · (1− p)x0−1

=
N

2
+ (N − 1)

{

1− p

p
+

[

2x0 − 1− 1

p

]

· (1− p)x0−1

}

,

where E[tk] =
Nex

2 + (k − 1)(Nex − 1), 1 ≤ k ≤ x0.
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(b) PDR req. = 40%
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(c) PDR req. = 60%
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(d) PDR req. = 80%
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(e) PDR req. = 99%

Figure 45: ∆k vs. performance gain: TDMA, grid networks

Note that the unit of time is a time slot.

CSMA delay. According to [Yedavalli and Krishnamachar 2008], the expected delay between any
two transmission can be computed as

E[Tn] =
L− (L− 1)(1− pc)

n

npc(1− pc)n−1
δ,

where n is the number of nodes in the exclusion region, L is the length of packet in the number of
time slots (L = 13 in our study), δ is the duration of a time slot which is 320 microseconds, and pc is
the channel access probability which is approximately 1

16.5 = 0.606 [Yedavalli and Krishnamachar
2008]. Note that E[T ] includes the idle time, collision time, and the packet transmission time.

So the expected delay Dcsma when the link quality is p can be computed as

E[Dcsma] =E[Tn] · p+ 2E[Tn] · p(1− p) + ...

+ x0 · E[Tn] · p(1− p)x0−1 + x0 · E[Tn] · (1− p)x0

=E[Tn] ·
(1 + (1− p)x0

p
+ 2x0(1− p).x0−1

)

.

Simulation Result. Figures 45, 46, 47, and 48 show the median delay change and its 95% con-
fidence interval in grid and Poisson networks and when the channel access is through TDMA or
CSMA. We see that the transmission delay varies significantly when K varies by ∆K from the
minimum K ′ that ensures a certain link reliability. For Poisson networks with TDMA channel ac-
cess control (see Figure 46(d)), for instance, the median delay gain can be 167% when ∆K = −1.
We also observe that choosing the minimum K ′ that ensures the required link reliability also helps
reduce data delivery delay. As K increases from K ′, the delay increases because the number of
nodes in a link’s exclusion region increases, which introduces larger contention delay in channel ac-
cess. As K decreases from K ′, the contention delay decreases, but the overall delay still increases
because retransmissions are required to ensure the same link-layer data delivery reliability as what
is enabled by K ′ without retransmission.
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(b) PDR req. = 40%
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(c) PDR req. = 60%
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(d) PDR req. = 80%
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(e) PDR req. = 99%

Figure 46: ∆k vs. performance gain: TDMA, Poisson networks
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(b) PDR req. = 40%
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(c) PDR req. = 60%
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(d) PDR req. = 80%
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Figure 47: ∆k vs. performance gain: CSMA, grid networks
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(a) PDR req. = 20%
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(b) PDR req. = 40%
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(c) PDR req. = 60%
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(d) PDR req. = 80%
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Figure 48: ∆k vs. performance gain: CSMA, Poisson networks

D. MEASUREMENT-BASED STUDY OF PRK- AND SINR-BASED SCHEDULING WITH THE

GREEDYPHYSICAL AND IORDER ALGORITHMS

Besides the LQF-based scheduling algorithm as discussed in Section 6.2, here we compare PRK-
and SINR-based scheduling using the GreedyPhysical [Brar et al. 2006; Wang et al. 2006] and the
iOrder [Che et al. 2011] scheduling algorithms. The measurement methodology is the same as that
in Section 6.1.

GreedyPhysical algorithm. The GreedyPhysical algorithm is similar to the LQF algorithm, but,
instead of adding links in a decreasing order of the senders’ queue length, GreedyPhysical selects
non-interfering links for a slot in a decreasing of their interference numbers. The interference num-
ber of a link ℓ is defined as the number of other links that do not share any end-node with ℓ but can
be interfered by ℓ alone.

For GreedyPhysical scheduling based on the SINR model, we can use the basic GreedyPhysi-
cal algorithm [Brar et al. 2006; Wang et al. 2006] without any modification. For GreedyPhysical
scheduling based on the PRK model, we can extend the basic GreedyPhysical algorithm to accom-
modate the special properties of the PRK model, in the same way as we extend the basic LQF
algorithm for the PRK model in Section 6.2.

From the testbed experiments, we observe similar phenomena as those with the LQF algorithm. In
MoteLab, for instance, Figure 49 shows the PDR and throughput in PRK- and SINR-based schedul-
ing. It shows similar tradeoff between link reliability and network throughput, and it also shows that
PRK-based scheduling achieves a throughput similar to what is feasible in SINR-based scheduling
while ensuring the required link reliability.

iOrder algorithm. In addressing the drawback that the existing scheduling algorithms do not
explicitly consider/optimize the limiting impact of interference in wireless scheduling, we have
recently proposed the iOrder scheduling algorithm [Che et al. 2011]. iOrder considers both interfer-
ence budget and queue length in scheduling, where, given a set of scheduled transmissions in a time
slot, the interference budget characterizes the additional interference power that can be tolerated by
all the receivers without violating the application requirement on link reliability. When constructing
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Figure 49: PDR and throughput for the GreedyPhysical algorithm in MoteLab

the schedule for a time slot, iOrder first picks a link with the maximum number of queued packets;
then iOrder adds links to the slot one at a time in a way that maximizes the interference budget at
each step; this process repeats until no additional link can be added to the slot without violating the
application requirement on link reliability.

In particular, under the overall framework of ALG0, iOrder adds links into a slot Sℓi using the
iOrder-Slot(ℓi, E) algorithm [Che et al. 2011], where ℓi is the first link added into the slot and E
is a set of links such that ℓi /∈ E. In iOrder-Slot(ℓi, E), a new link ℓj that is added into a valid
slot-schedule Sℓi should satisfy

ℓi = argmaxlk∈Ec
Ib(Sℓi ∪ ℓk),

where Ib(Sℓi) is the interference budget of the slot-schedule Sℓi and Ec is the set of schedulable
links that satisfy the link reliability requirement. It turns out that, given a current valid slot-schedule
Sℓi , iOrder-Slot(ℓi, E) always schedules the link that has the largest s-distance from the links of Sℓi ,
such that the generated schedules in SINR- and PRK-based iOrder algorithms (with the PRK-based
scheduling framework as discussed in Section 6.2) are the same. Thus the PDR and throughput in
SINR- and PRK-based iOrder algorithms are the same.
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