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Abstract—Link estimation is a basic element of routing in low-
power wireless networks, and data-driven link estimation using
unicast MAC feedback has been shown to outperform broadcast-
beacon based link estimation. Nonetheless, little is knownabout the
impact that different data-driven link estimation methods have on
routing behaviors. To address this issue, we classify existing data-
driven link estimation methods into two broad categories: L-NT
that uses aggregate information about unicast andL-ETX that uses
information about the individual unicast-physical transmissions.
Through mathematical analysis and experimental measurement in
a testbed of 98 XSM motes (an enhanced version of MICA2 motes),
we examine the accuracy and stability of L-NT and L-ETX in
estimating the ETX routing metric. We also experimentally study
the routing performance of L-NT and L-ETX. We discover that
these two representative, seemingly similar methods of data-driven
link estimation differ significantly in routing behaviors: L-ETX is
much more accurate and stable than L-NT in estimating the ETX
metric, and, accordingly, L-ETX achieves a higher data delivery
reliability and energy efficiency than L-NT (for instance, by 25.18%
and a factor of 3.75 respectively in our testbed). These findings
provide new insight into the subtle design issues in data-driven
link estimation that significantly impact the reliability, stability,
and efficiency of wireless routing, thus shedding light on how
to design link estimation methods for mission-critical wireless
networks which pose stringent requirements on reliability and
predictability.

Index Terms—Low-power wireless networks, sensor networks,
link estimation and routing, data-driven, beacon-based

I. I NTRODUCTION

Wireless communication assumes complex spatial and tem-
poral dynamics [1], [2], [3], [4], thus estimating link properties
is a basic element of routing in wireless networks. One link
estimation method that is commonly used in early wireless
routing protocol design [5], [6] is letting neighbors exchange
broadcast beacon packets, and then estimating link properties
of unicast data transmissions via those of broadcast beacons.
Nonetheless, unicast and broadcast differ in many ways suchas
transmission rate and MAC coordination method [7], [8], andit
is difficult to precisely estimate unicast link properties via those
of broadcast due to factors such as the impact that dynamic,
unpredictable network traffic patterns have on link properties
[9], [10].

The research community has become increasingly aware of
the drawbacks of beacon-based link estimation, and has pro-
posed and started to use data-driven link estimation methods
where unicast MAC feedback serves as the basis of link esti-
mation [11], [12], [13], [14], [15], [6], [10]. Even though data-

driven link estimation has been shown to outperform broadcast-
beacon based link estimation in routing [10], [11], [14], little is
known about how different data-driven link estimation methods
affect the reliability, latency, stability, and energy efficiency of
routing. This is an important problem because, as low power
wireless sensor networks are increasingly deployed for mission
critical tasks such as industrial monitoring, it is critical to ensure
high reliability, low latency, and high predictability in routing.
Moreover, as the rich information carried in MAC feedback (e.g.,
both the number of physical transmissions and the time taken
for a unicast transmission) are used in an increasingly broader
context, it is important to understand the impact of the different
ways of using these information.

To answer the aforementioned open questions, our objectives
in this paper are to comparatively study the different methods
of data-driven link estimation and to distill the guidelines of
using MAC feedback information in wireless link estimationand
routing. In most wireless MACs, a unicast packet is retransmit-
ted, upon transmission failure, until the transmission succeeds or
until the number of transmissions has reached a certain threshold
value such as 8. For convenience, we call the individual trans-
missions involved in transmitting a unicast packet theunicast-
physical-transmissions. Accordingly, we classify existing data-
driven link estimation methods depending on whether they use
the aggregate information about unicast or they use information
about the individual unicast-physical transmissions. Forthe
routing metric ETX (i.e., expected number of transmissions),
more specifically, we find that existing data-driven link esti-
mation methods can be represented by two seemingly similar
protocols:L-NT where the number of physical transmissions
for each unicast is directly used to estimate link ETX, andL-
ETX where we use the number of physical transmissions for
each unicast to calculate the reliability of individual unicast-
physical-transmissions which is then used to estimate linkETX.

Through mathematical analysis and experimental measure-
ment in a testbed of 98 XSM motes (an enhanced version of
MICA2 motes), we examine the accuracy and stability of L-NT
and L-ETX in estimating the ETX routing metric. Using traffic
traces for both bursty event detection and periodic data collection
and using both grid and random network topologies, we also
experimentally study the routing performance of L-NT and L-
ETX. We discover that these two representative, seemingly sim-
ilar methods of data-driven link estimation differ significantly
in routing behaviors. L-ETX is much more accurate and stable
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than L-NT in estimating the ETX metric, and L-ETX correctly
identifies the optimal routes with a higher probability thanL-
NT does. Accordingly, L-ETX achieves a higher data delivery
reliability, higher energy efficiency, and higher throughput than
L-NT (for instance, by 25.18%, a factor of 3.75, and a factor
of 3.53 respectively in our testbed); L-ETX also uses longer
yet more reliable links, thus introducing lower data delivery
latency and latency jitter than L-NT. We also find that the higher
stability in L-ETX enables a much higher stability in routing,
thus improving the predictability of routing performance which
is critical to mission-critical networked control. These findings
provide new insight into the subtle design issues in data-driven
link estimation that significantly impact the reliability,latency,
and predictability of wireless routing, thus shedding light on
the principles of using MAC feedback information in mission-
critical wireless networks.

The rest of the paper is organized as follows. We compare
different methods of using MAC feedback in Section II, and we
present the impact of link estimation accuracy on routing behav-
iors in Section III. (Due to the limitation of space, we relegate
to [16] the discussions of additional performance evaluation
results and protocols similar to L-NT and L-ETX.) Finally, we
discuss related work in Section IV and make concluding remarks
in Section V.

II. M ETHODS OF DATA-DRIVEN ESTIMATION

In this section, we first identify the two representative methods
(i.e., L-NT and L-ETX) of data-driven link estimation, thenwe
comparatively study their estimation accuracy via mathematical
and experimental analysis.

A. Different data-driven estimation methods

MAC feedback for a unicast transmission usually contains
aggregate information (e.g., MAC latency, number of physical
transmissions, and transmission status) about transmitting the
unicast packet as a whole, but from these information we
can derive properties of the individual physical transmissions
involved in unicasting. Accordingly, we can classify existing
data-driven link estimation methods depending on whether they
directly use the aggregate information about unicast or they use
information about the individual unicast-physical-transmissions.
In the literature, SPEED [12], LOF [10], and CARP [14] use the
aggregate information MAC-latency, yet protocols such as four-
bit-estimation [11], EAR [13], NADV [15], and MintRoute[6]
use the reliability information about individual unicast-physical-
transmissions. In this paper, we mainly focus on the following
two data-driven link estimation methods:

• L-NT: directly use feedback information on thenumber
of physical transmissions(NT) to estimate the expected
number of physical transmissions (ETX) required to suc-
cessfully deliver a packet across a link;

• L-ETX: first use feedback information to estimate the
reliability, denoted as PDR, of individual unicast-physical-
transmissions, then estimate ETX as1PDR.

More specifically, given the same time series of MAC feedback
information on unicast transmissions along a link, L-NT andL-
ETX try to estimate ETXt and PDRt respectively, where ETXt

is the ETX for the link and PDRt is the expected reliability
of unicast-physical-transmissions along the link. In L-NT, the
time series input{xi : i = 1, 2, . . .} to its estimator is
{NTi : i = 1, 2, . . .}, where NTi is the number of physical
transmissions taken to deliver thei-th unicast packet; in L-ETX,
the time series input{xi} is {PDRi′ : i′ = 1, 2, . . .}, where
PDRi′ is the packet delivery rate of thei′-th window of unicast-
physical-transmissions with window sizeW (i.e., the average
delivery rate of the((i′−1)×W +1)-th, ((i′−1)×W +2)-th, . . . ,
and the((i′−1)×W+W )-th unicast-physical-transmission). Note
that, for thei-th unicast packet, NTi is calculated based on MAC
feedback on the number NT′i of physical transmissions incurred
and the status of the unicast transmission showing whether the
packet has been successfully delivered or not. If the statusshows
success, then NTi = NT′

i; otherwise, the feedback simply shows
that the packet has not been delivered after transmitting NT′

i

times, thus we set NTi as NT′

i

P u
i

(0 < Pu
i < 1), wherePu

i is
the average unicast reliability calculated based on the status
information on transmitting thei unicast packets so far.

The rationale for considering the two methods L-NT and L-
ETX are as follows:

• ETX is a commonly used metric in wireless network
routing;

• The parameter NT is tightly related to MAC latency (e.g.,
MAC latency is approximately proportional to NT given
a certain degree of channel contention) such that L-NT
also represents protocols that directly use MAC latency
in routing; (we show in [16] that MAC-latency based
protocols perform similar to L-NT.)

• L-NT and L-ETX estimate the same link property ETX,
which enables fair comparison between different data-
driven estimation methods.

Based on this research design, L-NT represents the method used
in SPEED, LOF, and CARP, and L-ETX represents the method
used in four-bit-estimation, EAR, NADV, and MintRoute.

In what follows, we first mathematically analyze the dif-
ferences between L-NT and L-ETX to gain basic insight into
the behaviors of different link estimation methods, then we
experimentally measure the behaviors of L-NT and L-ETX to
corroborate the analytical observations.

B. Analysis of L-NT and L-ETX

In low-power, resource constrained wireless sensor networks,
most routing protocols use simple, light-weight estimators such
as the exponentially-weighted-moving-average (EWMA) esti-
mator and its variations. Therefore, our analysis in this section
focuses on the accuracy of estimating ETX for a wireless linkvia
the commonly-used EWMA estimator. But the analytical results
also apply to variations of the basic EWMA estimator such
as the Window-Mean-with-EWMA (WMEWMA) estimator [6]
and the Flip-Flop Filter (FF) [17].

Given a time series{xi : i = 1, 2, . . .} where xi is a
random variable with meanµ and varianceσ2, the corresponding
EWMA estimator forµ is

y1 = x1

yk = αyk−1 + (1 − α)xk, 0 ≤ α ≤ 1, k = 2, 3, . . .
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By induction, we have

yk = αkx1 + (1 − α)

k
∑

i=1

αk−ixi, k ≥ 1

In what follows, we first analyze the accuracy of EWMA
estimator in general, then we compare the accuracy of L-NT
and L-ETX. For mathematical tractability, our analysis assumes
that each unicast-physical-transmission is a Bernoulli trial with a
failure probabilityP0 (0 ≤ P0 < 1). We corroborate the validity
of our analytical results through testbed-based experimental
analysis in Sections II-C and III.
Accuracy of EWMA estimators. To measure the estimation
error in the estimator̂µ = yk, we definesquared error(SE) as

SEk = (yk − µ)2

= ((αkx1 + (1 − α)
∑k

i=1 αk−ixi) − µ)2

= (αk(x1 − µ) + (1 − α)
∑k

i=1 αk−i(xi − µ))2

= α2k(x1 − µ)2 + (1 − α)2
∑k

i=1 α2(k−i)(xi − µ)2+
CPk

(1)
where

CPk = (1 − α)
∑k

i=1 α−i(x1 − µ)(xi − µ)+

(1 − α)2
∑k

i=1

∑k

j 6=i,j=1 α2k−i−j(xi − µ)(xj − µ)

Therefore, themean squared error(MSE) is

MSEk = E[SEk]
= α2kE[(x1 − µ)2]+

(1 − α)2
∑k

i=1 α2(k−i)E[(xi − µ)2]+
E[CPk]

(2)

Note that the expectationE[] is taken overx1, x2, . . . , xk.
When each unicast-physical-transmission is a Bernoulli trial,

the xi’s are mutually uncorrelated in both L-NT and L-ETX,
that is,E[xixj ] = E[xi]E[xj ] if i 6= j. Then fori 6= j,

E[(xi − µ)(xj − µ)] = E[xixj − xiµ − µxj + µ2]
= E[xi]E[xj ]−

E[xi]µ − µE[xj ] + µ2

= 0

Thus,

E[CPk] = (1 − α)
∑k

i=1 α−iE[(x1 − µ)(xi − µ)]+
(1 − α)2×
∑k

i=1

∑k

j 6=i,j=1 α2k−i−jE[(xi − µ)(xj − µ)]

= 0
(3)

From Equations 2 and 3, we have

MSEk = α2kσ2 + (1 − α)2
∑k

i=1 α2(k−i)σ2

= σ2 2α2k+1−α+1
1+α

(4)

To measure thedegree of estimation error(DE) using esti-
mator µ̂ = yk, we defineDEk as

√
MSEk

µ
. Thus

DEk =
√

MSEk

µ

= σ
µ

√

2α2k+1−α+1
1+α

= COV [X ]
√

2α2k+1−α+1
1+α

(5)

whereCOV [X ] is the coefficient-of-variation (COV) of thex′s,
i.e., COV [X ] = σ

µ
. Therefore, we have

Proposition 1: Assuming thatxi andxj (i 6= j) are uncorre-
lated, the degree of estimation error using EWMA estimator is
proportional to the COV of thex’s. 2

Relative accuracy of L-NT and L-ETX. To compare the
DEs of L-NT and L-ETX, therefore, we first analyze the COV
of NTi andPDRi′ as follows:

• L-NT: By definition, NTi can be modeled as following a
geometric distribution with the probability of success1 −
P0. ThusE[NTi] = 1

1−P0
, andstd[NTi] =

√
1−(1−P0)

1−P0
=

√
P0

1−P0
. Therefore,

COV [NTi] =
std[NTi]

E[NTi]
=

√

P0 (6)

• L-ETX: Given a window sizeW > 1, the number N of
successes in W physical transmissions can be modeled
as following a Binomial distribution with the probability
of success1 − P0 and the number of trialsW . Thus,
E[N ] = W (1 − P0), and var[N ] = W (1 − P0)P0. Let
PDRi′ = N

W
, then E[PDRi′ ] = 1

W
E[N ] = 1 − P0,

var[PDRi′ ] = 1
W 2 var[N ] = (1−P0)P0

W
, andstd[PDRi′ ] =

√

var[PDRi′ ] =

√
(1−P0)P0√

W
. Therefore,

COV [PDRi′ ] =
std[PDRi′ ]

E[PDRi′ ]
=

√
P0

√

W (1 − P0)
(7)

From Equations (6) and (7), we see that

COV [NTi] > COV [PDRi′ ], if W >
1

1 − P0
(8)

Note that the conditionW > 1
1−P0

generally holds in practical
scenarios, sinceW is generally greater than 2 andP0 is generally
less than 50% [18], [10].

From Proposition 1 and Inequality (8), then we have
Proposition 2: Given an EWMA estimator and assuming

that each unicast-physical-transmission is a Bernoulli trial,
DEk(L-ETX) < DEk(L-NT) if W > 1

1−P0
; that is, L-ETX

is more accurate than L-NT in estimating the ETX value of a
link as long asW > 1

1−P0
. 2

Proof sketch: We first show thatDE(L-ETX) ≈ DE(PDR)
as follows. LetPt be the actualE[PDR], ETXt be the actual
ETX and equal to1

Pt
, andPe be the estimatedE[PDR]. Then

the absolute estimation error∆ETX of ETX is as follows:

∆ETX = | 1

Pe

− 1

Pt

| =
1

Pt

|Pt − Pe

Pe

| = ETXt

|Pt − Pe|
Pe

|

Thus

DE(L-ETX) =
E[∆ETX]

ETXt

= E[
|Pt − Pe|

Pe

] ≈ DE[PDR].

In the mean time, we know from Proposition 1 and Inequality 8
that DEk(L-NT) > DEk[PDR]. Therefore,DEk(L-NT) >

DEk(L-ETX).

2
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From the above analysis, we see that, even though L-NT and
L-ETX use the same MAC feedback information in a seemingly
similar fashion (e.g., PDRi′ ’s assume, approximately, a form
of the reciprocal of NTi’s), the variability (more precisely, the
COV) of NTi’s tends to be greater than that of PDRi′ ’s, and this
difference in variability makes L-NT a less accurate estimator
than L-ETX. We corroborate these analytical observations
through experimental analysis in Sections II-C and III.

Impact of W and α. Note that, even though they do not
affect the relative accuracy of L-NT and L-ETX, the window
sizeW used in L-ETX and the weight factorα of the EWMA
estimator also affect estimation accuracy. In what follows, we
briefly discuss the impact ofW andα.

From Equations 5 and 7, we see that larger window sizeW

will lead to smaller estimation error in L-ETX; on the other
hand, a largerW leads to reduced agility for the estimator
to respond to changes, which can negatively affect routing
performance in the presence of network dynamics. In practice,
we usually choose a medium-sizedW as a tradeoff between
estimation accuracy and agility, andW is set as 20 for the study
of this paper.

Let Qk(α) =
√

2α2k+1−α+1
1+α

, then, by Equation 5,DEk is
proportional toQk(α). Figure 1 shows the impact ofα on

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

α

Q
k(α

)

 

 

k = 1
k = 2
k = 4
k = 8
k = 16
k = 32
k = 64

Fig. 1. Qk(α)

Qk(α) and thusDEk. We see that the optimalα value increases
as k increases, and the intuition is that, ask increases, the
contribution of the history data (i.e.,x0, x1, . . . , xk−1) to yk

becomes more and more important compared with that of the
most recent observationxk. On the other hand, the agility of
the estimator decreases asα increases. Afterα exceeds certain
threshold value, moreover,Qk(α) (and thusDEk) increases as
α increases further. In practice, therefore, we can choose a value
that tradeoffs between estimation precision and agility, and we
setα as 7

8 in our study.

C. Experimentation with L-NT and L-ETX

Having shown that L-ETX is a more accurate estimation
method than L-NT in Proposition 2, we experimentally evaluate
the validity of the analytical results and study the impact of
estimation accuracy on the optimality and stability of routing
using theKansei[19] sensor network testbed. In what follows,
we first present the experiment design and then the experimental
results.

Experiment design. In an open warehouse with flat aluminum
walls (see Figure 2(a)), Kansei deploys 98 XSM motes [20] in
a 14×7 grid (see Figure 2(b)) where the separation between
neighboring grid points is 0.91 meter (i.e., 3 feet). The grid

(a) Kansei (b) 14×7 grid

Fig. 2. Sensor network testbedKansei

deployment pattern enables experimentation with regular,grid
topologies, as well as random topologies (e.g., by randomly
selecting nodes of the grid to participate in experiments).XSM is
an enhanced version of Mica2 mote, and each XSM is equipped
with a Chipcon CC1000 radio operating at 433 MHz. To form
multihop networks, the transmission power of the CC1000 radios
is set at -14dBm (i.e., power level 3) for the experiments of
this paper unless otherwise stated. XSM uses TinyOS [21] as
its operating system. For all the experiments in this paper,the
default TinyOS MAC protocol B-MAC [22] is used; a unicast
packet is retransmitted, upon transmission failure, at theMAC
layer (more specifically, the TinyOS component QueuedSend)
for up to 7 times until the transmission succeeds or until the8
transmissions have all failed; a broadcast packet is transmitted
only once at the MAC layer (without retransmission even if the
transmission has failed).

To collect measurement data on unicast link properties, we let
the mote on the left end of the middle row (shown as black dots
in Figure 2(b)) be thesenderand the rest 13 motes of the middle
row as thereceivers, and we measure the unicast properties of
the links between the sender and individual receivers. (Note that
we have observed similar phenomena as what we will present in
this section for other sender-receiver pairs.) The sender transmits
15,000 unicast packets to each of the receivers with a 128-
millisecond inter-packet interval, and each packet has a data
payload of 30 bytes. Based on packet reception status (i.e.,
success or failure) at the receivers, we measure unicast link
properties.

To examine the impact of traffic-induced interference on link
properties and link estimation, we randomly select 42 motes
out of the light-colored (of color cyan) 6 rows asinterferers,
with 7 interferers from each row on average. Each interferer
transmits unicast packets (of payload length 30 bytes) to a
destination randomly selected out of the other 41 interferers. The
load of the interfering traffic is controlled by letting interferers
transmit packets with a certain probabilityd whenever the
channel becomes clear. Nget al. [23] showed that the optimal
traffic injection rate is 0.245 in a regular linear topology,and
the optimal traffic injection rate will be even lower in general,
two-dimensional network. Thus our measurement study focuses
more on smallerd’s than on larger ones, but we still study larger
d’s to get a sense on how systems behave in extreme conditions.
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More specifically, we use the followingd’s in our study: 0,
0.01, 0.04, 0.07, 0.1, 0.4, 0.7, and 1. Thus the interference
pattern is controlled byd in this case. (Note that phenomena
similar to what we will present have been observed for other
interfering traffic patterns, for instance, with differentspatial
distribution and different number of interferers.) We havedone
the experimental analysis for differentd’s and observed similar
phenomena. Due to the limitation of space, here we only present
data for the case whend = 0.1.

Estimation accuracy. Figure 3 shows the COV of NT and PDR

2 4 6 8 10 12
0

0.5

1

1.5

distance (meter)

C
O

V

 

 

NT
PDR

Fig. 3. COV[NT] vs. COV[PDR] whend = 0.1; Note that the reason why
the COVs are not monotonic with link length (i.e., sender-receiver distance) is
because of radio and environment variations [4]. In this paper, we use distance
mainly to identify individual links associated with a sender, and for clarity of
presentation, we do not present confidence intervals unlessthey are necessary
for certain claims of the paper.

for different links. We see that COV[NT] is significantly greater,
up to a factor of 17.78, than COV[PDR], which is consistent
with our analysis as shown by Inequality 8. Accordingly, the
degree of estimation error (DE) in L-NT is consistently greater
than that in L-ETX, as shown in Figure 4 where DE(L-NT)

0 5 10

10
0

10
5

distance (meter)

D
E

 

 

L−NT
L−ETX

Fig. 4. DE(L-NT) vs. DE(L-ETX) whend = 0.1

and DE(L-ETX) for different links are presented. Therefore, the
experimental results corroborate the prediction of Proposition 2.
Note that the reason why, given an estimation method, the trend
for its curves of COV and DE are slightly different (unlike what
Equation 5 would suggest to be exactly the same) is due to the
simplifying assumption (i.e., each unicast-physical-transmission
is a Bernoulli trial) used in the analysis. Nonetheless, the
analytical and experimental analysis do agree on the relative
accuracy between L-NT and L-ETX. The reason why the DE
value for the 11-meter-long link is very large in L-NT is due
to the extremely low reliability of the link and the fact, as we

show immediately below, that L-NT introduces large estimation
errors in the presence of transmission failures.

To elaborate on the details of link estimation, Figure 5 shows,
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Fig. 5. Time series of estimated ETX values in L-NT and L-ETX for a link
of length 9.15 meters (i.e., 30 feet)

for a link of length 9.15 meters (i.e., 30 feet), the time series
of the estimated ETX values via L-NT and L-ETX respectively.
(Note: the figure is more readable in color-print than black-white
print.) To visualize the accuracy of L-NT and L-ETX, we also
show the NT values carried in MAC feedbacks and the actual
ETX value for the link. To easily represent a unicast transmission
failure (after 7 retransmissions), we present -8 as the NT value
for the corresponding unicast transmission. We see that the
estimated ETX in L-NT tends to deviate from the actual ETX
value, especially in the presence of MAC transmission failures;
the estimated ETX in L-ETX, however, is very close to the actual
ETX value, even in the presence of MAC transmission failures.
We also see that the estimated ETX value in L-ETX is pretty
stable whereas the estimation of L-NT oscillates significantly,
which has significant implications to routing behaviors as we
discuss next and in Section III-B.

Routing optimality and stability. To understand the routing
behaviors in L-NT and L-ETX, we consider the case where the
sender on the left end of the middle row of Figure 2(b) needs to
select the best next-hop forwarder among the set of receivers in
the middle row, and the destination is far away from the sender
but in the direction extending from the sender along the middle
row to the right. For simplicity, we assume that the sender uses
a localized, geographic routing metric ETD (forETX per unit-
distance to destination) in evaluating the goodness of forwarder
candidates. The metric ETD is defined as follows: given a sender
S, a neighborR of S, and the destinationD, the ETD via R is
defined as

{

ETXS,R

LS,D−LR,D
if LS,D > LR,D

∞ otherwise
(9)

where ETXS,R is the ETX of the link fromS to R, LS,D

denotes the distance from S to D, andLR,D denotes the distance
from R to D. (We show in [16] that this local, geographic metric
performs in a similar way as the global, distance-vector metric for
uniformly distributed networks.)

In our case, the best forwarder is 10 grid-hops away from
the sender since the corresponding link has the minimum ETD
value. To see how L-NT and L-EXT perform in selecting the
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Method Forwarder Percentage (%) Cost ratio
5 0.1 2.3
6 4.14 1.3

L-NT 7 7.17 1.5
8 21.26 1.3
10 67.33 1
6 5.91 1.3

L-ETX 7 0.2 1.5
8 5.1 1.3
10 88.79 1

TABLE I
FORWARDERS USED INL-NT AND L-ETX

next-hop forwarder, Table I shows the forwarders (identified in
terms of their grid hop distance from the sender) used in L-NT
and L-ETX respectively. To illustrate the optimality of different
methods, we measure the percentage of time each forwarder is
used, and the cost ratio of this forwarder to the optimal forwarder
10. We see that L-ETX is able to identify and use the optimal
forwarder more than 20% of the time compared with L-NT. The
average ETD of using L-ETX is 3.26% more than the optimal
ETD, yet the average ETD of using L-NT is 11.34% more than
the optimal ETD.

We also measure the number of times that the sender changes
its forwarder when using L-NT and L-ETX respectively, and
we observe that the number of forwarder changes is 95 and 13
in L-NT and L-ETX respectively. Thus, L-ETX ensures much
higher routing stability than L-NT, which is due to the fact
that L-ETX is a more stable estimator than L-NT as can be
seen from Figure 5. Higher routing stability helps improve the
predictability of packet delivery performance in networks.

III. ROUTING PERFORMANCE

Having discussed the significant impact that link estimation
methods have on estimation accuracy and routing optimality
in Section II, we experimentally evaluate the performance of
different data-driven link estimation methods in this section. We
first present the methodology and then compare different data-
driven estimation methods.

A. Methodology

We use a publicly available event traffic trace for a field
sensor network deployment [24] to evaluate the performanceof
different protocols. Since the traffic trace is collected from 49
nodes that are deployed in a7 × 7 grid, we randomly select
and use a 7×7 subgrid of the Kansei testbed (as shown in
Figure 2(b)) in our experiments. To form a multi-hop network,
we set the radio transmission power at -14dBm (i.e., power level
3). The mote at one corner of the subgrid serves as the base
station, the other 48 motes generate data packets accordingto
the aforementioned event traffic trace, and the destinationof all
the data packets is the base station.We have also evaluated
protocols with other traffic patterns, e.g., periodic data traffic,
and other network setups, e.g., random networks. We have
observed phenomena similar to what we will present, but we
relegate the detailed discussion to [16] due to the limitation of
space.

Using the above setup, we comparatively study the perfor-
mance of the following data-driven link estimation and routing
protocols:1

• L-NT: a distance-vector routing protocol whose objective is
to minimize the expected number of transmissions (ETX)
from each source node to its destination. The ETX metric
of each link (and thus each route) is estimated via the L-NT
data-driven method.

• L-ETX: same as L-NT except that the ETX metric is
estimated via the L-ETX method.

• L-WNT: a variant of L-NT where the input to the EWMA
estimator is the average of 5NT values for every 5
consecutive unicast transmissions. We study this protocol
to check whether the performance of protocol L-NT can be
improved by increasing the stability of the L-NT method
through the window-based NT average.

• L-NADV: a variant of L-ETX where the window sizeW
is 1 and the EWMA estimator is used to estimate packet
error rate (PER) instead of PDR. We study this protocol
mainly to examine the impact ofW .2 L-NADV is also the
distance-vector version of the geographic protocol NADV
[15].

In the above data-driven protocols, periodic, broadcast beacons
are never used. We use the approach ofinitial link sampling
[10] to jump-start the routing process, where a node proactively
takes 7 samples of MAC feedback (by transmitting 7 unicast
packets) for each of its candidate forwarders and then chooses
the best forwarder based on the initial sampling results.

For each protocol we study, we ran the event traffic trace
sequentially for 40 times, and we measure the following protocol
performance metrics:

• Event reliability (ER): the number of unique packets re-
ceived at the base station divided by the total number of
unique packets generated for an event. This metric reflects
the amount of useful information that can be delivered for
an event.

• Number of transmissions per packet delivered (NumTx): the
total number of physical transmissions incurred in deliver-
ing packets of an event divided by the number of unique
packets received at the base station. This metric affects
network throughput; it also reflects the energy efficiency
of a protocol, since it not only affects the energy spent in
transmission but also the degree of duty cycling which in
turn affects the energy spent at the receiver side.

We also compare data delivery latency and predictability using
our data on the reliability and detailed properties of the routes
used in different protocols.

B. Experimental results

Figures 6 and 7 show the event reliability and the average
number of transmissions required for delivering each packet
in different data-driven protocols respectively, Figures8 and

1In this paper, we sometimes use the same name for the protocol, the
estimation method, and the routing metric. The context of its usage will clarify
its exact meaning.

2Our experiments show that routing performance is statistically the same
whether we use PER or PDR as the input to the EWMA estimator.
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Fig. 9. Average route transmission count for nodes different grid-hops away
from the base station

count respectively for successfully delivered packets coming

from nodes at different grid-hops away from the base station,
and Table II shows the detailed information about the properties

Metric L-NT L-WNT L-ETX L-NADV
Average per-hop 2.89 2.51 4.17 4.37

geo-distance (meter)
Average per-hop 56.3 51.08 68.43 66.77

physical tx reliability (%)
Average per-hop 87.62 87.02 93.10 89.21

unicast reliability (%)
Per-hop ETX 2.56 2.65 1.94 2.18

TABLE II
PER-HOP PROPERTIES IN DIFFERENT ROUTING PROTOCOLS

of the links used in different protocols.

L-NT vs. L-ETX. From Figure 6, we see that L-ETX achieves
a significantly higher event reliability than L-NT. For instance,
the median event reliability in L-ETX is 90.63%, which is
25.18% higher than that in L-NT. The higher event reliability
in L-ETX is due to the facts that the routes used in L-ETX are
shorter than those in L-NT and the reliability of the links used
in L-ETX is higher than that in L-NT, as shown in Figure 8
and Table II respectively. Due to the same reason, L-ETX
achieves significantly higher energy efficiency than L-NT, as
shown in Figure 7. For instance, the average number of packet
transmissions required in delivering a packet to the base station
in L-ETX is 2.82, which is 3.75 times less than that in L-NT.

From Table II, we see that the links used in L-ETX are longer
yet more reliable than those in L-NT. This implies that L-ETX
enables nodes to choose better routes in forwarding data and
thus leads to significantly better performance in data delivery.

The facts that L-ETX uses shorter-hop-length routes and that
the links used in L-ETX are longer yet more reliable than those
in L-NT also suggest that, for the same requirement on end-
to-end data delivery reliability, the latency and latency jitter
in data delivery are smaller in L-ETX than in L-NT. Higher
reliability also implies less variability and better predictability
in data delivery performance (e.g., latency), because, given a
link reliability p, the variability (more precisely, coefficient-of-
variation) of packet transmission status (i.e., success orfailure) is
√

1−p
p

and it decreases asp increases. For instance, the standard
deviation of the route transmission counts (and thus the delivery
latency) for successfully delivered packets in L-ETX tendsto
be less than that in L-NT as shown in Figure 10. Therefore,
compared with L-NT, L-ETX achieves a higher degree of
predictability in routing performance, which is importantfor
mission-critical networked sensing and control.

Variants of L-NT and L-ETX. Counterintuitively, Figures 6
and 7 show that L-WNT performs worse than L-NT, and
Table II shows that L-WNT chooses worse routes than L-NT
does. Through careful analysis, we find out that the cause for
the worse performance of L-WNT is that, even though L-WNT
is a more stable estimator than L-NT, it is slower (i.e., lessagile)
in adapting to link property changes. The slow convergence in
L-WNT further exacerbates the error in NT-based estimationand
leads to larger estimation error compared with L-NT, especially
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in the presence of dynamics. This can be seen from Figure 11
which shows the time series of the estimated ETX values in L-
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Fig. 11. Time series of estimated L-WNT and L-NT for a link of length 9.15
meters (i.e., 30 feet)

WNT and L-NT for a link of length 9.15 meters (i.e., 30 feet).
As expected, L-NADV performs slightly worse than L-ETX,

as shown in Figure 6, Figure 7, and Table II. This is due to the
larger estimation errors in L-NADV, especially in the presence
of transmission failures. This can be seen from Figure 12 which
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Fig. 12. Time series of estimated L-NADV and L-ETX for a link of length
9.15 meters (i.e., 30 feet)

presents the time series of the estimated ETX values in L-NADV
and L-ETX for a link of length 9.15 meters (i.e., 30 feet).

Route stability. Table III shows the route stability measured
by comparing the routes taken by every two consecutive packets.
We see that L-ETX (and its variant L-NADV) is very stable and
seldom changes route (only at a probability of∼0.03%), yet
L-NT (and its variant L-WNT) tends to be much more unstable.

Two consecutive routes L-NT L-WNT L-ETX L-NADV
(%)

Same 36.55 42 99.94 99.97
Diff . routes but 17.08 11.18 0.03 0.03
same hop length

Increased hop length 23.96 24.19 0.03 0
Decreased hop length 22.41 22.63 0 0

TABLE III
ROUTE STABILITY MEASURED BY COMPARING THE ROUTES TAKEN BY

EVERY TWO CONSECUTIVE PACKETS

The fact that nodes seldom change routes in L-ETX also shows
that initial link sampling is able to identify the best forwarders
for most nodes in L-ETX. High stability in routing not only helps
facilitate other control logics such as QoS-oriented structuring
and scheduling, it also improves the predictability of routing
performance, which is important for mission-critical networked
sensing and control. Detailed study of these is a part of our
future work.

IV. RELATED WORK

Differences between broadcast and unicast and their impact
on the performance of AODV were first discussed in [7] and [8],
and the authors discussed reliability-based mechanisms (e.g.,
those based on RSSI or SNR) for blacklisting bad links. The
authors also proposed mechanisms, such as enforcing SNR
threshold on control packets, to ameliorate the negative impact
of the differences, and the authors of [7] studied the impact
of packet size, packet rate, and link reliability thresholdon the
end-to-end delivery rate in AODV. Nonetheless, the proposed
solutions were still based on beacon exchanges among neigh-
bors.

Zhanget al. systematically studied the inherent drawbacks of
beacon-based link estimation and proposed to use unicast MAC
feedback as the basis of link estimation in IEEE 802.11b and
mote networks [10], [18]. Methods of using both MAC feedback
and beacon packets in link estimation were also proposed in
MintRoute [6], EAR [13], and four-bit-estimation [11]; SPEED
[12], NADV [15], and CARP [14] also used MAC feedback
in link estimation and route selection. Nonetheless, therehas
been no systematic study on the impact that the different ways
of using MAC feedback have on routing behaviors, and our
study in this paper fills this vacuum and provides insight into the
principles of using MAC feedback in data-driven link estimation
and routing.

Other routing metrics and protocols [25], [26], [27], [28],
[29], [30], [31] have also been proposed for various optimization
objectives (e.g., energy efficiency). The findings of this paper
can be applied to these schemes to help improve the accuracy
of estimating link and path properties. Directed diffusion[32]
provides a framework for routing in sensor networks, and the
findings of this paper can also be applied to this framework to
help select high-performance routes in data forwarding.

Rather than selecting the next-hop forwarder before data
transmission, opportunistic routing protocols that take advantage
of spatial diversity in wireless transmission have been proposed
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[33], [34], [35], [36]. In these protocols, the forwarder is
selected, through coordination among receivers, in a reactive
manner after data transmission. Link estimation can still be
helpful in these protocols since it can help effectively select
the best set of listeners [33]. Therefore, findings of this paper
can be useful in opportunistic routing too.

Draveset al. comparatively studied several routing metrics
in the context of beacon-based link estimation and routing [37],
and they have found out that ETX is an effective metric for
routing in mostly static wireless networks. Our work in this
paper focuses on the different methods of using unicast MAC
feedback to estimate the metric ETX, and we have demonstrated
the importance of choosing the right method among seemingly
similar approaches.

V. CONCLUDING REMARKS

Through mathematical analysis and measurement based study,
we have examined the impacts that different data-driven link
estimation methods have on routing behaviors. We have shown
that the variability of parameters being estimated significantly
affects the reliability, latency, energy efficiency, and predictabil-
ity of data-driven link estimation and routing, and it should be
an important criterion to consider when choosing the data-driven
link estimation method. We have shown that L-ETX is a precise,
stable method of estimating the ETX of data transmissions, and
that a seemingly similar method L-NT performs much worse in
terms of packet delivery reliability, energy efficiency, and routing
stability. These findings elucidate the subtleties of data-driven
link estimation and provide guidelines on how to effectively use
MAC feedback in link estimation.

The experimental analysis of this paper is based on networks
of CC1000 radios. Even though we expect the findings of
this paper to be valid for networks of IEEE 802.15.4 radios,
systematic evaluation of this conjecture is a part of our future
work. We have focused on accurate estimation of the ETX
routing metric in this paper, identifying accurate estimation
methods for other routing metrics such as mETX [27] and CTT
[31] is also an important task to pursue for supporting different
optimization objectives in routing.
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