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Abstract—Predictable inter-vehicle communication reliability
is a basis for the paradigm shift from the traditional single-
vehicle-oriented safety and efficiency control to networked ve-
hicle control. The lack of predictable interference control in
existing mechanisms of inter-vehicle communications, however,
makes them incapable of ensuring predictable communication
reliability. For predictable interference control, we propose the
Cyber-Physical Scheduling (CPS) framework that leverages the
PRK interference model and addresses the challenges of vehicle
mobility to PRK-based scheduling. In particular, for lightweight
control signaling and effective interference relation estimation,
CPS leverages the physical locations of vehicles to define the
gPRK interference model as a geometric approximation of the
PRK model; for effective use of the gPRK model, CPS leverages
cyber-physical structures of vehicle traffic flows, particularly, the
spatiotemporal interference correlation as well as the macro-
and micro-scopic vehicle dynamics. Through experimental anal-
ysis with high-fidelity ns-3 and SUMO simulation, we observe
that CPS enables predictable reliability while achieving high
throughput and low delay in communication. To the best of
our knowledge, CPS is the first field-deployable method that
ensures predictable interference control and thus reliability in
inter-vehicle communications.

I. INTRODUCTION

Transcending the traditional paradigm of single-vehicle-
oriented safety and efficiency control, next-generation vehi-
cles are expected to cooperate with one another and with
transportation infrastructures to ensure safety, maximize fuel
economy, and minimize emission as well as congestion [10],
[16]. One basis for this vision of networked vehicle control
(e.g., active safety and fuel economy control [10]) is wireless
communication between close-by vehicles. Critical to the
optimality and safety of networked vehicle control, inter-
vehicle communication is required to be predictably reliable,
that is, satisfying the packet delivery ratios as required by
vehicle control applications [26]. Given the different impact
that communication reliability, delay, and throughput have on
networked vehicle control [26], [25] and the inherent tradeoff
between communication reliability, delay, and throughput [22],
[27], the optimal operation of networked vehicle systems
also requires controlling the tradeoff between communication
reliability, delay, and throughput, for which controlling com-
munication reliability in a predictable manner according to the
vehicle control requirement is also a basis [20], [27].

Despite extensive research in inter-vehicle wireless net-
working and pilot field-deployments of IEEE 802.11p-based
networks, there still lack solutions for ensuring predictable
inter-vehicle communication reliability. Inheriting the basic
design principles of WiFi such as CSMA-based channel access

control, for instance, existing 802.11p-based solutions may
not even be able to ensure a communication reliability of
30% [18], [28]. One major reason for the unpredictability and
low reliability in existing inter-vehicle wireless networking
solutions is the lack of predictable interference control. Thus
scheduling data transmissions to control interference in a pre-
dictable manner is a basic element of inter-vehicle networking.

Given the pervasiveness of vehicles, networks of vehicles
tend to be of large scale even though most networked ve-
hicle control only involve communications between close-
by vehicles [10]. In the meantime, vehicle mobility intro-
duces dynamics in network topology which, together with
uncertainties in wireless communication, introduces complex
dynamics and uncertainties in inter-vehicle communication.
For agile adaptation to uncertainties and for avoiding infor-
mation inconsistency in centralized scheduling in large-scale
V2V networks, distributed scheduling becomes desirable for
interference control in inter-vehicle communications. Because
wireless signals propagate far away in space and signals from
different vehicles add to one other, however, inter-vehicle in-
terference relations tend to be non-local and combinatorial, and
predictable interference control tends to require coordination
between transmitters far away from one another, which is
challenging in highly-dynamic, large-scale V2V networks.

For predictable interference control in distributed schedul-
ing, Zhang et. al [27] have identified the physical-ratio-K
(PRK) interference model that transforms non-local inter-
ference control problems into local control problems which
only require explicit coordination between close-by transmit-
ters in scheduling. Based on the PRK model, Zhang et. al
[28] have also proposed the PRK-based scheduling protocol
PRKS which ensures predictable communication reliability in
networks of no or low node mobility. Not targeting V2V
networks, however, PRKS does not address the challenges
of vehicle mobility to PRK-based scheduling, and it is not
applicable to inter-vehicle communications. In V2V networks,
vehicle mobility makes network topology and inter-vehicle
channel properties highly dynamic, which in turn makes inter-
ference relations between vehicles highly dynamic, especially
for vehicles on different roads or in opposite driving directions
of a same road. The highly dynamic nature of inter-vehicle
interference relations challenges the precise identification of
interference relations in terms of both interference relation
estimation and the signaling of interference relations. Thus the
open question is whether it is feasible and how to apply PRK-
based scheduling in V2V networks so that the interference



between concurrently transmitting vehicles is controlled in
a predictable manner to ensure the required inter-vehicle
communication reliability (i.e., packet delivery ratio).

In this paper, we give a constructive, positive answer to the
question by developing the Cyber-Physical Scheduling (CPS)
framework that leverages cyber-physical structures of V2V
networks to address the challenges of vehicle mobility, and
we explain the design of CPS in the rest of the paper.

II. PRELIMINARIES

Problem specification. In inter-vehicle wireless commu-
nication networks, referred to as V2V networks hereafter, a
fundamental communication primitive is single-hop broadcast
via which a vehicle shares its states (e.g., location and speed)
with close-by vehicles within a certain distance (e.g., 150
meters) [10]. Given the significance of single-hop broadcast
(e.g., for real-time networked vehicle control [10]) and for con-
ciseness of presentation, our discussion in this paper focuses
on single-hop broadcast, but the proposed methodology for
scheduling inter-vehicle broadcasts applies to the scheduling of
inter-vehicle single-hop unicast. Even though we only consider
single-hop broadcasts by individual vehicles, we do consider
real-world settings where the individual vehicles are widely
distributed in space and may well be beyond the broadcast
range of many other vehicles.

With the above V2V network setup, we study the online
slot-scheduling problem (as defined by Che et. al [4]) where,
given a set of vehicles on the road at any time instant, a
maximal subset of the vehicles need to be scheduled in a
distributed manner to transmit concurrently while ensuring that
the mean packet delivery ratio (PDR) from every transmitting
vehicle S to each of its broadcast receivers R is no less than
an application-required PDR TS,R. Note that a vehicle R is a
broadcast receiver of a transmitting vehicle S if the Euclidean
distance between S and R, denoted by D(S,R), is no more
than the communication range of S, denoted by DS . Focusing
on predictable co-channel interference control in broadcast
scheduling, we assume that all vehicles share a single commu-
nication channel and that the broadcast transmission power is
fixed for each vehicle even though different vehicles may use
different transmission powers; multi-channel scheduling and
broadcast power control are relegated as future research.
PRK interference model & PRKS. Despite decades of
research in interference-oriented channel access scheduling,
most existing literature are either based on the protocol inter-
ference model or the physical interference model, neither of
which is a good foundation for distributed interference control
in the presence of uncertainties [27], [28]. The protocol model
is local and suitable for distributed protocol design, but it
is inaccurate and does not ensure reliable data delivery [19].
The physical model has high-fidelity, but it is non-local and
combinatorial and thus not suitable for distributed protocol
design in dynamic, uncertain network settings [27], [28]. To
bridge the gap between the existing interference models and
the design of distributed, field-deployable scheduling protocols
with predictable communication reliability, Zhang et. al [27]

have identified the physical-ratio-K (PRK) interference model
that integrates the protocol model’s locality with the physical
model’s high-fidelity. In the PRK model, a node C ′ is regarded
as not interfering and thus can transmit concurrently with the
transmission from another node S to its receiver R if and
only if P (C ′, R) < P (S,R)

KS,R,TS,R
, where P (C ′, R) and P (S,R)

are the average strength of signals reaching R from C ′ and S
respectively, KS,R,TS,R

is the minimum real number chosen
such that, in the presence of cumulative interference from
all concurrent transmitters, the probability for R to success-
fully receive packets from S is no less than the minimum
link reliability TS,R required by applications. As shown in
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Fig. 1: PRK interference
model

Figure 1, the PRK model defines,
for each link 〈S,R〉, an exclusion
region (ER) ES,R,TS,R

around the
receiver R such that a node C is
in the ER (i.e., C ∈ ES,R,TS,R

) if
and only if P (C,R) ≥ P (S,R)

KS,R,TS,R
.

Every node C ∈ ES,R,TS,R
is re-

garded as interfering and thus shall
not transmit concurrently with the
transmission from S to R. The
PRK model is generically appli-

cable to different wireless networks since it only assumes
that the packet delivery reliability along a link is a non-
decreasing function of the signal-to-interference-plus-noise-
ratio (SINR) at the receiver, which generally holds for wireless
communications [27].

For predictable interference control, the parameter
KS,R,TS,R

of the PRK model needs to be instantiated
for every link 〈S,R〉 according to in-situ, potentially
unpredictable network and environmental conditions (e.g.,
data traffic load and wireless signal power attenuation). To
this end, Zhang et. al [28] have formulated the PRK model
instantiation problem as a regulation control problem [8]
where the “plant” is the link 〈S,R〉, the “reference input” is
the required link reliability TS,R, the “output” is the actual
link reliability YS,R from S to R, the “control input” is the
PRK model parameter KS,R,TS,R

, and the objective of the
regulation control is to adjust the control input so that the
plant output is no less than the reference input. Then control
theory can be used to derive the controller for instantiating
the PRK model parameter [28]. For every link 〈S,R〉, using
its instantiated PRK model parameter KS,R,TS,R

and the
local signal maps that contain average signal power between
S, R, and every other close-by node C that may interfere
with the transmission from S to R, link 〈S,R〉 and every
close-by node C become aware of their mutual interference
relations. With precise awareness of mutual interference
relations with close-by nodes/links, nodes schedule data
transmissions in a TDMA fashion using the distributed
optimal-node-activation-multiple-access (ONAMA) algorithm
[17], and the resulting PRK-based scheduling protocol is
denoted as PRKS [28]. Through extensive measurement study
in the high-fidelity Indriya [5] and NetEye [11] wireless



network testbeds, Zhang et. al [28] observe that PRKS enables
predictable interference control while achieving high channel
spatial reuse. Accordingly, PRKS enables predictable link
reliability, high network throughput, and low communication
delay [28].

III. CYBER-PHYSICAL SCHEDULING (CPS) FRAMEWORK

A major challenge in applying PRK-based scheduling to
V2V networks is vehicle mobility. Vehicle mobility makes
inter-vehicle wireless channels highly dynamic, thus, as we
show in [15], it would be too costly or even infeasible for
vehicles to maintain accurate signal maps that store reception
power of data signals between close-by vehicles, thus making
the PRK interference model and the PRKS scheduling protocol
not applicable to V2V networks. To address this challenge, we
observe that the physical vehicle locations are readily available
in V2V networks through GPS and/or other mechanisms such
as simultaneous-localization-and-mapping (SLAM). Accord-
ingly, we propose the gPRK interference model as a geometric
approximation of the PRK model, so that the gPRK model
enables lightweight approaches for vehicles to detect their
mutual interference relations using vehicle locations instead of
signal maps [15]. In the gPRK model, interference relations
among vehicles are defined based on inter-vehicle distance,
and nodes closer-by may be regarded as interfering with one
another since they tend to introduce stronger interference
to one another. In particular, a vehicle C ′ is regarded as
not interfering and thus can transmit concurrently with the
transmission from another vehicle S to its receiver R if and
only if

D(C ′, R) > D(S,R)KS,R,TS,R
, (1)

where D(C ′, R) and D(S,R) is the geometric dis-
tance between C ′ and R and that between S and
R respectively, KS,R,TS,R

is the minimum real num-
ber chosen such that, in the presence of cumulative
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Fig. 2: gPRK model

interference from all concurrent
transmitters, the probability for
R to successfully receive packets
from S is no less than the mini-
mum link reliability TS,R required
by applications. As shown in Fig-
ure 2, the gPRK model defines,
for each link 〈S,R〉, an exclusion
region (ER) ES,R,TS,R

around the
receiver R such that a node C is
in the region (i.e., C ∈ ES,R,TS,R

) if and only if D(C,R) ≤
D(S,R)KS,R,TS,R

. As we show in [15], the gPRK model is
amenable to distributed, feedback-control-theoretic approach
to model instantiation, and the instantiated gPRK model
captures the impact of complex vehicular wireless channels
and potential vehicle localization errors (e.g., due to imperfect
GPS).

Vehicle mobility also makes vehicle locations and thus inter-
vehicle interference relations highly dynamic. For enabling
vehicles to accurately identify their mutual interference re-
lations, we propose to leverage spatiotemporal interference

correlation and macroscopic vehicle dynamics to quickly adapt
gPRK model parameters. In particular, vehicles of the same
traffic flow (i.e., vehicle traffic along the same direction of a
road segment) tend to form clusters depending on their speed,
with the vehicles in the same cluster having approximately
equal speed and relatively stable spatial distribution, and this
macroscopic clustering behavior applies to both free-flow and
congested traffic and for both highways and urban roads [24].
With spatiotemporal constraints on vehicle movement along
a traffic flow, vehicle cluster membership tends to last at
timescales from seconds to minutes or even longer [6], [7],
[21], [24], [9], [2]. The relative stability in cluster membership
and intra-cluster vehicle spatial distribution makes it feasible
to accurately instantiate/adapt the gPRK model parameters for
the links between vehicles of the same cluster, and these stable
links in turn enable online, adaptive instantiation of the gPRK
model parameters of transient links by leveraging the spatial
correlation between gPRK model parameters of close-by links
as well as the temporal correlation of gPRK model parameters
of a same link [15].

In order for vehicles to use the gPRK model to detect
their mutual interference relations in a distributed manner,
close-by, potentially interfering vehicles need to be aware of
one another’s locations. A vehicle can update and share its
location with close-by vehicles by broadcasting its location
periodically. In the presence of high vehicle mobility, however,
the relative positions of two vehicles may change in an non-
negligible manner during the broadcast intervals. For instance,
even if the location information is updated every half a second,
the distance between two vehicles driving at a speed of 80km/h
(i.e., 50mph) along the opposite directions of a road may
change 22.22 meters during the update interval. In order for
vehicles to have accurate information about one another’s
locations during update intervals and with limited location
update frequencies, we propose to have vehicles estimate one
another’s locations during update intervals by leveraging well-
understood microscopic vehicle dynamics models such as the
intelligent-driver-model (IDM) and its extensions [15], [24].

Using the above methods of addressing vehicle mobility
that leverage the cyber-physical structures of V2V networks
(particularly, spatiotemporal interference correlation, physical
vehicle location, as well as macro- and micro-scopic vehicle
dynamics), vehicles can identify their mutual interference
relations in an agile, distributed manner. Based on the mutual
interference relations among vehicles, inter-vehicle communi-
cations can be scheduled in a TDMA manner similar to that
in PRKS [28]. To realize the above methods, we propose the
Cyber-Physical Scheduling (CPS) framework for inter-vehicle
communications as shown in Figure 3. In this framework, time
is divided into a consecutive sequence of time slots, with each
time slot being long enough for completing the transmission
and processing of a control or data packet. As in PRKS
[28], the transmissions of control signaling packets (e.g., those
containing gPRK model parameters and vehicle locations) and
data packets are separated in frequency or in time so that
there is no interference between control packet transmission
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Fig. 3: Cyber-Physical Scheduling (CPS) framework

and data packet transmission. Through the exchange of control
signaling packets, close-by vehicles discover one another and
initialize the gPRK model parameters for the corresponding
links. Based on feedback on the status (i.e., success or
failure) of data packet transmissions, in-situ communication
reliabilities are estimated and then gPRK model parameters
are adapted on the fly. Together with estimated locations of
close-by vehicles, the in-situ gPRK model parameters enable
vehicles to detect their mutual interference relations. Based
on in-situ interference relations, a maximal set of mutually
non-interfering vehicles are scheduled to transmit their data
packets at each time slot according to the distributed TDMA
algorithm ONAMA [17].

From each vehicle’s perspective, immediately after it starts,
it quickly discovers close-by vehicles, initializes related gPRK
model parameters, and detects mutual interference relations
with close-by vehicles; then, in parallel with data transmissions
and using feedback on data transmission status (i.e., success or
failure), the vehicle adapts its gPRK model parameters, and,
with adaptive estimation of the locations of close-by vehicles,
the vehicle adapts data transmission schedules according to
in-situ interference relations with close-by vehicles. Figure 3
shows the timescales of different protocol actions in CPS.
When a vehicle starts, it quickly performs neighbor-discovery
at every time slot for a short period (e.g., 2 seconds), and then
it maintains neighborhood information at a frequency of reg-
ular control packet transmissions (e.g., every 100 time slots).
Given a vehicle and a link from a sending vehicle, the gPRK
model parameter is updated each time a new communication
reliability estimation becomes available (e.g., every 1,000 time
slots). Each vehicle updates its estimation of the locations of
close-by vehicles and its interference relations with close-by
vehicles every time slot, which enables the ONAMA-based
scheduling of non-interfering concurrent transmitters at each
time slot.

In our implementation, we have set the duration of each
time slot to be 2.5 milliseconds so that a data packet up
to 1,500 bytes can be delivered in a time slot when the
radio transmission rate is 6Mbps (i.e., the lowest transmission
rate of the current 802.11p standard) and when operations
other than the actual data transmission (e.g., composing the

data packet) may take up to 0.5 millisecond in a time slot.
Accordingly, inter-vehicle interference relations and gPRK
model parameters are updated every 2.5 milliseconds and
about every 2.5 seconds respectively.

IV. EXPERIMENTAL ANALYSIS

Considering the lack of large-scale, field-deployed V2V
network testbeds for evaluating link layer scheduling mech-
anisms, we implement our CPS scheduling framework in
the widely-used ns-3 [1] network simulator, and we exper-
imentally analyze the behavior of CPS by integrating high-
fidelity ns-3-based wireless network simulation and SUMO-
based vehicle dynamics simulation [13].

A. Methodology

Multi-dimensional high-fidelity simulation. High-fidelity
simulation of V2V networks requires high-fidelity simulation
of V2V wireless channels and vehicle mobility dynamics. For
V2V wireless channels, we implement in ns-3 a channel model
based on real-world measurement data that capture large-scale
path loss, small-scale fading, and real-world complexities such
as multi-path fading, anisotropic, asymmetric wireless signal
attenuation, and the impact of vehicles and surrounding objects
(e.g., buildings, bridges) on vehicular wireless channels [12].
For vehicle mobility dynamics, we use the SUMO simulator
that simulates vehicle traffic flow dynamics at high-fidelity
based on real-world road and traffic conditions of Detroit,
Michigan, USA [13]. For integrated, high-fidelity simulation
of V2V wireless channels and vehicle mobility, we integrate
SUMO simulation with ns-3 simulation through the traffic con-
trol interface (TraCI) of SUMO, as shown in Figure 4. With

Fig. 4: Integration of SUMO with ns-
3

the TraCI interface,
ns-3 can query any
desired information
(e.g., locations of
individual vehicles)
from SUMO anytime.
When a simulation
starts, ns-3 first
invokes SUMO with its local configuration files, as shown
by link a of Figure 4; during a ns-3 simulation, ns-3
continuously queries vehicle state information (e.g., locations)
from SUMO, as shown by link b of Figure 4.

CPS assumes that each vehicle has a location sensor (e.g.,
GPS and/or SLAM) which reports its real-time locations.
To simulate location measurement errors, our experimental
analysis assumes that the error is a Gaussian variate with zero
mean and a standard deviation of four meters, a localization
accuracy achievable by today’s GPS systems.
Protocols. To understand the benefits of CPS in scheduling
inter-vehicle communications, we comparatively study the
following representative V2V network protocols:
• 802.11p: the MAC protocol of the IEEE 802.11p standard

which uses CSMA/CA to coordinate channel access and
interference control [18]. This is the MAC protocol used



in existing field deployments of DSRC implementations
(e.g., those by USDOT).

• DCC: an ETSI standard that, on top of the 802.11p
protocol, uses congestion, power, and rate control to
mitigate inter-vehicle interference and improve commu-
nication reliability [23].

• AMAC: the ADHOC MAC protocol [3] which is a slot-
reservation-based TDMA protocol based on the protocol
interference model. In the protocol, vehicles transmit in
their reserved slots without carrier sensing. If collisions
are detected in a certain time slot of the TDMA frame,
vehicles will release the slot and reserve another slot .

• VDDCP: a TDMA-based MAC protocol [14] that, based
on the protocol interference model, first allocates non-
overlapping sets of time slots to different roads and then
let vehicles on each road compete for channel access in
a slot-reservation-based TDMA manner as in AMAC.

To understand the effectiveness of the geometric approxi-
mation of the PRK model by the gPRK model, we also study a
variant of CPS, denoted as OCPS (for Oracle CPS), that is the
same as CPS except for its use of the PRK model. Interested
readers can find the detailed discussion in [15].

Fig. 5: V2V network in
Detroit, Michigan, USA

Network settings. For under-
standing protocol behavior in real-
world settings, we consider an ur-
ban network consisting of vehicles
in midtown Detroit of Michigan,
USA. As shown in Figure 5, the
urban network consists of freeway
I-75 and city roads in midtown
Detroit, and it spans an area of
3km× 3km. In the network, vehi-
cle speed limits range from 40km/h (i.e., 25mph) on small city
streets to 120km/h (i.e., 75mph) on I-75. Our study considers
normal vehicle traffic flow conditions, and the average bumper-
to-bumper distance ranges from one meter to 20 meters.

We set the desired broadcast communication range as 150
meters and the desired broadcast reliability as 90%. For
protocols that do not use transmission rate and power control
(i.e., protocols other than DCC), the transmission rate is set
as 6Mbps, and the transmission power is set at a value that
ensures that the signal-to-noise ratio (SNR) in the absence
of interference is 6dB above the SNR for ensuring 90%
communication reliability for links of length 150 meters.
Each vehicle transmits a data packet every 100 milliseconds,
a frequency needed for many active safety and networked
vehicle control applications in V2V networks [10]. The size
of each data packet is 1,500 bytes.

We have experimented with other network settings such as
on freeways and when the broadcast reliability requirement is
95%. We have observed phenomena similar to what we will
present in Section IV-B; due to the limitation of space, we
relegate the detailed discussion to [15].

B. Experimental Results

For different protocols, Figure 6 shows the boxplot of
communication reliability from each vehicle to its receivers,
Figure 7 shows the concurrency (i.e., number of concurrent
transmissions at a time slot) in the network, Figure 8 shows the
network throughput that is computed as the number of packets
successfully delivered to receivers in every time-slot duration
(i.e., 2.5ms), and Figure 9 shows the packet delivery delay
when packet retransmission is used to ensure the application-
required reliability for protocols that would be unable to ensure
the application-required reliability otherwise (i.e., protocols
other than CPS).

Enabling accurate, agile identification of interference re-
lations among vehicles, our gPRK-based cyber-physical ap-
proach to interference modeling and transmission schedul-
ing ensures predictable interference control and application-
required broadcast reliability, as shown in Figure 6. Moreover,
this is achieved while having considered the complex, real-
world vehicular wireless channels and vehicle localization
errors as discussed in Section IV-A.

Implicitly assuming a protocol interference model and
using a contention-based approach to medium access con-
trol, 802.11p and DCC do not ensure predictable control
of interference and thus do not ensure application-required
communication reliability. Through congestion, power, and
rate control, DCC improves the reliability of 802.11p, but the
broadcast reliability is still quite low in DCC (i.e., being ∼6%
in our study). Assuming an inaccurate protocol interference
model and unable to address the challenge of high vehicle
mobility to TDMA scheduling, the TDMA protocols AMAC
and VDDCP cannot ensure predictable interference control,
and the communication reliability from senders to receivers
tend to be quite unpredictable, ranging from very low to very
high and varying over time. In AMAC and VDDCP, the slot
reservation tends to be unreliable in the presence of vehicle
mobility and inter-vehicle interference, thus the concurrency
in AMAC and VDDCP tends to be quite low too, as shown in
Figure 7. The fact that the reliability is unpredictable while the
concurrency is low in AMAC and VDDCP demonstrates the
importance of accurately identifying inter-vehicle interference

Fig. 6: Reliability Fig. 7: Concurrency

Fig. 8: Throughput Fig. 9: Delay



relations in an agile manner in the presence of vehicle mobility,
as is accomplished in our CPS framework.

The concurrency in 802.11p and DCC is the highest among
all the protocols, but their throughput is quite low due to the
low communication reliability in both protocols, as shown
in Figures 8 and 6. Due to the low concurrency and the
unpredictable, often-low communication reliability in AMAC
and VDDCP, the throughput is low in both protocols. Ensur-
ing application-required reliability while maximizing channel
spatial reuse, CPS enables significantly higher throughput than
other protocols do.

To improve communication reliability, retransmission is
needed in other protocols, which significantly increases the
communication delay, as shown in Figure 9. The low con-
currency and the unpredictable communication reliability in
AMAC and VDDCP make their communication delay the
largest among all the protocols.

V. CONCLUDING REMARKS

For predictable reliability of inter-vehicle communications,
we formulate and apply the gPRK interference model to pre-
dictable interference control in V2V networks. Our approach
to gPRK-based interference modeling effectively leverages
cyber-physical structures of V2V networks. Based on the
cyber-physical, gPRK-based approach to interference mod-
eling, our Cyber-Physical Scheduling (CPS) framework en-
sures predictable reliability of inter-vehicle communications.
Ensuring predictable interference control and communication
reliability in the presence of vehicle mobility, our cyber-
physical approach to interference modeling and data trans-
mission scheduling is expected to enable the development of
mechanisms for predictable timeliness, throughput, and their
tradeoff with reliability in inter-vehicle communications, thus
further enabling wireless-networked vehicle control [10], [16].
While our focus in this study is on inter-vehicle communi-
cations, the basic methodologies can be extended to enable
predictable communication reliability between vehicles and
transportation infrastructures such as traffic lights. These are
future directions worth pursuing.
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