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ABSTRACT
The wireless network community has become increasingly aware
of the benefits of data-driven link estimation and routing ascom-
pared with beacon-based approaches, but the issue ofbiased link
sampling(BLS) has not been well studied even though it affects
routing convergence in the presence of network and environment
dynamics. Focusing on traffic-induced dynamics, we examinethe
open, unexplored question of how serious the BLS issue is andhow
to effectively address it when the routing metric ETX is used. For
a wide range of traffic patterns and network topologies and using
both node-oriented and network-wide analysis and experimenta-
tion, we discover that the optimal routing structure remains quite
stable even though the properties of individual links and routes vary
significantly as traffic pattern changes. In cases where the optimal
routing structure does change, data-driven link estimation and rout-
ing is either guaranteed to converge to the optimal structure or em-
pirically shown to converge to a close-to-optimal structure. These
findings provide the foundation for addressing the BLS issuein the
presence of traffic-induced dynamics and suggest approaches other
than existing ones. These findings also demonstrate that it is possi-
ble to maintain an optimal, stable routing structure despite the fact
that the properties of individual links and paths vary in response to
network dynamics.

Categories and Subject Descriptors
C.2.2 [Network Protocols]: Routing protocols

General Terms
algorithms, measurement, performance

Keywords
Low-power wireless networks, sensor networks, data-driven link
estimation and routing, biased link sampling, convergence, stability
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1. INTRODUCTION
Wireless communication assumes complex spatial and temporal

dynamics [5, 18, 32, 33], thus estimating link properties isa basic
element of routing in wireless networks. One commonly used link
estimation method is letting neighbors exchange broadcastbeacon
packets, and then estimating link properties of unicast data trans-
missions via those of broadcast beacons. Nonetheless, there are sig-
nificant differences between unicast and broadcast link properties
[6, 22], and it is difficult to precisely estimate unicast link prop-
erties via those of broadcast due to temporal correlations in link
properties and dynamic, unpredictable network traffic patterns [27,
29, 30]. To address the drawbacks of beacon-based link estimation,
the method of data-driven link estimation has been proposed[13,
14, 17, 19, 20, 29, 30] and shown to significantly improve routing
performance [30].

In data-driven link estimation, information about the properties
of a link is provided by the MAC feedback for unicast data trans-
missions along the link. If a link is not currently used for data
transmission, its current properties will most likely be unknown to
the associated node (since the precise correlation among links as-
sociated with the same node tends to be complex and difficult to
predict). This introduces the issue ofbiased link sampling(BLS)
where properties of actively used links are constantly sampled and
updated but properties of unused links are not sampled and un-
known. BLS is not a problem if link properties are mostly static
and do not change temporally. Nonetheless, temporal link dynam-
ics is usually unavoidable due to dynamics in network trafficpattern
and traffic-induced interference [29, 30], dynamics in environment
[8, 21, 26], and/or node mobility. For instance, Figure 1 shows
the network conditions in the presence of different traffic condi-
tions, where network condition is represented by the unicast ETX
(i.e., expected number of transmissions required to successfully de-
liver a unicast packet) for links associated with a randomlyselected
node in the Kansei testbed (seeSection 2). We see that unicast
ETX changes significantly (e.g., up to 32.44) as traffic pattern and
thus co-channel interference varies [30]. Therefore, one may ex-
pect that, in the presence of temporal link dynamics, data-driven
link estimation and routing may not converge to the optimal solu-
tion since, due to BLS, a node may be unable to discover the route
that is not currently used but has become optimal.

Even though data-driven link estimation has been used in vari-
ous forms, the severity that BLS affects routing optimalityhas not
been well studied, and only ad hoc, if any, solutions have been pro-
posed in existing data-driven link estimation and routing schemes.
For instance, CARP [19], four-bit-estimation [13], and NADV [20]
do not examine the BLS issue; LOF [29] and SPEED [14] explo-
ratively sample alternative routes at randomized but high frequency
(i.e., once every few and every single packet transmission respec-
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Figure 1: Link unicast ETX in the presence of different net-
work traffic pattern. d denotes the probability that each node
generates traffic at an arbitrary moment, andd = 0 denotes the
case of no traffic in the network and thus zero co-channel inter-
ference. The data is for XSM motes (an enhanced version of
MICA2 motes) and the B-MAC protocol, but similar phenom-
ena are also observed when other MAC protocols (e.g., S-MAC)
and radios (e.g., 802.15.4 and 802.11b radios) are used.

tively), which can reduce routing performance as we will show in
Section 6; EAR [17] implicitly addresses the BLS issue by letting
every node constantly overhear unicast transmissions around it, but
overhearing is not energy-efficient in battery-powered sensor net-
works (since overhearing increases nodes’ duty cycles), and it can
lead to estimation errors since, due to MAC coordination mech-
anisms such as RTS-CTS handshake, the properties of overheard
unicast transmissions may be different from those of unicast trans-
missions to a node itself. Thus, the lack of a thorough understand-
ing of the BLS issue is an important problem since it affects the
performance of a basic service in sensor networks — routing.

The objective of this paper is to study the open, unexplored ques-
tion of how serious the BLS issue is and how to effectively address
it in the presence of (potentially unpredictable) network dynamics.
We focus on traffic-induced dynamics (i.e., varying networkcondi-
tions due to changes in network traffic pattern) in this paper, and we
relegate detailed study of other network dynamics (e.g., mobility,
external interference from other wireless networks) to ourfuture
work. Therefore, we focus on mostly static deployment scenarios
where environment conditions and nodes are mostly static, even
though environment conditions may change slowly and nodes may
fail or join the network. Not all sensor network deploymentsare
mostly static, for instance, deployments where environment con-
ditions may frequently change due to interference from other co-
existing networks (e.g., 802.11 networks) or due to movement of
persons or objects within the deployment space (e.g., a building),
or deployments where sensor nodes themselves may be mobile.
Nonetheless, mostly static deployment does represent a subclass
of sensor network deployments, for instance, in applications where
nodes are statically deployed in remote areas for environment mon-
itoring. Moreover, traffic-induced dynamics are universally present
in sensor networks, thus addressing the issue in mostly static de-
ployment scenarios may shed light on how to address the issuein
other deployment scenarios and how to address other networkdy-
namics.

In studying the impact of BLS on routing optimality, we consider
the routing metric ETX which is commonly used in wireless net-
works (e.g., sensor networks and mesh networks). Through math-
ematical analysis and testbed-based experimentation, we examine
the stability of optimal routes and the severity of BLS. For awide
range of dynamic traffic scenarios (e.g., dynamic events, dynamic

data collection, and their mix) and network setups (e.g., grid and
random networks) we study, we find out that nodes’ best forwarders
and the optimal routing structure are rather stable even though the
properties of individual links and routes may vary significantly as
traffic pattern and network condition change. In cases wherethe
optimal routing structure does change, we prove that data-driven
link estimation and routing is guaranteed to converge to theoptimal
structure when network conditions worsen, and the convergence is
quick (e.g., with a median sample size requirement of no morethan
7); when network conditions improve, the optimal forwardercho-
sen for heavy traffic load tends to remain a good suboptimal for-
warder for lighter traffic load, even though data-driven routing may
not converge to the optimal structure.

These findings provide the foundation for addressing the BLS
issue in the presence of traffic-induced dynamics. In contrast to
existing approaches, for instance, these findings demonstrate the
need to address the BLS issue, the drawbacks of frequent explo-
rative sampling in mostly static networks, and the feasibility of an
energy-efficient, light-weight approach to addressing theBLS is-
sue. These findings also demonstrate that it is possible to main-
tain an effective, stable routing structure despite the fact that the
properties of individual links and paths vary in response tonetwork
dynamics. Since routing stability enables consistent, predictable
routing performance, these findings also suggest that we mayre-
gard stability as a basic evaluation criterion for routing metrics.

The rest of the paper is organized as follows. We briefly dis-
cuss in Section 2 the routing metric, the routing protocol, and the
experimental facility we use in this study. We then analyze the con-
vergence properties of data-driven link estimation and routing in
Section 3. We study the dynamics of best forwarders and the rout-
ing stability in Section 4 and 5 respectively, and we discusshow
to address the BLS issue in Section 6. We discuss related workin
Section 7 and make concluding remarks in Section 8.

2. PRELIMINARIES
In this section, we discuss the routing metric, the routing pro-

tocol, and the experimental facility that we use in the analytical
and/or experimental study of this paper.

Routing metric and protocol. We use the routing metric ETX
(i.e., expected number of transmissions for delivering a data packet)
[7, 28] in our study, and we use the data-driven link estimation and
routing method L-ETX [30] for estimating the ETX metric for each
link and path. In L-ETX, MAC feedback for unicast data transmis-
sions are used to calculate the reliability PDR of individual unicast-
physical-transmissions1 along a link, then the ETX of this link is
derived as 1

PDR; the ETX metric of a path is the sum of the ETX
values of the individual links along the path.

For the analysis of Sections 3 and 4, we also use a localized,
geographic routing metric ETD (forETX per unit-distance to des-
tination) in evaluating the goodness of forwarder candidates. ETD
is a geographic version of ETX, and it is defined as follows. Given
a senderS, a neighborR of S, and the destinationD, the ETD via
R is defined as

(

ETXS,R

LS,D−LR,D
if LS,D > LR,D

∞ otherwise
(1)

1In many MAC protocols such as the B-MAC [24] and the IEEE
802.15.4 MAC, a unicast packet is (re)transmitted until being suc-
cessfully delivered or until the number of transmissions exceeds a
certain threshold value (e.g., 8). For convenience, we regard each
individual transmission involved in transmitting a unicast packet as
a unicast-physical-transmission.



whereETXS,R is the ETX of the link fromS to R, LS,D denotes
the distance from S to D, andLR,D denotes the distance fromR to
D. Zhanget al. [30] have shown that this local, geographic met-
ric performs in a similar way as the global, distance-vectormetric
ETX for uniformly distributed networks; we will also show inSec-
tion 5 that phenomena observed through ETD based analysis and
measurements in Sections 3 and 4 carry over to cases where the
measurements are based on ETX.

Experimental facility. For the experimental study in Sections 3,
4, and 5, we use the publicly available sensor network testbed Kan-
sei [12]. In an open warehouse with flat aluminum walls (see Fig-
ure 2(a)), Kansei deploys 98 XSM motes [11] in a 14×7 grid (as
shown in Figure 2(b)) where the separation between neighboring
grid points is 0.91 meter (i.e., 3 feet). The grid deploymentpattern

(a) Kansei (b) 14×7 grid

Figure 2: Sensor network testbedKansei

enables experimentation with regular, grid topologies, aswell as
random topologies (e.g., by randomly selecting nodes of thegrid to
participate in experiments). XSM is an enhanced version of Mica2
[2] mote, and each XSM is equipped with a Chipcon CC1000 [1]
radio operating at 433 MHz. To form multihop networks, the trans-
mission power of the CC1000 radios is set at -14dBm (i.e., power
level 3) for the experiments of this paper unless otherwise stated.
XSM uses TinyOS [4] as its operating system. For all the exper-
iments in this paper, the default TinyOS MAC protocol B-MAC
[24] is used; a unicast packet is retransmitted, upon transmission
failure, at the MAC layer (more specifically, the TinyOS compo-
nent QueuedSend) for up to 7 times until the transmission succeeds
or until the 8 transmissions have all failed; a broadcast packet is
transmitted only once at the MAC layer (without retransmission
even if the transmission has failed).

3. BIASED LINK SAMPLING AND ROUT-
ING CONVERGENCE

Taking the data-driven link estimation and routing method L-
ETX [30] as an example, we analyze in this section the convergence
properties of data-driven routing in the presence of biasedlink sam-
pling (BLS) and traffic-induced dynamics (i.e., network dynamics
introduced by varying network traffic patterns).

When network traffic pattern changes, the quality of a link may
become worse (e.g., when receiver-side interference increases) or
better (e..g., when receiver-side interference decreases). It turns out
that these two types of link quality changes have different impact
on data-driven protocols, as we show below.

PROPOSITION 1. In the presence of biased link sampling and
when an unused route becomes better than the currently used one,
the convergence of data-driven routing depends on the relative change
in the quality of the unused route; routing converges to the optimal
if the quality of the unused route has deteriorated, otherwise rout-
ing does not converge. 2

Proof sketch: Consider a nodeS that is currently using a routeP0

through forwarder/neighborR0. Without loss of generality, let us
consider another routeP1 through forwarder candidateR1.

If the quality ofP1 becomes better than both its own earlier qual-
ity and the current quality ofP0, nodeS will not know, due to the
issue of biased link sampling, thatP1 has become better thanP0

and will continue using the suboptimal routeP0 instead of the op-
timal routeP1. Therefore, data-driven routing does not converge to
the optimal solution in this case.

On the other hand, if the quality ofP1 becomes worse than its
own earlier quality but better than the current quality ofP0, the
the current quality ofP0 will be worse thanP1’s quality before the
network condition change. SinceS keeps in its routing tableP1’s
quality before the condition change,S will regardP1 being a better
route thanP0 and will change toP1. OnceS starts to useP1, it re-
samplesP1 and link estimation will converge to the latest quality
of P1.

2

From Proposition 1, we can analyze the behavior of L-ETX in
cases of improving network conditions and deteriorating network
conditions separately. We first analyze the convergence speed when
network condition deteriorates (i.e., link and route quality wors-
ens). To this end, we first analyze the sample size requirement in
L-ETX for identifying the best forwarder. We assume that theETD
metric (i.e., the geographic-version of the distance-vector protocol
L-ETX) is used since it enables us to have a closed-form solution
as shown below.

PROPOSITION 2. Given a senderS, the destinationD, and two
ofS’s forwarder candidatesK1 andK2 that are closer toD thanS

itself and whose corresponding unicast-physical-transmission reli-
ability is P1 and P2 respectively, the sample sizen that is suffi-
cient to distinguish the relative goodness ofK1 andK2 at 100(1-

α)% confidence level is(
Z1−α/2(L1

√
P1(1−P1)+L2

√
P2(1−P2))

L1P1−L2P2
)2,

whereL1 is the distance fromS to D minus that fromK1 to D, L2

is the distance fromS to D minus that fromK2 to D, andZ1−α/2

is the (1-α/2)-quantile of the standard Gaussian variable N(0, 1).
2

Proof sketch: For a link with unicast-physical-transmission reli-
ability P that is calculated based onn number of physical trans-
missions, the confidence interval (CI) for the packet delivery rate
at significance levelα (i.e., at 100(1-α)% confidence level) is[P −
Z1−α/2

q

P (1−P )
n

, P +Z1−α/2

q

P (1−P )
n

] [16]. Thus, for the two
links with packet delivery rateP1 andP2 respectively, the corre-
sponding CIs are as follows:

CI1 = [P1 − Z1−α/2

q

P1(1−P1)
n1

, P1 + Z1−α/2

q

P1(1−P1)
n1

]

CI2 = [P2 − Z1−α/2

q

P2(1−P2)
n2

, P2 + Z1−α/2

q

P2(1−P2)
n2

]

The CIs for the corresponding routing metric ETDs are therefore as
follows:

CI ′
1 = [ 1

L1(P1+Z1−α/2

r

P1(1−P1)
n1

)

, 1

L1(P1−Z1−α/2

r

P1(1−P1)
n1

)

]

CI ′
2 = [ 1

L2(P2+Z1−α/2

r

P2(1−P2)
n2

)

, 1

L2(P2−Z1−α/2

r

P2(1−P2)
n2

)

]

Without loss of generality, we assume that we take equal number
n of samples for both links (i.e.,n1 = n2), and suppose that we
want to calculate the required sample sizen so thatK1 is no worse



a forwarder candidate thanK2. Then a sufficient condition [16] is
as follows:

1

L1(P1 − Z1−α/2

q

P1(1−P1)
n1

)
≤ 1

L2(P2 + Z1−α/2

q

P2(1−P2)
n2

)

which implies that

n ≥ (
Z1−α/2(L1

p

P1(1 − P1) + L2

p

P2(1 − P2))

L1P1 − L2P2
)2

Thus the minimum sample size required is

(
Z1−α/2(L1

p

P1(1 − P1) + L2

p

P2(1 − P2))

L1P1 − L2P2
)2

2

To get numerical results on the sample size requirement, we con-
sider the case where the sender on the left end of the middle row of
Figure 2(b) needs to select the best next-hop forwarder among the
set of receivers in the middle row, and the destination is faraway
from the sender but in the direction extending from the sender along
the middle row to the right. (Phenomena similar to what we will
present have been observed for other sender-receiver pairstoo.) To
calculate the sample size required by the sender to identifythe best
forwarder, we need to measure the unicast-physical-transmission
reliability from the sender to each receiver. To this end, welet
the sender transmit 15,000 unicast packets to each of the receivers
where each packet has a data payload of 30 bytes. Based on packet
reception status (i.e., success or failure) at the receivers, we mea-
sure the unicast-physical-transmission reliability for each link. Us-
ing these data, we calculate the sample size required for comparing
every two links, and then the sample size required to identify the
best forwarder is the maximum of the sample size requirementfor
pair-wise comparison.

To understand the potential impact of traffic-induced interference
on sample size requirement, we randomly select 42 motes out of
the light-colored (of color cyan) 6 rows of Figure 2(b) asinter-
ferers, with 7 interferers from each row on average. Each interferer
transmits unicast packets (of payload length 30 bytes) to a destina-
tion randomly selected out of the other 41 interferers. (Note that,
even though the overall traffic pattern in low-power wireless sen-
sor networks tends to follow certain regular patterns, e.g., flowing
from sources to a common sink, the local traffic pattern around the
neighborhood of a node tends to be much more irregular. We will
also show in Section 5 that the phenomena observed via the local,
random traffic patterns carry over to experiments where sensor net-
work specific traffic patterns are studied.) The load of the interfer-
ing traffic is controlled by letting interferers transmit packets with
a certain probabilityd whenever the channel becomes available. In
our experiments, we measure the unicast-physical-transmission re-
liability from the sender to its receivers whend is 0, 0.01, 0.04,
0.07, 0.1, 0.4, 0.7, and 1 respectively. Thus the interfering traffic
pattern is controlled byd in this case. (Phenomena similar to what
we will present have been observed for other interfering traffic pat-
terns, for instance, with different spatial distribution and different
number of interferers.)

Based on Proposition 2, we analyze the sample size requirements
in the above interference scenarios, and Table 1 shows the me-
dian sample size required to identify the best forwarder at 95%
confidence level. We see that the number of required physical-
transmission-samples tends to be small; for instance, it may only
take a very few number of unicasts to collect the required sam-
ples. This implies that data-driven link estimation tends to converge
quickly. The quick convergence in link estimation implies that the

d 0 0.01 0.04 0.07 0.1 0.4 0.7 1
Median

sample size 4 3 5 4 5 7 5 4

Table 1: Median sample size required to identify the best for-
warder at 95% confidence level

routing structure in L-ETX can converge to the optimal one ina
timely manner when network condition worsens (e.g., when net-
work traffic load increases) to the degree that the optimal structure
changes.

From Proposition 1, we know that, due to BLS, L-ETX may not
converge to the optimal solution when network condition improves.
So, the questions arehow this issue of potential divergence affects
routing optimality and how to address it. We explore answers to
these questions in the next section.

4. DYNAMICS OF BEST FORWARDERS
To provide guidelines on addressing the BLS issue in the pres-

ence of traffic-induced dynamics, we study in this section how the
best forwarder of a node may change with traffic pattern. We first
study the dynamics of best forwarder through mathematical analy-
sis so that we can examine the issue in generic, different network
setups, and then we verify the analytical results through testbed
based experimentation.

4.1 Mathematical analysis of best forwarders
To get closed-form solutions, we use the ETD metric to eval-

uate the goodness of different forwarder candidates as we did in
Section 3. We first present the analytical method and then thenu-
merical results for different network setups.

Analytical method. To evaluate the goodness of a forwarder can-
didate using the ETD metric, we need to analyze the packet deliv-
ery rate (PDR) of the corresponding link in the presence of dynamic
traffic/interference patterns. To this end, we need to analyze the
interference at the forwarder candidate in different traffic scenarios
so that we can calculate the signal-to-interference-and-noise-ratio
(SINR) based on which we calculate the PDR.

To calculate the interference at a forwarder candidate (which is
the packet receiver from the perspective of the sender), we adapt
the interference model proposed by Qiuet al. [25] to determine the
concurrent transmissions (and thus the interference) in a network.
In Qiu’s model, the behaviors of IEEE 802.11 MAC in multi-hop
networks are modeled using a Markov chain where the statei is the
setSi of nodes that are transmitting concurrently at a certain time
moment. To adapt Qiu’s model to the analysis of B-MAC, we need
to adapt the probabilityP01(m|Si) that a nodem starts to transmit
when the system is at statei. This is because TinyOS B-MAC [4]
differs from 802.11 in how channel access is coordinated. Due to
the limitation of space, we relegate to [31] the detailed derivation
of the adapted model.

Using the adapted model, we can calculate the stationary prob-
ability πi for each statei. Then, for each pair of transmittert and
receivers, the interference that concurrent transmissions have at
nodes is

X

i:t∈Si

X

j:j∈Si,j 6=t

πiPow(j, s),

wherePow(j, s) is the received signal strength ats for signals
coming fromj. Pow(j, s) can be calculated using the log-normal
path loss model as in [33]. Then, the SINR at receivers, denoted



by SINR(t, s), calculates as follows:

SINR(t, s) =
Pow(t, s)

N0 +
P

i:t∈Si

P

j:j∈Si,j 6=t πiPow(j, s)

whereN0 is the background noise. Accordingly, we can calculate
the packet delivery ratePDR(t, s) from t to s as a function of
SINR(t, s), using the model proposed by Zunigaet al. [33], and
thus we can calculate the corresponding ETD metric value. Having
derived the ETD metrics for each forwarder candidate of a node,
we can determine which is the best forwarder with the minimum
ETD metric value.

Numerical results. Using the above models, we analyze the PDR
and ETD in different scenarios, including randomly distributed and
regularly distributed nodes, and for indoor and outdoor environ-
ments. In our network setups, radio transmission power is set as
-14dBm, path loss exponent is set as 3.3 and 4.7 for indoor and
outdoor environments respectively, and background noise is set as
-105dBm and -100dBm for indoor and outdoor environments re-
spectively. Given the high space complexity of Qiu’s model [25],
we can only run in Matlab the adapted model with no more than
44 transmitting nodes in our computer (which is a Dell Optiplex
GX620 with 4GB memory). Thus we run the model in networks of
around 40 transmitting nodes.

Due to the limitation of space, here we only discuss the case
of indoor, randomly distributed interferers, and we refer interested
readers to [31] for other cases where similar phenomena are ob-
served. We consider a network setup that is the same as what have
presented in Section 3 except that 1) the grid space is15×7 and 2)
the distance between any two closest grid points is 1 meter. Then,
we let the node at the left end of the middle row serve as the sender,
the rest nodes in the middle row serve as forwarder candidates, and
the destination is far away from the sender in the direction extend-
ing from the sender to the forwarder candidates. Figure 3 shows
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Figure 3: PDR and ETD in an indoor environment with 42 ran-
domly distributed interferers

the PDR and ETD in this setup. We see that PDR and ETD change
significantly with interference patterns, especially for links of lower
PDR. Yet the best forwarder remains rather stable: it is noden5

that is 5 meters away from the sender, except for the cases when
d = 0.7 andd = 1 where the best forwarder is noden4 that is 4
meters away from the sender. With other protocols (e.g., conges-
tion control) in place, a network usually works under load much
lighter thand = 0.7; in fact, Nget al. [23] showed that the op-
timal traffic injection rated is 0.245 in a regular linear topology,
and the optimald will be even lower in common, two-dimensional
networks. Therefore, the optimal forwarder will not changeif the
network congestion level is well controlled (e.g., throughconges-
tion control). Moreover, the ETD value ofn4 is less than 5.51%
more than that ofn5; this implies that, even though a node may be
unable to find the optimal forwarder when network condition im-
proves (i.e., interference level decreases), it may still be okay for a
node to use the suboptimal forwarder since its performance is very
close to the optimal.

4.2 Experimental analysis of best forwarders
To experimentally verify the analytical observations, we use the

data collected in Section 3 for network conditions in the Kansei
testbed. As in Section 3, we consider the case where the sender
on the left end of the middle row of Figure 2(b) needs to selectthe
best next-hop forwarder among the set of receivers in the middle
row, and the destination is far away from the sender but in thedi-
rection extending from the sender along the middle row to theright.
Figure 4 shows the PDR and ETD in different interference/traffic
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Figure 4: PDR and ETD in the Kansei testbed with 42 ran-
domly distributed interferers

scenarios. The results are more complex than in analysis in the
sense that the PDR and ETD are not monotonic functions of the
sender-forwarder-distance due to real-world factors suchas hard-
ware heterogeneity. Nonetheless, the dynamics of the best for-
warder assumes a similar pattern: despite the huge variations in



PDR across different interference scenarios, the best forwarder is
the node that is 9.15 meters (i.e., 30 feet) away from the sender in
all the scenarios except for the case whend = 1; whend = 1, the
best forwarder is 2.74 meters (i.e., 9 feet) away from the sender.
This result is rather consistent with the indoor, analytical results
as shown in Figure 3, even though there is slight differencesdue
to differences in network setup and environment conditions. As
we have discussed earlier, well-controlled traffic load in multi-hop
wireless networks is usually much lighter than 0.7 and 1 [23], thus
the best forwarder remains the same across different interference
scenarios. We discuss exceptional scenarios of extreme traffic load
in Section 6.

4.3 Summary
From the above mathematical and experimental analysis for ran-

dom and grid topologies and for indoor and outdoor environments,
we observe that the best forwarder remains quite stable eventhough
PDR (and even ETD) changes with dynamic traffic patterns. Even
though the best forwarder may change when traffic load dynamics
passes through a threshold traffic load value, the best forwarder re-
mains the same for a wide range of traffic scenarios. An intuitive
explanation for this high stability in best forwarder, in contrast to
the much more dynamic link reliability and routing metric value,
are that there is usually a guard margin between the routing met-
ric values of the best forwarder and other forwarders, and that, due
to the positively correlated impact that each interferer’ssignal has
on the best and other forwarders, it may take a significant change in
traffic (and thus interference) pattern to overcome the guard margin
as we have seen in our analysis. That is, the guard margin between
the best forwarder and the other forwarders tends to mask theim-
pact of traffic-induced dynamics.

In the varieties of scenarios we studied, moreover, the threshold
value is either very low (e.g., less than 0.07) [31] or very high (e.g.,
greater than 0.7). When the threshold load is low, it does notmat-
ter much even if routing does not converge to the optimal forwarder
when network traffic load decreases to pass the low thresholdvalue;
this is because the chosen suboptimal forwarder may well be close
to optimal in performance, and optimality is less of a concern for
light traffic load (when it is easy to ensure packet delivery relia-
bility) [31]. When the threshold load value is high, it is rarely the
case that we would expect to see network traffic load exceeding the
threshold in practice when other protocols are in place to control
the network congestion level, and thus the best forwarder tends to
remain the same across different admissible traffic scenarios.

In the next section, we corroborate these observations by exam-
ining the behaviors of L-ETX in different dynamic traffic patterns
and network setups. We discuss in Section 6 how to address the
exceptional cases where best forwarders may change in a manner
that significantly affect network performance.

5. ROUTING WITH DYNAMIC TRAFFIC
PATTERNS

Having analyzed the convergence behaviors of data-driven rout-
ing and the dynamics of best forwarders, we experimentally evalu-
ate the behaviors of L-ETX in the presence of three types of sensornet-
specific dynamic traffic patterns: dynamic events, dynamic peri-
odic data, and mixed dynamic events and periodic data. We also
use both grid and random network topologies in this experimental
study. Due to the limitation of space, here we only discuss the
case of dynamic events and grid network topology, and we refer
the readers to [31] for other cases (e.g., random network topology)
where similar phenomena are observed.

We use a publicly available event traffic trace for a field sensor
network deployment [3] to generate dynamic events in our study.
Since the traffic trace is collected from 49 nodes that are deployed
in a 7 × 7 grid, we randomly select and use a 7×7 subgrid of the
Kansei testbed (as shown in Figure 2(b)) for experimentation. The
mote at one corner of the subgrid serves as the base station, the
other 48 motes generate data packets according to differenttraf-
fic patterns, and the destination of all the data packets is the base
station.

We use the event traffic trace mentioned above, but we control
the set of nodes that actually generate source packets to control
the event size, through which we generate dynamic events. More
specifically, we study the following dynamic events which contain
7 event configurations:

1 × 1 → 3 × 3 → 5 × 5 → 7 × 7 → 5 × 5 → 3 × 3 → 1 × 1

where each configuration specifies the subgrid of traffic sources.
For instance, “3 × 3” specifies that the nodes in the farthest3 × 3
subgrid from the base station generate event traffic. For each
event configuration, we generate the associated event 40 times and
measure the performance of L-ETX for this event configuration.

Examining the routes taken by packets from each node, we ob-
serve that there are very few route changes during the whole exper-
iment. For instance, Table 2 shows the statistics of comparing the

Consecutive Same Diff. route, same Increased Decreased
routes hop length hop length hop length

Radio (%) 99.98 0 0 0.02

Table 2: Routing stability in the presence of dynamic events:
grid network

routes taken by every two consecutive packets from a same node:
99.98% of the time, consecutive packets use the same route, and
only 0.02% of the time the route changes to be a longer one. The
high stability of routes in the presence of dynamic traffic patterns
are due to the following reasons: 1) estimation in L-ETX is very
accurate and stable [30]; and 2) the best forwarder does not change
much across different network traffic conditions as discussed in
Section 4.

Because of the stability in routing, packet delivery performance
is rather consistent across similar network setups. Figure5 shows
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Figure 5: Event reliability for dynamic events: grid networ k

the boxplot of event reliability for each event configuration, and
Table 3 shows the median event reliability and its 95% confidence
level confidence interval (CI) in different configurations.We see
that, despite random variations, the event reliability forconfigura-
tions #3 and #5 are similar to each other, and their CIs overlap with



Config. Median (%) CI (%)
#1 100 (100, 100)
#2 100 (98.44, 100)
#3 97.92 (96.92, 98.62)
#4 91.85 (91.3, 92.39)
#5 98 (96, 99)
#6 100 (98.94, 100)
#7 100 (100, 100)

Table 3: The median event reliability and its 95% confidence
level confidence interval for dynamic events: grid network

each other. A Wilcoxon Rank Sum [15] test shows that configura-
tions #3 and #5 have equal median event reliability at the 95%con-
fidence level. The same observation applies to other similartraffic
patterns, that is, configurations #2 and #6, and configurations #1
and #7.

We also examine the detailed route information, for instance, the
hop length and the end-to-end transmission count of routes.Us-
ing Wilcoxon Rank Sum tests, we find out that, at 95% confidence
level, routes chosen by nodes equal distance away from the base
station have equal median hop length and end-to-end transmission
count in similar network setups (e.g., configurations #3 and#5).
For instance, Figure 6 shows the (statistically) similar end-to-end
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Figure 6: Time series of route transmission counts for a node9
grid-hops away from the base station: dynamic events and grid
network

route transmission counts for the routes taken by packets from a
node 9 grid-hops away from the base station in configurations#3
and #5. The same observations apply to parameters such as the
per-hop geographic distance and the per-hop transmission count of
links used in similar network setups.

Verification. To corroborate the fact that the best forwarders are
actually stable in the presence of the different dynamic traffic sce-
narios discussed above, we implement a variant of L-ETX, which
we call L-ETX-rcv. L-ETX-rcv is the same as L-ETX except that
the forwarder candidates of a node always try to overhear theuni-
cast packet transmissions from the node. Note that the overhearing
in L-ETX-rcv is similar to that in EAR [17], but unlike in EAR
which studied 802.11b networks with the RTS-CTS mechanism,
the B-MAC used in our study does not use RTS-CTS handshake,
and thus overheard transmissions by a nodef in L-ETX-rcv have
the same properties as those of unicast transmissions destined for
f itself. Therefore, a forwarder candidatef in L-ETX-rcv can de-
termine, based on the overheard data transmissions, the latest link
properties for unicast data transmissions from the senders to it-
self, and thenf can share this information withs so thats can
make the right decision in choosing the optimal forwarder. Conse-

quently, biased-link-sampling is not an issue in L-ETX-rcvdue to
the receiver-assisted, data-driven link estimation. We run L-ETX-
rcv in the different dynamic traffic scenarios and network setups
discussed earlier, and we find out that, similar to L-ETX, there is
very little route changes and the best forwarders remain stable de-
spite the traffic dynamics.

6. IMPLICATIONS FOR PROTOCOL DE-
SIGN

We see from the findings of Sections 3, 4, and 5 that, despite
BLS, L-ETX converges quickly when network condition deterio-
rates (e.g., due to increased traffic load). For the wide range of dy-
namic traffic scenarios and network setups we studied, we also see
that even though 1) data-driven protocols may, theoretically speak-
ing, not converge to the optimal solution when network condition
improves, e.g., due to decreased traffic load, and 2) link proper-
ties do change significantly as traffic pattern changes, the best for-
warders remain quite stable (in which case BLS is not a problem
any more), or the optimal forwarder chosen for heavy traffic load
may still be a very good suboptimal forwarder for lighter traffic
load [31].

In our study, we have examined a wide spectrum of dynamic traf-
fic scenarios (e.g., dynamic events, dynamic data collection, and
their mix) and network setups (e.g., grid and random networks),
but we understand that we have not covered all the scenarios that
may exist in practice. For the mostly static deployment scenarios
we studied, however, our findings on the high stability of theop-
timal routing structure in spite of dynamics of link properties are
themselves not obvious and shed new light on how to address the
BLS issue in mostly static networks such as those for remote en-
vironmental monitoring. On one hand, we are assured of the good
performance of L-ETX in a variety of traffic conditions even if we
do not design special mechanisms to address the BLS issue. Onthe
other hand, to address the rare cases where improved networkcon-
dition leads to significantly worse-than-optimal performance (e.g.,
due to slow but significant changes in environment conditions [21]),
a sender can proactively sample unused links/routes, or thefor-
warder candidates can proactively overhear the sender’s data trans-
missions to estimate the latest link quality; considering the quick
convergence of L-ETX and the low probability or frequency that
improved network condition may lead to significantly worse-than-
optimal performance, however, the proactive sampling or forwarder-
assisted receiver-side link estimation can be executed at very low
frequency to reduce the overhead of proactive sampling or over-
hearing. This is in contrast to the existing approaches in LOF
[29] and SPEED [14] where a node periodically samples unused
links/routes by using them to deliver data packets, which leads
to reduced routing performance due to frequent sampling of the
links/routes that are not or not even close to be optimal. We have
observed through experimentation that the periodic, probabilistic
sampling in LOF and SPEED can lead to bad performance, espe-
cially when traffic load is high (e.g., the7 × 7 event traffic trace
[3]).

L-ETX can deal with dynamics such as node/link failure or node
join in a straightforward manner. Node or link failure can bere-
garded as the case where the quality of the associated link(s) dete-
riorates (in fact, to be unusable), in which case L-ETX converges
quickly; node join can be handled effectively through the initial
link sampling procedure when a new node and the associated links
first become up. Besides traffic-induced dynamics, our studyin
this paper has not focused on other network dynamics such as node
mobility [9] and quickly changing environment conditions.Even



though we expect that the quick convergence and high stability of
L-ETX routing may also help us design light-weight approaches to
address these types of network dynamics, detailed study of this is
beyond the scope of this paper, and we relegate it as a part of our
future work.

7. RELATED WORK
Data-driven link estimation where MAC feedback for unicast

data transmissions is used for estimating unicast link properties has
been used in several sensor network routing protocols [13, 14, 17,
19, 20, 29, 30], and it has been shown that data-driven link estima-
tion significantly improves estimation accuracy and routing perfor-
mance as compared with beacon-based approach [30]. Nonethe-
less, the impact of biased link sampling (BLS) on routing optimal-
ity and the severity of the BLS issue in the presence of network
dynamics are mostly unexplored. Lack of deep understandingof
these issues has led to ad hoc approaches to explicitly or implicitly
addressing the BLS issue. As a first step toward systematic treat-
ment of the BLS issue in data-driven link estimation and routing,
we have studied in this paper the routing convergence and optimal-
ity in the presence of traffic-induced dynamics, and the findings
provide new insight into the BLS issue and suggest alternatives to
existing approaches in data-driven link estimation and routing.

Ramachandranet. al [26] studied routing stability (based on
metric ETT [10]) in static wireless mesh networks. The studyin
[26], however, used broadcast-beacon based link estimation method,
and it did not consider the errors in beacon-based link estimation.
The study on routing stability in [26] was also based on link quality
data collected in the absence of data traffic, and it did not consider
the impact of network traffic pattern on link and path properties and
thus not the impact of traffic-induced dynamics. Daset. al [8] stud-
ied the stability of different routing metrics, but they didnot focus
on routing stability which we have shown to be different fromthe
stability of individual routing metrics. It was not the focus of [8] to
examine the BLS issue in data-driven link estimation and routing
either.

Lin et. al [21] proposed an adaptive transmission power control
mechanism that controls radio transmission power level to ensure
consistent link properties in the presence of environment dynamics.
We have mainly focused on intra-network, traffic-induced dynam-
ics in this paper, and we did not focus on environment dynamics.
Nonetheless, the adaptive transmission power control mechanism
of [21], if deployed, will make the findings of this paper applicable
to a broader sensor network scenarios including those with quickly
changing environment conditions.

8. CONCLUDING REMARKS
We have studied the open, unexplored issue of biased link sam-

pling (BLS) in data-driven link estimation and routing. Fora wide
range of traffic patterns and network setups we studied, we dis-
cover that the optimal routing structure remains quite stable despite
the significant variations in link properties and route metric values.
For the rare cases where the optimal routing structure does change,
we prove that, despite the BLS issue, data-driven link estimation
and routing is guaranteed to quickly converge to the optimalstruc-
ture when network conditions deteriorate; when network conditions
improve, we empirically show that the optimal structure forheavy
traffic load tends to remain a good suboptimal structure for lighter
traffic load, even though data-driven routing may not converge to
the optimal. These findings shed new light on the BLS issue and
provide the foundation for a simple, light-weight mechanism of ad-
dressing the BLS issue in the presence of traffic-induced dynamics.

The highly stable routing structure in L-ETX provides a stable,
consistent infrastructure for data transport and can help ensure pre-
dictable QoS in the presence of traffic dynamics; detailed study of
this will be an interesting topic for future research. We have fo-
cused on traffic-induced dynamics in this paper, detailed study of
how other network dynamics (such as node mobility and quickly
changing environmental conditions) affect the stability of optimal
routing and data-driven link estimation is also a part of ourfuture
work.
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