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Abstract—Human beings have the remarkable ability to cat-
egorize everyday objects based on their physical and functional
properties. Studies in developmental psychology have shown that
infants can form such object categories by actively interacting
and playing with objects in their surroundings. It is infeasible to &a
pre-program a robot with knowledge about every single object )
that might appear in a home or an office. If robots are to
succeed in human inhabited environments, they would also need
the ability to form object categories and relate them to one
another. In this work, we present an approach to interactive
object categorization in which the robot uses the natural sounds
produced by objects to form object categories. The method is
evaluated on an upper-torso humanoid robot which performs
five different manipulation behaviors (grasp, shake, drop, push, a) September 2008 b) April 2009
and tap) on 36 common household objects (e.g., cups, balls, bexe
pop cans, etc.). Using unsupervised hierarchical clustering, the
robot is able to form a hierarchical taxonomy of the objects that Fig. 1. The humanoid robot used in the experiments. a) the ratotbie time
it interacts with. The results show that the formed categories the experiments were conducted; b) the robot in its curremn fo
capture certain physical properties of the objects and allow the
robot to quickly recognize the correct category for a novel objet
after a single interaction with it.

principles and insights from developmental psychology, we
|. INTRODUCTION present a framework in which the robot learns about natural
According to psycho|ogist Don Norman, natural Soungounds of physical objects through its own active inteoacti
conveys valuable information about the things we cannytth them. Several key issues are addressed:
see [1]. Natural sound also contains information about the
interaction between the physical objects that generate p[ « Can arobot learn to recognize a large set of objects using
103]. Studies in psychology and cognitive science have show  Only acoustic information?
that humans can extract the physical properties of objeats f « Can a robot form object categories using natural sound?
the sounds that the objects produce [2, 3]. Unlike our senses Do these learned object categories capture some of the
of vision, which is always constrained to a particular viegi physical properties (e.g., material type) of the objects?
direction, our auditory sense allows us to infer events e th
world that are often outside the reach or range of other sgnso To investigate these questions, we used a humanoid robot
modalities [1, p. 103]. (see Figure 1) which interacts with 36 common objects by
A robot operating in a human-inhabited environment shoufserforming five different behaviors on them: grasping, shgk
be able to use sound as a source of information about eventsliapping, pushing, and tapping. The robot represents each d
its immediate surroundings. For example, such a robot couktted sound as a sequence of state activation patterngythro
use sound to recognize important events in the home or offi@eSelf-Organizing Map(SOM). The SOM allows the robot
(e.g., an object falling to the ground) without the need fap turn the high-dimensional sound input into a sequence of
a direct line of sight. Like humans, humanoid robots wiltokens from a finite alphabet (i.e., the set of nodes in the)map
undoubtedly interact with objects (whether purposefuliyop  Using supervised learning methods, the robot is able tanlear
accident) outside of their field of view - in which case audito models that can perform object recognition using soundeglon
input may be the primary source of information about thas well as detect certain physical properties of the objet (
nature of the object. material type). Furthermore, using an unsupervised agproa
This work addresses the problem of how a robot cahe robot is able to form a hierarchical object categororati
use acoustic information to learn about common househdice., a taxonomy) of the objects it explored, which capgure
and office objects and their physical properties. Inspirgd I3ome of their physical properties.
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A. Psychology
The work presented in this paper is directly inspired arn

motivated by studies and research in psychology and cegnit baper no wood no

science. In particular, the ecological approach to augito

perception provides the insight thateryday listeningonsists paper no wood no

of perceiving the properties of a sound’s source (e.g., a ¢

engine, footsteps, etc.), rather than the properties ofundo paper yes wood no

itself (e.g., pitch, tone, etc.) [2]. Hence, everyday st is

an important source of information - it allows us to perceiv metal no plastic yes

events outside our field of view, as well as recognize tl

physical p_roperties of the objects i_nvolved. metal no plastic yes
These insights have been confirmed by numerous exps

mental studies involving human subjects. For example, &varry

et al. [4] demonstrate that humans are extremely good metal no metal no

categorizing individual sound tokens extracted frbouncing

andbreakingacoustic events. Furthermore, sound also alloy plastic | no other no

us to perceive certain physical properties of objects: Sra
et al. [3] show that human subjects were able to provid
reasonably good estimates for the size of a ball dropped
plates by simply hearing the impact sound. Giordanal. [5]

conducted a study which demonstrated that human beings
accurately recognize an object’s material (one of woodsgla
steel and plexiglass) when listening to the sounds gertera
when the object is struck. Motivated by these examples, t

plastic no plastic yes

plastic no paper yes

plastic no plastic no

work in this paper investigates methods that would allow other no plastic | yes
robot to use sound as a source of information about obje
in a similar manner. paper no plastic no

plastic no metal no

B. Robotics

Despite the importance of natural sound, there have be
relatively few studies examining how a robot can use sou
as a source of information about objects, and their physig

plastic no plastic no

properties. One of the first studies that explore this topas wi paper no metal no
conducted by Krotkowt al. [6] in which the robot identifies
the material type (aluminum, brass, glass, wood, and p)as plastic no other no

of several objects by probing them with its end effector. |
a similar fashion, Richmonet al. [7] [8] have developed a
robot platform for measuring contact sounds between a i®bd
end-effector and objects of different materials. By mauigli
the spectrogram of the sounds using spectrogram averag
across multiple trials, the robot was able to detect differ
types of materials from contact sounds. Fig. 2. The 36 objects used in the experiments (not shown te)sdarst

Torres-Jarat al.[9] demonstrated a robot that can recognizeolumn, from top to bottom: pasta box, paper cup, box of pajpschetal

obiects using the sounds generated when tapping on th metal plate, metal flange, hockey puck, plastic green glagtic green
) 9 9 ppIng g&tﬁ: hard plastic bottle, styrofoam eraser, egg cartonerdent bottle, soft

with its end effector. After tapping pn a novel ObjeCt’ th‘f?')lgglstic bottle, empty cracker box, cosmetic bottle, coffeegmall pill bottle;
spectrogram of the detected sound is matched to one thasésond column: wooden stick, wooden plank, wooden cubenint& bottle,

already in the training set which results in a predictiontfw tupperware (with play block inside), metal box, tennis hiadix of t_hu_mbtacks,
box of spoons, empty shampoo bottle, box of screws, plastitagwr, pop

objectjs type. This allowed the robot to correctly recogniz.,, (Red Bull), pink plastic cup, pop can (Mt. Dew). rubbefl,barange
four different objects. plastic ball, mixed nuts jar.

plastic yes plastic no
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These previous studies, however, involved a relativelylsma
number of objects and exploratory robot behaviors. In oer pr
vious work [10] we have shown that sound-based object recog- o |
nition can be scaled up to a larger number of objects across & |
multiple behaviors. Our robot used three machine learning (5
methods (k-Nearest Neighbor, Support Vector Machine and
Bayesian Network) to perform object recognition on eightee
different objects by applying three different behaviorsigp,
grasp, and drop). Features extracted from the spectrogram
of each sound were used as input to the robot’s recognition <§
model. The study in [10] was expanded in [11] to include an &
even larger number of objects (36) and two new behaviors -
tapping and shaking. The robot was able to recognize the type
of object and the type of interaction (i.e., behavior) usimfy
the detected sound, and the sound feature representat®n wa
shown to be superior to that of [10]. g

The experiments in this paper use the dataset and soundy
representation proposed in [11] to show how a robot can not
only perform acoustic-based object recognition, but atsonf
object categories and detect the physical properties afobdj
from natural sound.

Bef9re After

IIl. EXPERIMENTAL SETUP

Push

A. Robot

The robot used in this study is an upper-torso humanoid
robot, with the 7-DOF Barrett Whole Arm Manipulator
(WAM) and the 3-finger Barrett Hand as its end effector (see
Fig. 1.a). The robot arm is controlled in real time from a binu
PC at 500 Hz over a CAN bus interface.

The robot is equipped with a Rode NT1-A microphone,
also seen in Fig. 1.a. Sound input was recorded at 44.1 KHz
using the Java Sound API over a single 16 bit channel. They. 3. Beforeandafter snapshots of the five behaviors used by the robot.
microphone’s output was routed through an ART Tube MP
Studio pre-amplifier.

Tap

) categories were considered, the actual number of materials

B. Objects present is much higher - for example, the plastic used to make

The set of objects(, that the robot interacts with consistshe plastic bottle is quite different from the plastic used t
of 36 different objects, shown in Fig. 2. The objects includmake the plastic ball.
common household items such as balls, cups, containe&s
bottles, boxes, etc. Some of the objects (e.g., the coffethm
box of thumbtacks, etc.) have contents inside of them which The robot's set of behaviors, consists of five exploratory
produce sounds when shaken. The objects are made of varyi§gaviors that the robot performs on each objgasp shake
materials including metal, plastic, rubber, paper, and avoodrop, push andtap. The behaviors were implemented using
The selection criteria for the objects were: must be graspathe Barrett WAM API. Fig. 3 showbeforeand after images
by the robot, must not contain liquids (even if they couldf,or each exploratory behavior. The recording of each sound
and must not be fragile (i.e., no glass objects). was automatically initiated at the start of each behaviat an

Each object was manually labeled with two labels corréiopped once the behavior was completed.
spondjng to two diffe_rent obj.ect properti.es: 1) the obgct’ IV. LEARNING METHODOLOGY
material type (out of five possible categories); and 2) waeth ) ) o
or not the object has contents inside of it (either yes or hp). A- Feature Extraction using a Self-Organizing Map
the case of the material property, several different maleri The robot in this study employs the sound feature represen-
were consideredmetal wood plastic and paper. Objects tation introduced in [11], repeated here for clarity. Eaohrsd,
with unique materials were put in the categoryather. It is S;, is represented as a sequence of nodes in a Self-Organizing
important to note that the labeling, even though performed b Map (SOM) [12]. To obtain such a representation, features
human, should be consideradisysince some objects containfrom each sound were first extracted using the log-normélize
more than one material. Furthermore, while only 5 materi@lliscrete Fourier Transform (DFT). The DFT was computed

'Behaviors



parameters for a non-growing 2-D single layer map. Figure 5
gives a visual overview of the training procedure.
After training the SOM, each spectrograi, is mapped to
a sequence of stateS;, in the SOM by mapping the columns
of P; to nodes in the map. To do this, each column spectrogram
vector¢; € R* is mapped to the node in the SOM with the
highest activation value given the inpa;;t. Thus, each sound
is represented as a sequende,= sis;...s;;, where each
v ’ ’ T s, €A, Als the set of SOM nodes, aridis the number of
Sphinx4 column vectors in the spectrogram, as shown in Fig. 4. Inrothe
words, each sequencg consists of a sequence of activated
“H'."i' 1 y:;ﬂﬂmnﬂ!ml"ftﬁ"{““ﬂ“ | "f‘l'-'ll'WH!*!ﬁ'ﬂiml-«lmm states in the' SOM. ' ' . . .
’ f“{*ﬂ.”:;? H‘! !ngwmﬁ " n",".':ﬂ.r.? .wﬁ*m The machine learning algorithm used in this study requires
b) i i 1 *‘M‘qff!'ru?”ff#w i II' S m..ﬂt." WH a symmetric similarity function that can compute how simila
ML\H! i : AR N P | i l , 1',f,'|..: *'1 two sequences; andS; are. Computing similarity measures
i .
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i between a pair of sequences over a finite alphabet (e.qgs}ri

is a well established area of computer science, resulting

. ‘l‘?.\l\l

v in a wide variety of algorithms for exact and approximate
Trained SOM string matching [15]. In this study, we define a similarity
function, NW(S;, S;), between two such sequences to be

t the normalized global alignment score using the Needleman-

Q) | S Wunch alignment algorithm [16, 15]. The global sequence
alignment algorithm has been used for string comparison in

§ | § § - § various domains, such as bioinformatics, and natural laggu
Fig. 4. Audio signal processing and sound representatipiha raw soun ;
recorded after the robot performs tekakebehavior on the Vitamin C bottle. processing, among Othe_rs [_15]' To compute the §core between
b) Computed spectrogram of the sound. The horizontal axistdertime, WO Sequences, a substitution cost must be defined over each
while the vertical dimension denotes the 33 frequency biman@e-yellow pair of tokens in the alphabet, In this study, the substtuti
color indicates high intensity. ¢c) The sequence of stateshen SOM for cost between two stat and s. is set to the Euclidean
the detected sound, obtained after each column vector of ghetrsgram €% a -
is mapped to a node in the SOM. The length of the sequéhde ¢, which ~ distance between the corresponding SOM nodes (each of

is the same as the length of the horizontal time dimension ofgieeteogram  which is described by it andy coordinate in the 2-D plane)
shown in b). Each sequence tokene A, whereA is the set of SOM nodes. in the map
Figure adapted from [11]. ’ ’

B. Data Collection

. ) . ) Let B = [grasp shake drop, push tap| be the robot’s set of
using 2° + 1 = 33 frequency bins with a window 026.6 exploratory behaviors. The robot performs 10 trials witlclea
milliseconds (ms), compqted eveiy).0 ms. The SPHINX4 o the 36 objects for each of the 5 behaviors, resulting in a
natural language processing library (with default par&@mt 44| of 5 10 x 36 = 1800 interactions. During thé®" trial,
was used to compute the DFT [13]. Fig. 4 a) and b) shoe ropot records a data triple of the fori’;, O;, S;), where
an sample sound wave and the resulting spectrogram a@jeire B is the performed behaviof; € O is the object in the
applying the Fourier transform. The spectrogram encodes fteraction, andS; — sisy...sl, is the sequence of activated
intensity level of each frequency bin (vertical axis) atfacgonm nodes over the duration of the sound. In other words,
given point in time (horizontal axis). o ~each triple,(B;, 0;, S;), indicates that sound; was detected

Let P; be a spectrogram, such th& = [c},c,...,c;:;] when performing behavioB; on objectO;.
where each’; € R*® (i.e., ¢} is the 33-dimensional column
feature vector of the spectrogram at time slifgeand I is
the number of column vectors in the spectrogr&m Given a The first task of the robot is to learn a model such that
collection of spectrogramsP = {P;}X , a set of column given a sound sequencs;, the robot can estimate the object
vectors is sampled from them as an input dataset usedctass,O;, present in the interaction that generated the sound
train a two dimensional SOM of size 6 by 6, i.e., containing;. In other words, given a soung}, the robot should be able
a total of 36 nodes. The SOM is trained with input dateo estimatePr(O; = o|S;) for each objecb € O.
points, ¢ € R33 which represent the intensity levels for each To estimate these probabilities the robot uses the k-Neares
of the 33 spectrogram frequency bins at a given point Neighbor machine learning algorithm. K-Nearest Neighler (
time. Due to memory and runtime constraints, oinl§8 of NN) is a memory-basedearning algorithm which does not
the total available column vectors iR, sampled at random, build an explicit model of the data. Instead, it stores diElad
were used to train the SOM. The SOM was trained using thmining data points and uses them when the model is queried
Growing Hierarchical SOM toolbox for Java [14]. The defaulto make a prediction [17, 18].

C. Learning Algorithm
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Fig. 5. lllustration of the procedure used to train the S2ifanizing Map

(SOM). Given a set of spectrograms, a set of column vectorsampled at
random and used as a dataset for training the SOM. Figureedifom [11]

Fig. 6. A simple example of how a confusion matrix can be used aaya w
. .. . . to measure object similarity. Thg*" entry in the confusion matrix specifies
When making a prediction on a test data point, K-NN findsow often the sound generated by objestas classified as being generated

its k closest neighbors in the training set, i.e., given a test ddty object; (out of 50 possible trials, 10 for each of the 5 behaviors). Fo
; L : s ; . example, the robot's recognition model outputtbber ballin several of the
point 5;, k NN, finds thek training data points _m(,)St Slm_"ar FO trials in which the actual object in the interaction tennis ball Similarly,
S;. The algorithm returns a class label prediction which is @e robot also confuses the two pill bottles with each othad hence, they
smoothed average of the labels of the selected neighbors.sheld be considered similar in terms of the sounds they gneaction V
in our previous work [L1], the normalized global alignmenferues o2 8 EoN e o e o hch n farased 25 an
score, NW (S;,S;), is used as the similarity metric betweennput to a hierarchical clustering algorithm.
two data pointsS; and S;.
In the experiments in this studk,was set to 3. An estimate
for Pr(O; = o|S;) is computed by counting the class labelé\.. Object Similarity Matrix
of thek neighbors. For instances, if two of the three neighbors To Compute an Object S|m||ar|ty matrixy the robot uses the
have object class labglastic ball then Pr(O; = plastic |.NN object recognition model (described in the previous
ball|S;) = 2. Similarly, if the class label of the remainingsection) as follows. LeD = {(B;,0;,5;)}Y., be the set of
neighbor isplastic cup then Pr(O; = plastic cupS;) = 5. trial data available to the robot. Next, the robot evaludtes
own object recognition model by performing 10-fold cross-
validation on the available data. The result of this procedu
In this study, the robot uses its object recognition model {§ a || x |©| confusion matrixC, where the value in the
acquire object categories using an unsupervised hie&Chientry ¢,; indicates how often objeatwas predicted as object
clustering approach. The intuition behind the method used b, To construct a symmetric similarity matrix between each
the robot is that if a set of objects make very similar soundgair of objects, let the matrixC’ be defined such that each
it will be difficult for the robot to detect which precise obje entry Cl; = 0.5 % Cy; + 0.5+ Cj;. Finally, the values in the
from the set was present during the interaction. For exampl@sulting matrix are scaled so that each entry is in the range
it may be the case that the robot’s recognition model outpuigtweer).0 and1.0, and the diagonal values are sett0. The
rubber ballin many of the cases when the actual object ifesult of this procedure is a symmetric similarity matiy.
the interaction istennis ball In such a Scenario, the tWOFigure 6 visualizes how a confusion matrix can be used as a
objects should be considered similar and hence, grouped iQfay to detect pair-wise object similarity. The next subisect
a category (see Figure 6). Following, we show how: 1) thgescribes how the resulting similarity matrW is used as
robot uses its recognition model to construct a pairwiseabj input to a hierarchical clustering algorithm.
similarity matrix; and 2) how given such a similarity matrix
the robot constructs a hierarchical clustering of the disjec

V. OBJECTCATEGORIZATION
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Fig. 7. Visualization of the learned hierarchical objectegmrization, obtained after recursively applying the @ Clustering algorithm using the acquired
object similarity matrix. The similarity matrix was obtainediin the confusion matrix after the robot’s k-NN object recaigm model was evaluated using
10-fold cross-validation. Nine object categories arerledy many of which group objects either by their material tygehy whether or not the objects have
contents inside of them.
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B. Hierarchical Clustering criterion in reached, producing a tree structure. In thiglgt

the algorithm is recursively applied until the size of each
subgraph falls down to 5 or less objects (the number was
chosen heuristically based on the input size (36 objects) su
that each object category will consist of at least 3 objects)

" . . . . .~ . . The output of this procedure is a hierarchical taxonomy.,(i.e
partitions the input data points (i.e., the objects) intsjaint a tree), 7, which specifies the learned hierarchical object

clusters by exploiting the eigenstructure of the matiX. .
Because finding an optimal graph partitioning is NP—comIetcategor'zat'on'
Shi and Malik [20] proposed an approximation that optimizes VI. RESULTS
the normalized cutobjective function. The algorithm, as ap-a | earned Object Categories
plied to our problem, can be summarized in the following
steps:

To construct an hierarchical object categorization, tHeoto
uses theSpectral Clusteringalgorithm which falls into the
family of graph-basedor similarity-based clustering algo-
rithms [19]. Given a similarity matrix, W, the algorithm

Figure 7 shows the learned hierarchical object categadoizat
) ) o after obtaining the similarity matrix and recursively ayiph
1) Let W,,»,, be the symmetric matrix containing thegpectral clustering. At first glance, some of the categories

similarity score for each pair of objects. . appear to capture certain physical properties of the ojéot
2) LetD,,x, be the degree matrix oW, i.e., a diagonal eyample, clusters 1 and 2 (which are siblings in the ge
matrix such thaD;; = -, W;. consist almost exclusively of metal objects. Cluster 3, lvm t

3) Solve the eigenvalue systef — W)z = ADz for qther hand contains five of the objects that have small cositen
the eigenvector corresponding to the second smallgsige of them (e.g., pill bottles and boxes of thumbtacks,

eigenvalue and use it to bi-partition the graph. screws, and paperclips). Cluster 4 contains three out of the
4) If necessary, recursively bi-partition each subgraph ofyy palls in the dataset. All except one of the paper objects
tained at Step 3. the set are grouped together in Cluster 5. As expected, the tw

Hence, the algorithm recursively bi-partitions the grapplastic cups (which differ only in size) are grouped togethe
(which is induced by the similarity matri¥V) until a stopping along with a plastic shampoo bottle in Cluster 6.



TABLE | TABLE Il
INFORMATION GAIN INDUCED BY THE LEARNED OBJECT RECOGNITION ACCURACY WITH K-NN MODEL
CATEGORIZATION WITH RESPECT TO TWO PHYSICAL PROPERTIES

Behavior || Object Recognition] Category Recognitior}

Object Entropy | Avg. leaf entropy | Avg. leaf entropy Grasp 67.89 % 81.94 %
property at root (learned) (random) Shake 49.47 % 60.00 %
Material 1.40 0.42 +0.32 0.86 +0.25 Drop 85.79 % 94.44 %
Contents| 0.56 0.18 +0.27 0.40 4 0.29 Push 82.89 % 93.06 %

Tap 78.15 % 87.22 %
Average 72.84 % 83.33 %

Cluster 7 contains mostly wooden objects, while Cluster 8
contains exclusively plastic objects. The last one, CluSte B. Object Category Recognition

appears to simply hold the remaining 4 objects, which vary by Next, the robot's k-NN model is evaluated on how well it
material (three plastic and one metal) and contents (thetipla can detect the object in each interaction from the detected
tupperware has contents, while the rest do not). sound. Similarly, the robot is also evaluated on how well
It is still desirable, however, to have a quantitative measuit can recognize the test object’s category (i.e., whiclf lea
that captures the quality of the learned object taxonomyddo node in the learned taxonon® does the object belong to).
that, we look at how well the taxonomy captures two physicdlhe performance of the models is reported in terms of the
properties of the objects: 1) their material, and 2) whethrer percentage of correct predictions (i.e., accuracy) where:
not they have contents inside them.

Following, each object is manually given a label correspond o # total predictions - _

ing to one of five material classesiastic, paper, wood metal The accuracies in both cases are es'qmat_ed using 10-fold
andother (Figure 2 shows how each object was labeled). GivéfioSS validation. The results are summarized |n.TabIe.IIaAjs

a set of object®)’ (which may be a sub-set of the full s, reference, the expected change accuracy for ob!ect rewogni

let p; for i = 1,...,n be the estimated probability that an'S 1/36 ~ 2.7%. The robot is best able to recognize the object
object drawn from that set will be made of tiié material N the drop, push andtap interactions. However, even when
type. Let H. = — ™™ p;loga(p:) be theShannon entropy shaking the objects, the robot is able to achieve recognitio

B n =117 T . .
for the set(”’. If the learned categorizatioi captures the accuracy substantially better than chance since many of the

physical property of material, then the average entropyttier objects have distinct contents inside of them which makeenoi
objects in each leaf node i should be significantly lower When shaken. _ _

than the entropy at the root node. In other words, the taxgnom,_ 1 N€ results also show that the robot achieves high recog-
will induce aninformation gainwith respect to the physical Nition accuracy when predicting the category of the object a
property of material. Similarly, the taxonomy should induc®PP0sed to the object itself. On average, there /s a0%
such an information gain with respect to the second physidgJProvement over the object recognition accuracy. Thisllies

property we examine, which is whether or not an object haadicates that even when the robot is unable to recognize the
contents inside of it. ’ precise object in the interaction, it can still detect theegary

of that object with high accuracy.
Naturally, some information gain will be the result of the : d y

fact that the leaf nodes will contain significantly less altge C. Detecting the Physical Properties of Objects
than the root node. To control for this, the entropies at @ | |, this experiment, the task of the robot is to detect
nodes are also computed for a random object categorizatigp,, physical properties of the object from the sound that it
obtained by randomly permuting the similarity mati¥ used generates. The two properties are: 1) the object’s material
to compute tr_\e hier_archical clustering. This proce_dure WF;pe (5 class classification problem), and 2) whether or not
repeated 10 times, in order to compute robust estimates {Qk opject has contents inside of it (binary classificaticsbp
the mean leaf entropy and its standard deviation. In the caggy) This experiment tests how well the robot can perform
of the learned object categorization, the mean and standggdhstic recognition when the objects’ labels are provided
deviations were estimated from the nine leaf nodes in t@ternally (i.e., by a human), as opposed to the robot's own
learned taxonomy. object categorization. This experiment is inspired by &sid
The results of this test are summarized in Table I. A& psychology [3], which show that human beings can often
expected, there is substantial information gain induced Ipgrceive certain physical properties of the objects (sueh a
the learned categorization with respect to the two physicsize and material) from the sound that the objects generate
properties considered. More importantly, the informatgain during physical interactions. As in the previous experitnen
of the learned object taxonomy is greater than that of the performance accuracies are estimated using 10-fokbk€ro
random object categorization. This result shows that abjeelidation.
categorization using acoustics can capture some of theqathys Table 11l shows the results of this experiment. For refeegnc
properties of the objects that the robot is exposed to. the chance recognition accuracies for the two physical prop

_ # correct predictions % 100

% Accuracy



TABLE Il

generalized to include sensory input across multiple mtesl
RECOGNITION OFPHYSICAL PROPERTIES WITH kNN MODEL

(e.g., vision, proprioception, etc.)?

Behavior || Material (five classes) Contents (yes/no) For future work, we plan to evaluate how well the robot can
Grasp 84.17 % 91.38 % use its learned representation to reason about not onlyvits o
Shake 59.17 % 95.55 % interactions with objects, but also those of others. A hbake
Drop 92.50 % 98.61 % robot that can detect an object breaking from across the hall
Push 94.17 % 97.22 % will be far more useful than one that can only detect such an
Tap 90.28 % 96.11 % event through a direct line of sight. Furthermore, the pemub

Average 84.06 % 95.78 % representation should be integrated with multiple mousit

For example, the sound of an object being dropped on the
floor not only contains information about the event and the
erties are 52.78 % and 75.00 % respectively for the objectbject, but also about the object’s actual movement (ading
material type and contents (the chance rates are obtaineddeyn). Extending the object categorization method to mlelti
labelling each test data point with a class label sampleah franodalities and interactions will allow a robot to learn psety
the prior class distribution). The results indicate tha thbot sych audio-visual associations.
is able to recognize the material of the test object, as well
as whether the object has contents inside of it substantiall REFERENCES
better than chance. The material of the objects is mostyeasili] D. Norman, The Design of Everyday ThingsDoubleday, 1988.
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