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Abstract— Humans can perceive various object properties
based solely on the sounds that the objects make when an action
is performed on them. Similarly, robots in human-inhabited
environments must be capable of learning and reasoning about
the acoustic properties of the objects with which they interact.
Such an ability would allow a robot to infer some object
properties even if the object is not in direct line of sight. This
paper presents a framework that allows a robot to infer the
object with which it is interacting from the sounds generated by
the object during the interaction. The framework is evaluated on
a 7-DOF Barrett WAM robot which performs pushing, grasping,
and dropping behaviors on 18 different objects. The results show
that the robot is able to accurately recognize objects (e.g., bottles,
cups, balls, etc.) based on their acoustic properties. Furthermore,
the recognition accuracy can be improved if the robot performs
a combination of different exploratory behaviors on each object.

I. I NTRODUCTION

Human beings have the remarkable ability to extract the
physical properties of objects from the sounds that they
produce [1, 2]. Unlike our sense of vision, which is always
constrained to a particular viewing direction, our auditory
sense allows us to infer events in the world that are often
outside the reach or range of other sensory modalities [3].

Using sound as a source of information would undoubtedly
help a robot detect and reason about events in a human-
inhabited environment. For example, if a robot accidentally
knocks over an object that is outside of its field of view, the
sound generated by the object as it falls to the ground will be
the only source of information about the nature of the object. A
robot grasping an object out of sight (e.g., a toy in a box) will
only have access to auditory and tactile information regarding
the type of object it is interacting with. Similarly, if a human
interacts with an object that is outside the robot’s field of view,
the robot can use the detected sounds to infer the nature of the
object and the type of interaction. These types of situations
clearly present a challenge to traditional object recognition
frameworks which rely heavily on computer vision methods.

This paper addresses the problem of how a robot can
recognize the object it is interacting with based on the detected
sounds produced by the object. We present a framework
in which the robot learns compact predictive models that
can estimate the object class given the robot’s exploratory
behavior and the resulting sounds. Three different algorithms
representing distinct families of machine learning methods are
evaluated: k-Nearest Neighbor (aninstance-basedmethod),

Fig. 1. The 7-DOF Barrett whole arm manipulator used in the experiments.
The figure also shows the microphone used to record the sounds.

Support Vector Machine (adiscriminativelearning algorithm),
and a Bayesian Network (aprobabilistic graphical model).

The robot used in the experiments is a 7-DOF Barrett WAM
arm shown in Figure 1. The robot’s behavioral repertoire
consists of three different behaviors (pushing, dropping,and
grasping), which it applies to all objects that it encounters.
Eighteen different objects were used for performance evalu-
ation, including a bottle, a pop can, a book, etc. The three
learning algorithms were evaluated based on how well they
can generalize to novel auditory data not available during
the training stage. The results show that by performing a
combination of behaviors, the robot is able to improve its
acoustic-based object recognition performance, regardless of
the type of learning algorithm that is used.

II. RELATED WORK

Despite the vast amount of information conveyed by the
acoustic properties of everyday objects, there have been rel-
atively few studies investigating how a robot could perceive
object properties using auditory information. One of the first
such studies was conducted by Krotkovet al. [4] in which
the task of the robot was to identify the material type (e.g.,
glass, wood, etc.) of different objects by probing them with
its end effector. In that study, the robot used a hitting behavior
to recognize five different materials: aluminum, brass, glass,
wood, and plastic. The results indicate that the spectrogram of



the detected sound can be used as a powerful representation
for discriminating between the five materials [4]. Subsequent
work by Klatzkyet al. [5] shows that modeling frequency and
decay parameters of sounds can also be used to build a sound
model for each material.

More recently, Richmondet al. [6] have proposed a robotic
platform for automatic sound measurement of contact sounds.
Contact sounds are defined as the sounds generated when the
end effector of the robot strikes the surface of an object.
In subsequent work [7], Richmond proposes modeling the
spectrogram of the sounds using spectrogram averaging, in
order to learn models for contact sounds induced when striking
different types of materials.

Torres-Jaraet al. [8] demonstrate how a robot can recognize
objects based on the sounds they make when tapped by
the robot’s hand. In that study the robot performs tapping
behaviors on the objects within reach and records the detected
sound spectrograms. When tapping a novel object, the robot
matches the spectrogram of the detected sound to one that
is already in its training set which results in a prediction for
the object’s type. The results show that the robot is able to
recognize with high accuracy four different objects of varying
materials by tapping. Their work is perhaps the first example
of interactive object recognition using auditory information by
a robot.

Following, this paper presents a framework in which the
robot uses machine learning methods in order to perform
auditory object recognition of 18 different objects using 3
different behaviors. This paper also shows that by applying
multiple different behaviors to an object, a robot could improve
its auditory recognition performance regarding the object’s
type.

III. EXPERIMENTAL SETUP

A. Robot

The robot used in the experiments is a Barrett whole arm
manipulator (WAM) with the 3-fingered Barrett hand as its
end effector (see Figure 1). The robot arm has 7 degrees of
freedom. The hand also has 7 degrees of freedom: two per
each finger, and one that controls the spread of fingers 1 and
2.

B. Exploratory Behaviors

The robot uses three exploratory behaviors (grasp, push, and
drop) to learn the acoustic properties of different objects. The
behaviors were encoded using the teach and play interface
provided by the Barrett WAM API. Figure 2 showsbefore
and after images for each of the three behaviors, which are
described in more details below.

1) Grasp behavior:The object is placed in front of the
robot and the Barrett hand is positioned over it with fully
outstretched fingers. Next, the command to close all fingers
is executed resulting in the object being grasped by the hand.
Figure 2.a shows an example of agrasp behavior performed
on a whiteboard eraser, one of the eighteen objects used in
the experiments.

c) Example of adrop behavior.

b) Example of apushbehavior.

a) Example of agraspbehavior.

Fig. 2. Examples of thegrasp, push, anddrop behaviors used by the robot.

Fig. 3. The eighteen objects used in the experiments. Top row:plastic bottle,
plastic ball, rubber ball, tennis ball, plastic box, woodenplank; Second row:
hockey puck, book, tin box, pop can, metal plate, soft plasticcup; Third row:
paper box, eraser, metal flange, paper cup, hard plastic cup, wooden cube.

2) Push behavior:The object is placed on the table and
the robot arm executes a recorded trajectory that pushes the
object sideways. During this behavior, the hand is placed in
an open palm configuration. An example of thepushbehavior
is shown in Figure 2.b.

3) Drop behavior:The object is first grasped and then lifted
to a pre-specified height above the table. Next, a command to
open all three fingers is executed, resulting in the object falling
and hitting the table. Figure 2.c shows the robot performing
the drop behavior while holding the hockey puck object.



C. Objects

The set of objects,O, that the robot interacts with consists
of 18 different objects, as shown in Figure 3. The objects
include different types of balls, cups, containers, a book,a
bottle, a hockey puck, a whiteboard eraser, etc. The objects
are made of varying materials including metal, plastic, rubber,
paper, and wood. Some of the objects can be knocked down
when pushed while others simply slide or roll. In addition,
some of the objects bounce multiple times off the table when
dropped (e.g., the three balls) while others don’t.

D. Sound Recording and Feature Extraction

Sounds were recorded at a sampling rate of 44.1 KHz with
16 bit depth, processed through a Lexicon Alpha bus-powered
audio interface. The audio was captured and segmented uti-
lizing the digital audio processing package Audacity. The
microphone used was a Rode NT1-A with a cardioid polar
pattern having an average self noise of 5 dB. Signal leveling
remained consistent for each trial while maintaining headroom
to impede clipping. The microphone’s output was routed to
an ART Tube MP Studio microphone pre-amplifier. The pre-
amplifier supplied 48 volt phantom power to the NT1-A
microphone. Sufficient gain was used on the pre-amplifier to
provide a suitable input level for the recording input/output
device. No audio compression was used on the recordings.

During the grasping behavior, each sound is segmented such
that it starts with the initiation of the grasp motor command
and ends once the decibel level has dropped to that of the
background noise. During the dropping behavior, each sound
starts once the object hits the ground and ends once the volume
level has dropped to that of the background noise. Finally, for
the pushing behavior, the sound is segmented such that it starts
when the hand makes its first contact with the object and ends
once the dB level has returned to that of the background. For
all three behaviors, the segmentation was done automatically
by thresholding the dB level at the start and end of each sound.

Sound features were extracted using the log-normalized
Discrete Fourier Transform (DFT) which was computed for
each sound, using26 +1 = 65 frequency bins. The SPHINX4
natural language processing library package was used to com-
pute the DFT for each sound [9]. Next, given the DFT matrix
for each sound, a 2-D histogram is computed by discretizing
time into kt bins and frequencies intokf bins. The value for
each bin in the histogram is set to the average of the values in
the DFT matrix that fall into it. In all experiments conducted,
kt was set to 10 andkf was set to 5. Hence, each sound is
represented by feature vector,S, whereS ∈ R

5×10. Figure 4
shows an example of how the DFT of a sound is transformed
into a 2-D histogram across time and frequency.

E. Data Collection

Let B = [grasp, push, drop] denote the set of exploratory
behaviors. For each of the three behaviors, the robot performs
six trials for each of the eighteen objects resulting in a total of
3×6×18 = 324 recorded trials. During theith trial, the robot
records a data triple of the form(Bi, Oi, Si), whereBi ∈ B

50 100 150 200 250 300 350 400 450 500

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

0 1 2 3 4 5 6 7 8

x 10
4

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

b) DFT of sound wave c) 2-D Histogram of DFT

a) Raw Sound Wave

Fig. 4. Example feature extraction from the sound generated by applying
the grasp behavior on thepop canobject. The raw sound wave is shown in
a), where the horizontal axis denotes time and the vertical axis denotes dB
level. The Discrete Fourier Transform is shown in b). The resulting set of
features is shown in c) as a 2-D histogram. In both b) and c) the horizontal
axis denotes time, while the vertical axis denotes frequency.

is the behavior executed,Oi ∈ O is the object on which the
behavior was performed, andSi ∈ R

5×10 is the feature vector
extracted from the detected sound. Each triple indicates that
the sound featuresSi were detected when performing behavior
Bi on objectOi. Given such data, the task of the robot is to
learn a model that can predict the objectOi in the interaction
given the behaviorBi and sound featuresSi. The next section
describes the learning framework used to solve this task.

IV. L EARNING METHODOLOGY

A. Problem Formulation

The learning task of the robot is formulated as follows: for
each exploratory behaviorB ∈ B, learn a modelMB such
that MB(Si) → Oi, where Oi is the object present during
the interaction that generated the sound feature vectorSi.
In other words, the robot needs to learn a model that can
predict the object class given the detected sound features.
More specifically, the model should be able to estimate the
conditional probabilityPrB(Oi = o|Si) for each objecto ∈
O, and each behaviorB ∈ B, given the detected sound feature
vectorSi.

Given that the robot is capable of performing three different
behaviors, the task is to learn the modelsMgrasp, Mpush, and
Mdrop. For each behavior, given a set of training examples
{Si, Oi}, where i = 1, . . . , N , the robot uses a supervised
machine learning algorithm in order to learn a model that can
estimatePrB(Oi = o|Si). The model can then be evaluated
on novel data which was not used during the training stage.
Three different machine learning algorithms are evaluated: k-
Nearest Neighbor (k-NN), Support Vector Machine (SVM),
and Bayesian Network. The three algorithms were chosen to
represent three general families of machine learning models:
instance-based(e.g., k-NN),discriminative(e.g., SVM), and
generative(e.g., Bayesian Networks).



B. Learning Algorithms

1) K-Nearest Neighbor:K-Nearest Neighbor (k-NN) is an
instance-based learning algorithm which simply stores alldata
points and their class labels and only uses them when the
model is queried to make a prediction. The k-NN model falls
within the family of lazy learningor memory-based learning
algorithms [10, 11].

When asked to make a prediction on a test data point, k-NN
finds thek closest neighbors of the query point and assigns a
class label which is a smoothed average of the labels belonging
to the selected neighbors. While k-NN is very simple to train
and use, its performance can suffer if there are irrelevant
features in the input space without the introduction of special
distance and attribute weighting functions.

In the experiments conducted in this study,k was set to
3, and the WEKA [12] implementation of k-NN was used.
Obtaining an estimate forPrB(Oi = o|Si) is done by
counting the class labels of thek neighbors. For example,
if two of those neighbors have class labelRubber Balland
one,Tennis Ball, then the estimated probability that the class
label for the test point isRubber Ballis 0.67; that of Tennis
Ball is 0.33; and that of all other class labels is0.0.

2) Support Vector Machine:Support Vector Machine
(SVM) classifier is a supervised learning model that falls into
the family ofdiscriminativemodels [13]. Given a set of labeled
inputs (xi, yi)i=1,...,l, xi ∈ R

n and yi ∈ {−1,+1}, training
an SVM classifier is reduced to learning a linear decision
function f(x) =< x,w > +b, w ∈ R

n and b ∈ R, that can
discriminate between positive (+1) and negative (−1) labeled
inputs. The linear decision functionf(x) is learned by solving
a dual quadratic optimization problem, wherew and b are
optimized such that the margin of separation between the two
classes is maximized [13].

For many problems, however, a good linear decision func-
tion f(x) in the n-dimensional input space does not exist.
In such cases, the labeled inputs can be mapped into a
(possibly) higher-dimensional feature space, e.g.,xi → Φ(xi),
where a good linear decision function can be found. The
mapping is defined implicitly through the use a kernel function
K(xi,xj) =< Φ(xi),Φ(xj) > that is subject to Mercer’s
Condition [13]. The kernel function can also be considered as
a measure of similarity between two input data points. When
using a kernel function, the output of the function between
two instances (i.e.,K(xi,xj)) replaces their dot product in
the dual quadratic optimization framework (see [13, 14] for
details). Hence, the actual higher dimensional representation
Φ(xi) need not be computed explicitly.

In the experiments conducted, the polynomial kernel func-
tion with exponent2.0 was used [14]. The pairwise-coupling
method of Hastieet al. [15] was applied to generalize the
original binary classification SVM algorithm to the multi-class
problem of object recognition. The SVM implementation in
the WEKA machine learning library [12] was used, which
implements the sequential minimal optimization algorithmfor
training the model [16]. To obtain a probabilistic estimatefor

the class label of a test data point, logistic regression models
are fit to the outputs of the SVM, as described in [12].

3) Bayesian Networks:Bayesian network is a generative
probabilistic graphical model that represents a set of vari-
ables and their probabilistic independencies [17]. Formally, a
Bayesian network< G,Θ > is defined over a set of variables
x = x1, . . . , xn, such thatG is a directed acyclic graph whose
nodes represent the variablesx, andΘ = {θi} represent the
set of parameters defining the conditional probability of each
node in the graph given its parents, i.e.,Pr(xi|xpar(xi), θi)
where xpar(xi) is the set of parent nodes ofxi in G. Due
to space constraints, the reader is referred to [17] for details
regarding the Bayesian network model.

A Bayesian network can be learned from a set of data by
inducing the network structureG and estimating the parame-
tersΘ that maximize some particular objective function (e.g.,
log-likelihood). In this study, the WEKA [12] implementation
for a Bayesian network was used, which learns the network
using the hill climbing algorithm proposed by Cooperet
al. [18]. All training and inference parameters available in
the WEKA implementation were set to their default values.
Because Bayesian networks are designed to work on discrete
data, the numeric features of each sound are discretized using
the discretization filter in the WEKA library [12].

C. Performance Evaluation

The generalization performance of the modelsMgrasp,
Mpush, and Mdrop is estimated using leave one out cross-
validation. Let{Si, Oi}, wherei = 1, . . . , N , be a set of data
for some given behaviorB ∈ B. During each iteration of the
cross-validation procedure, one data point from the set is used
for testing and the restN −1 data points are used for training
the modelMB . For each behavior, there are six data points for
each of the eighteen objects, resulting inN = 6 × 18 = 108.

The performance of the models is reported in terms of the
percentage of correct predictions, i.e., accuracy, where:

% Accuracy =
# correct predictions

# total predictions
× 100

To evaluate whether multiple different interactions with
the same object improve prediction, the predictions of the
modelsMgrasp, Mpush, andMdrop are aggregated using equal
weight as follows. LetSgrasp

i , Spush
i , andSdrop

i be the sounds
generated when applying the three behaviors to the same
object Oi during the ith trial such that neither of the three
sounds appears in the training sets for the three different
modelsMgrasp, Mpush, andMdrop. Once the models for each
behaviorB ∈ B are trained, the combined prediction is then
assigned to the object classo ∈ O that maximizes:

∑

B∈B

PrB(Oi = o|SB
i )

The goal of this procedure is to determine whether applying
multiple distinct behaviors to the same object will result in
better prediction performance. The next section summarizes
the results and compares the performance of the three different
learning algorithms used in the experiments.



TABLE I

ACCURACY OF THE MODELSMgrasp , Mpush , Mdrop , ALONG WITH THE

COMBINED MODEL WHEN USING K-NN, SVM, AND BAYESIAN NETWORK

Behavior Model k-NN SVM Bayesian Network

Mgrasp 60.19% 77.78% 90.74%
Mpush 72.22% 71.31% 84.26%
Mdrop 50.93% 61.11% 60.19%

Mcombined 75.00% 87.96% 97.22%

V. RESULTS

Table I shows the performance rates of the modelsMgrasp,
Mpush, Mdrop, along with the combined model when using
the three different learning algorithms: k-NN, Support Vector
Machine (SVM), and Bayesian Networks. As a point of
reference, a random predictor would achieve about(1/18) ×
100% = 5.6% accuracy, given that|O| = 18.

A. Comparison of Learning Algorithms

The first observation is that all three learning algorithms
can recognize the objects in the test set significantly better
than chance. Overall, the Bayesian Network learning model
significantly outperforms k-NN and SVM, resulting in high
accuracy rates, with the exception of theMdrop model whose
performance is similar with both the SVM and Bayesian
Network learning models.

A possible reason why the memory-based k-NN model does
not perform well is that there are irrelevant features in the
sound feature vector. This is likely due to the background
noise produced by the ventilation and air conditioning systems
in the lab. The discriminative SVM model also suffers from
this drawback when using standard kernel functions (such as
the polynomial or Radial Basis Function kernels). In addition,
empirical results suggest that generative models (such as
Bayesian Networks) achieve their asymptotic error rates with
less data then their counterpart discriminative model, thus
making them preferable when training data points are scarce
[19]. Given that for each behavior there are only 6 data points
per object class, the amount of data recorded is relatively
small which may be another reason why SVM was not able
to outperform the Bayesian Network model.

B. Single vs. Multiple Behaviors

The results in Table I show that object recognition based
on auditory information is most difficult when using the
dropping behavior, i.e., many objects sound very similar (given
the feature representation used) when dropped. The grasping
behavior, on the other hand, produces sound feature vectors
that are most informative of the object being grasped (when
using SVM and Bayesian Network).

In the case of thepush behavior, the Bayesian Network
model makes several prediction mistakes. For example, the
rubber ball gets mis-classified as atennis ballin three out of
six trials, while thetennis ballgets mis-classified as being a
plastic ball in all 6 trials. Thesoft plastic cupis also mis-
classified as ahard plastic cup in two out of four trials,

while thepop cangets classified as aplastic boxonce. These
mistakes show that given the feature representation, thereare
pairs of objects that sound very similar when a given behavior
is applied to them. This was true for all three behaviors.

The Bayesian Network combined model,Mcombined, makes
only three prediction errors: thewhiteboard eraseris mis-
classified as ahockey puckonce, the tennis ball is mis-
classified as arubber ball once; and therubber ball is
predicted as being thetennis ball in one out of the six
trials. The low error rate shows that using multiple different
interactions (i.e., different exploratory behaviors) with the
object significantly boosts prediction performance for allthree
learning algorithms. This indicates that the errors that the three
models,Mgrasp, Mpush, and Mdrop make are uncorrelated.
As noted earlier, it is very difficult to discriminate between
the tennis ball and the rubber ball based on the sounds
they make when applying thepush behavior. However, the
Mgrasp model achieves perfect classification for these two
objects, thus helping resolve the ambiguity between them.
Similarly, the Mdrop model cannot distinguish well between
the metal plateand metal flangeobjects, while theMpush

model achieves perfect classification for these two objects.

C. Performance vs. Amount of Training Data

The Bayesian Network models (i.e., the models that achieve
the best performance for this task) were also evaluated by
varying the amount of data available in the training set.
Figure 5 shows the accuracy rates as the number of trials with
each object is varied from two to six. Even with just two trials
per object (i.e., one in the training set and one in the testing
set), the modelsMgrasp, and Mpush can predict the object
class significantly better than chance. As expected, accessto
more training data leads to improved accuracy for all models.

Finally, the performance of the three different learning
algorithms was also evaluated as a function of that amount of
training data that was used. Figure 6 shows the performance
of the k-NN, SVM, and Bayesian Network algorithms for the
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model Mgrasp as the number of trials per object is varied
from 2 to 12 (six additional grasping trials were recorded for
each object during the same recording session). The Bayesian
Network model reaches its asymptotic error rate much quicker
than the k-NN and SVM learning algorithms.

VI. CONCLUSIONS ANDFUTURE WORK

The study presented in this paper investigated how a robot
can use auditory information to recognize the object it is inter-
acting with. The proposed framework uses machine learning
methods and different exploratory behaviors which allows the
robot to predict the object class (one of eighteen possible
objects) given the detected sound and behavior.

The framework presented here uses standard machine learn-
ing algorithms to solve the task. Three such algorithms were
evaluated: k-Nearest Neighbor, Support Vector Machine, and
Bayesian Network. The algorithms represent three major fam-
ilies of machine learning models:instance-based, discrimi-
native, and probabilistic generative graphical models. While
all models performed significantly better than chance, the
Bayesian Network model was able to achieve the highest level
of accuracy with the least amount of training data. Unlike the
standard SVM and k-NN models, the Bayesian Network model
is able to detect the irrelevant features in the sound feature
vectors produced by background noise (e.g., due to the air
conditioning system in the lab).

The robot used three different exploratory behaviors to
interact with the objects: grasping, pushing, and dropping. For
each of the three behaviors, there were pairs of objects which
sounded very similar (in terms of the feature representation
that was used), e.g., thetennis balland therubber ball were
almost indistinguishable when being pushed to the side. How-
ever, by applying multiple behaviors to the same object, the
predictions of the models for each behavior can be combined
which resulted in higher accuracy rates than for any single
behavior performed alone. These results were consistent for
all three learning algorithms evaluated in this study.

While the number of objects used in this study was relatively
high (in comparison to other related work in the field, see
Section II), it is still a challenging task to classify the hundreds
of different objects found in human environments based solely
on their acoustic properties. Different initial configurations
between the object and the robot add additional difficulties
to the problem. One possible approach to be investigated in
future work is to use unsupervised methods (e.g., hierarchical
clustering) in order to learn categories of object sounds.
Such an approach would allow the robot to use standard
machine learning methods for each object category (which
would contain a smaller set of objects than the total set to
which the robot is exposed) while at the same time learn how
the categories relate to each other. Also, more powerful feature
representations may be used in order to capture and model the
temporal patterns in some objects interactions (e.g., periodicity
of bouncing).
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