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Abstract—Humans can perceive various object properties
based solely on the sounds that the objects make when an action
is performed on them. Similarly, robots in human-inhabited
environments must be capable of learning and reasoning about
the acoustic properties of the objects with which they interact.
Such an ability would allow a robot to infer some object
properties even if the object is not in direct line of sight. This
paper presents a framework that allows a robot to infer the
object with which it is interacting from the sounds generated by
the object during the interaction. The framework is evaluated on
a 7-DOF Barrett WAM robot which performs pushing, grasping,
and dropping behaviors on 18 different objects. The results show
that the robot is able to accurately recognize objects (e.g., biés,
cups, balls, etc.) based on their acoustic properties. Furthernre,
the recognition accuracy can be improved if the robot performs
a combination of different exploratory behaviors on each object.

Fig. 1. The 7-DOF Barrett whole arm manipulator used in theserpents.
The figure also shows the microphone used to record the sounds.

Human beings have the remarkable ability to extract the
physical properties of objects from the sounds that they
produce [1, 2]. Unlike our sense of vision, which is alwaySupport Vector Machine (discriminativelearning algorithm),
constrained to a particular viewing direction, our auditorand a Bayesian Network (@robabilistic graphical modgl
sense allows us to infer events in the world that are often The robot used in the experiments is a 7-DOF Barrett WAM
outside the reach or range of other sensory modalities [3]. @m shown in Figure 1. The robot's behavioral repertoire

Using sound as a source of information would undoubtedf@nsists of three different behaviors (pushing, droppauagl
help a robot detect and reason about events in a hum&Ffsping), which it applies to all objects that it encousiter
inhabited environment. For example, if a robot accideptalEighteen different objects were used for performance evalu
knocks over an object that is outside of its field of view, thation, including a bottle, a pop can, a book, etc. The three
sound generated by the object as it falls to the ground will hRarning algorithms were evaluated based on how well they
the only source of information about the nature of the objact ¢a@n generalize to novel auditory data not available during
robot grasping an object out of sight (e.g., a toy in a box) withe training stage. The results show that by performing a
only have access to auditory and tactile information reigard combination of behaviors, the robot is able to improve its
the type of object it is interacting with. Similarly, if a hem acoustic-based object recognition performance, regssdid
interacts with an object that is outside the robot’s fieldiefy  the type of learning algorithm that is used.
the robot can use the detected sounds to infer the nature of th
object and the type of interaction. These types of situation
clearly present a challenge to traditional object recagnit  Despite the vast amount of information conveyed by the
frameworks which rely heavily on computer vision methodsacoustic properties of everyday objects, there have been re

This paper addresses the problem of how a robot catively few studies investigating how a robot could pereeiv
recognize the object it is interacting with based on theaete object properties using auditory information. One of thetfir
sounds produced by the object. We present a framewaikch studies was conducted by Krotket al. [4] in which
in which the robot learns compact predictive models th#he task of the robot was to identify the material type (e.g.,
can estimate the object class given the robot's explorataglass, wood, etc.) of different objects by probing them with
behavior and the resulting sounds. Three different algori its end effector. In that study, the robot used a hitting bé&ita
representing distinct families of machine learning methark to recognize five different materials: aluminum, brasssgla
evaluated: k-Nearest Neighbor (anstance-basednethod), wood, and plastic. The results indicate that the spectrogrh
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the detected sound can be used as a powerful representation
for discriminating between the five materials [4]. Subserjue
work by Klatzky et al. [5] shows that modeling frequency and
decay parameters of sounds can also be used to build a sound
model for each material.

More recently, Richmonet al. [6] have proposed a robotic
platform for automatic sound measurement of contact saunds
Contact sounds are defined as the sounds generated when the
end effector of the robot strikes the surface of an object.
In subsequent work [7], Richmond proposes modeling the
spectrogram of the sounds using spectrogram averaging, in
order to learn models for contact sounds induced when styiki
different types of materials.

Torres-Jarat al. [8] demonstrate how a robot can recognize
objects based on the sounds they make when tapped by
the robot’s hand. In that study the robot performs tapping
behaviors on the objects within reach and records the dmtect
sound spectrograms. When tapping a novel object, the robot
matches the spectrogram of the detected sound to one that
is already in its training set which results in a predictian f
the object’s type. The results show that the robot is able to
recognize with high accuracy four different objects of \vagy
materials by tapping. Their work is perhaps the first example
of interactive object recognition using auditory inforneat by
a robot.

Following, this paper presents a framework in which the
robot uses machine learning methods in order to perforﬁg- 2. Examples of thgrasp push anddrop behaviors used by the robot.
auditory object recognition of 18 different objects using 3
different behaviors. This paper also shows that by applyi
multiple different behaviors to an object, a robot could oy

its auditory recognition performance regarding the obgec
type. g
I11. EXPERIMENTAL SETUP

A RObOt . 4 ; » 777: V ..

The robot used in the experiments is a Barrett whole a e

manipulator (WAM) with the 3-fingered Barrett hand as ﬂ.. Y ..
n

end effector (see Figure 1). The robot arm has 7 degree
each finger, and one that controls the spread of fingers 1 a

c) Example of op behavior.

freedom. The hand also has 7 degrees of freedom: two

2. Fig. 3. The eighteen objects used in the experiments. Topptastic bottle,
plastic ball, rubber ball, tennis ball, plastic box, wood#ank; Second row:
B. Exploratory Behaviors hockey puck, book, tin box, pop can, metal plate, soft plasij; Third row:

) paper box, eraser, metal flange, paper cup, hard plastic copden cube.
The robot uses three exploratory behaviapsaép push and

drop) to learn the acoustic properties of different objects. The
behaviors were encoded using the teach and play interfac
provided by the Barrett WAM API. Figure 2 showsefore
and after images for each of the three behaviors, which al
described in more details below.

1) Grasp behavior: The object is placed in front of the . an open palm configuration. An example of eshbehavior
robot and the Barrett hand is positioned over it with fuIIyS shown in Figure 2.b.
outstretched fingers. Next, the command to close all fingers3) Drop behavior:The object is first grasped and then lifted
is executed resulting in the object being grasped by the .haf@ @ pre-specified height above the table. Next, a command to
Figure 2.a shows an example ofgeasp behavior performed open all three fingers is executed, resulting in the objelinéa

on a whiteboard eraser, one of the eighteen objects usec®fifl hitting the table. Figure 2.c shows the robot performing
the experiments. the drop behavior while holding the hockey puck object.

e2) Push behavior:The object is placed on the table and
IIE'D e robot arm executes a recorded trajectory that pushes the
ject sideways. During this behavior, the hand is placed in



C. Objects ol 1

The set of objects), that the robot interacts with consists o4 i
of 18 different objects, as shown in Figure 3. The objects °I|
include different types of balls, cups, containers, a bamk, -z
bottle, a hockey puck, a whiteboard eraser, etc. The objects™
are made of varying materials including metal, plasticberb ,g:so
paper, and wood. Some of the objects can be knocked dowr.
when pushed while others simply slide or roll. In addition,]
some of the objects bounce multiple times off the table whe]
dropped (e.g., the three balls) while others don't.

D. Sound Recording and Feature Extraction

Sounds were recorded at a sampling rate of 44.1 KHz wit]
16 bit depth, processed through a Lexicon Alpha bus-powere]

|
o i

audio interface. The audio was captured and segmented utl) DFT of sound wave c) 2-D Histogram of DFT
I|z_|ng the dlgltal audio processing pack_age AUdajCI,ty' Thlgg. 4. Example feature extraction from the sound generatedpplying
microphone used was a Rode NT1-A with a cardioid polafe grasp behavior on thepop canobject. The raw sound wave is shown in
pattern having an average self noise of 5 dB. Signal leveliay where the horizontal axis denotes time and the verticil denotes dB
remained Cor_lsis_tent for eac_h trial while maintaining headr Li;ﬂ;r;“?s ZLifJf,ﬁan)“Qi ranSs;?srtn;glfa;hol\évnbclaThblgj Zggu g‘;’?‘;ﬁtg
to impede clipping. The microphone’s output was routed txis denotes time, while the vertical axis denotes frequency
an ART Tube MP Studio microphone pre-amplifier. The pre-
amplifier supplied 48 volt phantom power to the NT1-A
microphone. Sufficient gain was used on the pre-amplifier t the behavior executed?; € O is the object on which the
provide a suitable input level for the recording input/aittp behavior was performed, an} € R°*' is the feature vector
device. No audio compression was used on the recordings?XtraCted from the detected sound. Each triple indicatas th

During the grasping behavior, each sound is segmented st sound featureS; were detected when performing behavior
that it starts with the initiation of the grasp motor commané?: On objectO;. Given such data, the task of the robot is to
and ends once the decibel level has dropped to that of #§&rn a model that can predict the objéztin the interaction
background noise. During the dropping behavior, each souiyen the behavioB; and sound features;. The next section
starts once the object hits the ground and ends once the golu#gscribes the learning framework used to solve this task.
level has_ dropped .to that of the t_)ackground noise. Finai.Iy, f IV. LEARNING METHODOLOGY
the pushing behavior, the sound is segmented such thaiti st :
when the hand makes its first contact with the object and ends Problem Formulation
once the dB level has returned to that of the background. ForThe learning task of the robot is formulated as follows: for
all three behaviors, the segmentation was done automigticgach exploratory behavioB € B, learn a modelM/ 5 such
by thresholding the dB level at the start and end of each souffegt M (Si:) — O;, where O; is the object present during

Sound features were extracted using the log-normaliz&tf interaction that generated the sound feature vestor
Discrete Fourier Transform (DFT) which was computed foin other words, the robot needs to learn a model that can
each sound, usingf + 1 = 65 frequency bins. The SPHINX4 predict the object class given the detected sound features.
natural language processing library package was used te cavipre specifically, the model should be able to estimate the
pute the DFT for each sound [9]. Next, given the DFT matrigonditional probabilityPr(O; = o|S;) for each objec €
for each sound, a 2-D histogram is computed by discretizifg, and each behavids € B, given the detected sound feature
time into k; bins and frequencies intb; bins. The value for vector S;.
each bin in the histogram is set to the average of the values if>iven that the robot is capable of performing three différen
the DFT matrix that fall into it. In all experiments condudte behaviors, the task is to learn the modef§, .., Mpysn, and
k; was set to 10 and; was set to 5. Hence, each sound i8/arop- FOr €ach behavior, given a set of training examples
represented by feature vectdt, where S € R>*19, Figure 4 {S:,O;}, wherei = 1,..., N, the robot uses a supervised
shows an example of how the DFT of a sound is transform@&egchine learning algorithm in order to learn a model that can
into a 2-D histogram across time and frequency. estimatePr5(0; = 0|5;). The model can then be evaluated

) on novel data which was not used during the training stage.

E. Data Collection Three different machine learning algorithms are evaluaked

Let B = [grasp push drop] denote the set of exploratoryNearest Neighbor (k-NN), Support Vector Machine (SVM),
behaviors. For each of the three behaviors, the robot pegforand Bayesian Network. The three algorithms were chosen to
six trials for each of the eighteen objects resulting in altof represent three general families of machine learning nsodel
3 x 6 x 18 = 324 recorded trials. During thé&" trial, the robot instance-basede.qg., k-NN), discriminative(e.g., SVM), and
records a data triple of the fortB;, 0;, S;), where B, € B generative(e.g., Bayesian Networks).



B. Learning Algorithms the class label of a test data point, logistic regressionetsod
are fit to the outputs of the SVM, as described in [12].
3) Bayesian NetworksBayesian network is a generative
. . robabilistic graphical model that represents a set of-vari
points and their class labels and only uses them when [E'(?Ies and their probabilistic independencies [17]. Folynal

m.od.el s querigd to make a p.rediction. The k-NN model. fa"éayesian networks GG, © > is defined over a set of variables
within the family of lazy learningor memory-based learning X = a1,.... 2, such that is a directed acyclic graph whose

algorithms [10, 11]. . ) nodes represent the variablesand© = {0,} represent the

~ When asked to make a prediction on a test data point, k-NN; ot parameters defining the conditional probability affea

finds thek closest neighbors of the query point and assigns@4e in the graph given its parents, i.&s (z;|apq (o), 0:)

class label which is a smoothed average of the labels beigngj, i ore 4 =) is the set of parent nodes of ﬁ] Gl Due
par(x; 7 .

to the selected neighbors. While k-NN is very simple to traig, space constraints, the reader is referred to [17] forildeta
and use, its pgrformance can suffer !f there are '”?'e"ar'étgarding the Bayesian network model.

features in the input space without the introduction of gdec ‘A Bayesian network can be learned from a set of data by
distance and attribute weighting functions. inducing the network structuré and estimating the parame-

In the experiments conducted in this studywas set t0 ters@ that maximize some particular objective function (e.g.,
3, and the WEKA [12] implementation of k-NN was usediog.jikelihood). In this study, the WEKA [12] implementatio
Obtaining an estimate fo’rp(0; = o[S;) is done by for 4 Bayesian network was used, which learns the network
counting the class labels of the neighbors. For example, using the hill climbing algorithm proposed by Coopet
if two of those neighbors have class lalielibber Balland ) [18]. All training and inference parameters available in
one, Tennis Ball then the estimated probability that the clasghe WEKA implementation were set to their default values.
label for the test point iRkubber Ballis 0.67; that of Tennis  Because Bayesian networks are designed to work on discrete
Ball is 0.33; and that of all other class labels (<. data, the numeric features of each sound are discretized usi

2) Support Vector Machine:Support Vector Machine the discretization filter in the WEKA library [12].

(SVM) classifier is a supervised learning model that fal®in .
the family ofdiscriminativemodels [13]. Given a set of Iabeledc' Performance Evaluation

inputs (x;, vi)i=1. 1, x; € R” andy; € {~1,+1}, training The generalization performance of the modéls,, .sp,

an SVM classifier is reduced to learning a linear decisioMpusn, and M., is estimated using leave one out cross-
function f(x) =< x,w > +b, w € R” andb € R, that can Validation. Let{S5;, O;}, wherei =1,..., N, be a set of data
discriminate between positive-() and negative{1) labeled for some given behavioB € B. During each iteration of the
inputs. The linear decision functiof(x) is learned by solving cross-validation procedure, one data point from the sesésiu

a dual quadratic optimization problem, wheve and b are for testing and the res¥ — 1 data points are used for training
optimized such that the margin of separation between the t#it¢ model) . For each behavior, there are six data points for
classes is maximized [13]. each of the eighteen objects, resultinghh= 6 x 18 = 108.

For many problems, however, a good linear decision func- The performance of the .mgdels .is reported in terms of the
tion f(x) in the n-dimensional input space does not exisPercentage of correct predictions, i.e., accuracy, where:
In such cases, the labeled inputs can be mapped into a # correct predictions

. - . . — x 100
(possibly) higher-dimensional feature space, &g+ ®(x;), # total predictions

where a good linear decision function can be found. The 1, eyaiuate whether multiple different interactions with
mapping is defined implicitly through the use a kemel fuoieti \he same object improve prediction, the predictions of the
K(xi,x5) =< ®(x;), ®(x;) > that is subject to Mercer's modelsMy,.qp, Mpush, andMa,., are aggregated using equal
Condition [13]. The kernel function can also be considered Q\/eight as follows. LeS9"™P §PUh and59P ha the sounds
a measure of similarity between two input data points. Wh ' . RN !

using a kernel function, the output of the function betwee ject O; during thei'" trial such that neither of the three

two instances (i.e.K(x;,x;)) replaces their dot product in oo nqs anpears in the training sets for the three different
the dual quadratic optimization framework (see [13, 14] f%odeISM

. . . ) . graspr Mpush, andMg,..,. Once the models for each
details). Hence, the actual higher dimensional representa pepayior g € B are trained, the combined prediction is then
®(x;) need not be computed explicitly.

, . assigned to the object class= O that maximizes:
In the experiments conducted, the polynomial kernel func-

tion with exponen.0 was used [14]. The pairwise-coupling Z Prp(0; = o|SP)

method of Hastieet al. [15] was applied to generalize the BeB

original binary classification SVM algorithm to the multiass The goal of this procedure is to determine whether applying
problem of object recognition. The SVM implementation imultiple distinct behaviors to the same object will resuit i
the WEKA machine learning library [12] was used, whiclpbetter prediction performance. The next section summsrize
implements the sequential minimal optimization algoritfon the results and compares the performance of the threeaetiffer
training the model [16]. To obtain a probabilistic estiméde learning algorithms used in the experiments.

1) K-Nearest NeighborK-Nearest Neighbor (k-NN) is an
instance-based learning algorithm which simply storeslatié

% Accuracy =

nerated when applying the three behaviors to the same



TABLE |
ACCURACY OF THE MODELSMgrasp, Mpysh, Marop, ALONG WITH THE
COMBINED MODEL WHEN USING K-NN, SVM, AND BAYESIAN NETWORK

while the pop cangets classified as plastic boxonce. These
mistakes show that given the feature representation, tere
pairs of objects that sound very similar when a given behravio

Behavior Model ][ k-NN SVM | Bayesian Network| is applied to _them. This was trye for all three behaviors.
Myrasy 60.19% | 77.78% 90.74% The Baye3|an.N¢twork comblneq modembmd,. makes
Mpuan 72.22% | 71.31% 84.26% only three prediction errors: thevhiteboard eraseris mis-
Mrop 50.93% | 61.11% 60.19% classified as ahockey puckonce, thetennis ball is mis-

Mombined 75.00% | 87.96% 97.22% classified as arubber ball once; and therubber ball is

predicted as being théennis ball in one out of the six
trials. The low error rate shows that using multiple diffetre
V. RESULTS interactions (i.e., different exploratory behaviors) hwithe

Table | shows the performance rates of the modd]s..,, object significantly boosts prediction performance forthtee

Mpush, Marop, along with the combined model when usindearning algorithms. This indicates that the errors thatttiree

the three different learning algorithms: k-NN, Support dgc MOdelS, Myrasp, Myush, and Ma,,, make are uncorrelated.
Machine (SVM), and Bayesian Networks. As a point of\s noted earlier, it is very difficult to discriminate betwee

reference, a random predictor would achieve ab@yts) x the tennis ball and therubber ball based on the sounds

100% = 5.6% accuracy, given tha0| = 18. they make when applying thpush behavior. However, the
Mygrqsp model achieves perfect classification for these two
A. Comparison of Learning Algorithms objects, thus helping resolve the ambiguity between them.

The first observation is that all three learning algorithm8&imilarly, the My;,,, model cannot distinguish well between
can recognize the objects in the test set significantly bettée metal plateand metal flangeobjects, while theM,,,sp
than chance. Overall, the Bayesian Network learning mod@del achieves perfect classification for these two objects
significantly outperforms k-NN and SVM, resulting in high -
accuracy rates, with the exception of théy,.., model whose C. Performance vs. Amount of Training Data
performance is similar with both the SVM and Bayesian The Bayesian Network models (i.e., the models that achieve
Network learning models. the best performance for this task) were also evaluated by

A possible reason why the memory-based k-NN model dogarying the amount of data available in the training set.
not perform well is that there are irrelevant features in theigure 5 shows the accuracy rates as the number of trials with
sound feature vector. This is likely due to the backgrourRRch object is varied from two to six. Even with just two tial
noise produced by the ventilation and air conditioningeyst Per object (i.e., one in the training set and one in the tgstin
in the lab. The discriminative SVM model also suffers fronget), the models\/y,qs,, and M., can predict the object
this drawback when using standard kernel functions (such @ass significantly better than chance. As expected, adoess
the polynomial or Radial Basis Function kernels). In addifi more training data leads to improved accuracy for all madels
empirical results suggest that generative models (such aginally, the performance of the three different learning
Bayesian Networks) achieve their asymptotic error rateth wialgorithms was also evaluated as a function of that amount of
less data then their counterpart discriminative modelsthtraining data that was used. Figure 6 shows the performance
making them preferable when training data points are scarmgkthe k-NN, SVM, and Bayesian Network algorithms for the
[19]. Given that for each behavior there are only 6 data [goint
per object class, the amount of data recorded is relatively
small which may be another reason why SVM was not able
to outperform the Bayesian Network model.

B. Single vs. Multiple Behaviors

The results in Table | show that object recognition basec
on auditory information is most difficult when using the
dropping behavior, i.e., many objects sound very similargg
the feature representation used) when dropped. The gmaspir
behavior, on the other hand, produces sound feature vecto

% Accuracy

that are most informative of the object being grasped (wher 200 fgfﬁg““
using SVM and Bayesian Network). s e Mo
In the case of theoush behavior, the Bayesian Network ‘ ‘ LB Voo
. . . 0
model makes several prediction mistakes. For example, th 2 Nur;ber of TrialsAWith Each O;ject 6

rubber ball gets mis-classified astannis ballin three out of
six trials, while thetennis ballgets mis-classified as being g 5. Performance of the MOde8 yrasp, Myusi: Marop: and

plastic ballin all 6 trials. Thesoft plastic cupis also mis- 11,,,,,i,.q using Bayesian Network as the number of trials with each dbjec
classified as éhard plastic cupin two out of four trials, is ranged from 2 to 6.
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While the number of objects used in this study was relatively
high (in comparison to other related work in the field, see
Section Il), it is still a challenging task to classify therluineds
of different objects found in human environments basedgole
on their acoustic properties. Different initial configuoets
between the object and the robot add additional difficulties
to the problem. One possible approach to be investigated in
future work is to use unsupervised methods (e.g., hieraathi
clustering) in order to learn categories of object sounds.
Such an approach would allow the robot to use standard
machine learning methods for each object category (which
would contain a smaller set of objects than the total set to
which the robot is exposed) while at the same time learn how

4 5 6 7 8 10
Number of Trials with Each Object

Fig. 6. Performance of the modeld s, using the three different learning
algorithms as the number of trials with each object is varieinfr2 to 12.

the categories relate to each other. Also, more powerfalifea
representations may be used in order to capture and model the
temporal patterns in some objects interactions (e.g.ogmity

of bouncing).

model M,.,, as the number of trials per object is varied
from 2 to 12 (six additional grasping trials were recorded fo [
each object during the same recording session). The Bayesig,
Network model reaches its asymptotic error rate much quicke
than the k-NN and SVM learning algorithms. (3]

VI. CONCLUSIONS ANDFUTURE WORK [4]

The study presented in this paper investigated how a robot
can use auditory information to recognize the object itteiin g
acting with. The proposed framework uses machine learning
methods and different exploratory behaviors which allohes t (6]
robot to predict the object class (one of eighteen possible
objects) given the detected sound and behavior. [71

The framework presented here uses standard machine leafg-
ing algorithms to solve the task. Three such algorithms were
evaluated: k-Nearest Neighbor, Support Vector Machinegl, anl€]
Bayesian Network. The algorithms represent three major fam
ilies of machine learning modelsnstance-baseddiscrimi- [10]
native and probabilistic generative graphical modelsVhile
all models performed significantly better than chance, et
Bayesian Network model was able to achieve the highest leygl
of accuracy with the least amount of training data. Unlike th
standard SVM and k-NN models, the Bayesian Network modef!
is able to detect the irrelevant features in the sound featyig
vectors produced by background noise (e.g., due to the air
conditioning system in the lab). 15

The robot used three different exploratory behaviors to
interact with the objects: grasping, pushing, and droppfay  [16]
each of the three behaviors, there were pairs of objectshwhic
sounded very similar (in terms of the feature represenatiqL7]
that was used), e.g., thtennis balland therubber ball were
almost indistinguishable when being pushed to the side.-Holt®!
ever, by applying multiple behaviors to the same object, the
predictions of the models for each behavior can be combingd!
which resulted in higher accuracy rates than for any single
behavior performed alone. These results were consistent fo
all three learning algorithms evaluated in this study.
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