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ABSTRACT

In this thesis I suggest and evaluate an algorithm for the unsupervised segmentation of

audio speech streams. Specific attention will be paid to the developmental psychology of

human infants, who learn to perform this task at an early age. The goal will be to both

suggest an algorithm inspired by the human distributional segmentation mechanism, and to

evaluate the performance of that model on acoustic speech. I will focus on the audio domain,

in contrast to a great body of previous work devoted to the unsupervised segmentation of text.

The algorithm presented is used to reproduce a famous series of infant experiments, and shown

to perform similarly to the children. It is also used to segment a large audio corpus, which

it does with accuracy significantly better than chance. Finally, improvements to the acoustic

model and segmentation algorithm are outlined, implemented and tested, demonstrating the

potential for future development of the system.
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CHAPTER 1. INTRODUCTION

Spoken human language contains no analogue to the spaces placed between written words.

The pauses that do exist in audio speech appear between phrases, when the speaker takes a

breath, or when the airflow is stopped in the pronunciation of certain consonants. The sounds

that are separated by these pauses are rarely composed of a single word, and there are no

universal markers to indicate where those single words might be [Klatt (1979)]. However, when

we hear our native language, we hear discrete words. We unconsciously break the stream into

its constituents, rendering it comprehensible. This is possible because we know the language,

and are familiar with the large lexicon of words we might expect to hear. When confronted

with a novel word, we need only segment the words before and after it to identify it as a brand

new token.

Infants, however, do not share this luxury. They must learn to segment their mother’s

tongue from scratch. Every word is a novel word, and their lexicon starts off empty. Fortu-

nately, human beings have an apparently innate ability to segment continuous spoken speech

into words, and that ability is present in infants as young as 8 months old. Apparently, they

can perform this task without any feedback or other salient cues as to the locations of word

breaks [Saffran et al. (1996, 1999)].

There is, however, moderate disagreement regarding precisely how children learn to perform

this task. And while there is a consensus that they must use some combination of various

techniques, the relative importance of those techniques is not well known.

Specifically, there is uncertainty regarding infants’ use and reliance upon the distributional

cues of speech for identifying words and word boundaries [Jusczyk (1999); Mattys et al. (2005)].

When we say “distributional cues” we mean the statistical properties of the sound sequences



2

that make up spoken language. In any particular language there are certain sound sequences

that occur more often than others. Psychologists in the “statistical learning” community have

suggested that infants learn to recognize these statistical regularities, and use them to break

speech into words [Harris (1955); Saffran et al. (1996)].

However, distributional cues are not the only information available when learning to per-

form this task. Parents often use single, isolated words when speaking to infants [Brent and

Siskind (2001)]. This information is clearly advantageous for anyone trying to learn to segment

a novel language. Moreover, there are also prosodic or “metrical” cues, allophonic variations,

and phonotactics. Infants have been shown to be sensitive to each of these cues during differ-

ent periods of their development, and they almost certainly use a combination of all of these

factors to learn to identify word breaks [Jusczyk (1999)]. However, it isn’t clear how these cues

interact, and the precise order in which children learn to recognize them. I will discuss each

of these in detail in Chapter 2.

I suggest, as others have [Gambell and Yang (2008)], that the very first cues the child must

use are the distributional ones. These are not language specific, and require no prior knowledge

of the language to learn. However, it is still unclear which statistics the children pay attention

to. Which ones are the most useful for segmentation? Can we model this process, and perhaps

use this model to replicate the behavior of infants? The central contribution of this thesis

will be to suggest such a model, use it to perform segmentation experiments, evaluate its

performance, and demonstrate how it can be extended and improved.

The goal of this research is not to create a complete model of the entire human speech

segmentation process. Such a mechanism certainly requires components of statistical learn-

ing, lexical construction, metrical, allophonic and phonotactic learning, as well as exploratory

interaction with competent language users. Human infants certainly make use of all of these

techniques. Instead, this work focuses on the narrow problem of beginning the process. In-

fants start without any language specific knowledge, and yet somehow learn to break language

streams into words. However they do this, they must start from the data - using only the

language that they hear to begin to find word breaks. How they leverage this initial knowledge
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into better and better segmentation is beyond the scope of this work. The focus here is how

they take that initial step. Accordingly, the goal is not to induce perfect segmentation in

the given audio streams. Instead, it is to induce segmentations whose quality is substantially

greater than chance, and that might be used to bootstrap further word learning.

When discussing algorithms that mimic the abilities of human beings, it is important to

be clear about the interplay between accurate cognitive modeling and useful practical results.

Those are two entirely separate branches of research, and they rarely coincide. This work draws

inspiration from the developmental psychology of infants, but the goal is not a biologically or

psychologically accurate facsimile. The goal is to follow the lead provided by an enormous

body of psychological research, and to work toward practical segmentation algorithms that

can perform similar tasks.

Infants have shown us that acoustic segmentation is possible, and their behavior provides

a road map for how it might be done. This map is made explicit by the order in which

they grow sensitive to different acoustic cues, and the types of audio streams they are able

to segment. This structure defines a strategy that is proven to work, since children do, in

fact, learn to parse language. The algorithms presented in this thesis will be tested on some

of the same datasets used to test children. The purpose of those tests is not to prove that

the cognitive model is accurate, but instead to verify that the inspiration drawn from children

carries through to practical results. That is, the algorithms are designed to reproduce the

segmentation behavior of infants by using methods and acoustic cues similar to those that

infants use. This is interesting because the segmentation ability of infants is amazing, not

because it provides an accurate cognitive model. We are trying to reproduce the same results,

or at least take one small step in that direction. Accordingly, the proposed algorithms will be

expected to perform as the children do, to demonstrate that we are on the right track.

Furthermore, another goal of this research is to go beyond historic attempts at unsuper-

vised natural language segmentation, and actually try to segment words from audio streams.

Previous models of infant speech segmentation have dealt almost exclusively with text tran-

scripts. This thesis is, to my knowledge, the first real attempt to apply one of these models to
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actual acoustic speech. I suggest that difficulties and challenges inherent to real audio segmen-

tation are not trivial details, but a necessary and invaluable part of the automatic processing

of real world data. Algorithms that cannot handle the analog nature of sensory streams, or

the associated noisiness of the observations, are not well suited to model this process.

Also, the practical usefulness of unsupervised automatic text segmentation is somewhat

questionable. There do exist certain written languages, like Chinese, that do not contain

breaks between words. In that case, text segmentation is an integral part of other natural

language processing techniques. However, these algorithms can be completely supervised,

provided with large dictionaries of legal words, and otherwise engineered to accomplish the

desired task. The only reason an unsupervised algorithm might be needed is to simulate

infant learning, and to uncover similarly powerful algorithms that can be used to mine data

from noisy, analog sensory signals. Therefore, while unsupervised text-based algorithms might

begin to model the cognitive process of infants, they miss the most interesting point - that

children are remarkably good at extracting patterns from a messy world. This thesis focuses

on segmenting real audio for precisely this reason, to face the same challenges as the infants

do, and to produce segmentation algorithms that have a chance at being useful in the future.

1.1 Research Questions

The organization of this thesis is centered around the following research questions.

1. What are the first cues that infants use to begin segmenting language?

2. Are there any existing segmentation algorithms that utilize similar cues to break se-

quences? If so, which is the best for our purposes?

3. Given such an algorithm, how can it be used to segment acoustic speech?

4. Does it perform similarly to infants under similar experimental conditions?

5. Can the algorithm be used to induce breaks in naturally occurring speech?
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6. Can the segmentation quality be improved through improvements in the acoustic mod-

eling of speech streams?

7. Can the segmentation algorithm itself be extended and improved?

The first two of these questions are answered in Chapter 2, through a careful review of

psychological and unsupervised segmentation literature. Questions 3, 4 and 5 are answered in

Chapter 3, which outlines a method for the application of the Voting Experts segmentation

algorithm to acoustic speech, and uses it to replicate a famous series of infant experiments, as

well as to segment an audio book. Question 6 is answered in Chapter 4, which introduces a

more sophisticated acoustic model and uses it to improve the algorithm’s performance on some

of the experiments from Chapter 3. Finally, question 7 is addressed in Chapter 5, where Voting

Experts itself is extended, improved and thoroughly tested. Chapter 6 summarizes the body of

the work, draws some conclusions and outlines the direction of possible future research on this

topic. Notably, questions regarding the more general problem of the automatic segmentation

of sensory or time series input are conspicuously absent from this document. This is certainly

an open problem, and the contributions of my work may have application outside the realm of

speech processing. However, these questions are outside the scope of this thesis, and will not

be addressed in detail.
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CHAPTER 2. REVIEW OF LITERATURE

There are two main areas of previous research that directly relate to this thesis. The first is

the developmental psychology of speech segmentation. There exists vast amounts of literature

on this topic, and an extremely detailed analysis of the field is beyond the scope of this work.

However, I will endeavor to summarize the main conclusions, and point out some particularly

relevant experiments.

The second area of related work consists of previous unsupervised segmentation algorithms.

The substantial majority of these algorithms are designed to run either on text, or textual

representations of phonemic transcripts of speech. That is, these algorithms typically do not

work on audio streams. For this reason, both in the review of the psychological literature and in

the discussion of previous algorithms, it will be assumed that all “segmentation” experiments

were performed using text based phonetic transcripts of speech. If this is not the case, it will

be explicitly mentioned.

One might argue that this is an over-simplification of the problem. It is far more difficult to

learn to segment noisy audio streams than error free phonetic transcripts. If it were possible to

build unsupervised acoustic models that accurately transcribed human speech into phonemes or

syllables, then this might be a non-issue. However, this is currently not possible. The acoustic

models in chapter 3 will have to deal explicitly with this problem. However, psychologists are

often not concerned about the particulars of audio processing. It is also significantly easier to

write algorithms that process textual phonetic transcripts instead of raw audio speech. Both

of these factors combine to produce a great deal of work on segmenting text, and not a lot on

segmenting real audio.
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2.1 Psychology of Speech Segmentation

It’s generally believed that children begin learning to segment speech when they are around

7 months old, and that they gain proficiency over the course of many months. By the time they

are moderately skilled language users, they are most likely using a complex combined strategy

to induce word boundaries. That is, there are several different cues present in language streams

that can be used to find word boundaries, and children seem to be sensitive to many of them

[Jusczyk (1999); Mattys et al. (2005)]. Unfortunately, most of them require at least moderate

segmentation proficiency before they can be employed. That is, they are methods of improving

segmentation as opposed to learning to do it from scratch. This current work is focused on

learning the task from scratch, so special emphasis will be placed on those strategies that can be

used to do so. This is not to say that the other methods are not important. In fact, it’s likely

impossible to adequately segment speech without using these bootstrapping methodologies.

Those techniques which allow the process to get off the ground may not carry the process very

far. However, it is important to start at the beginning, and therein lies the justification for

the focus of this research.

The following sections will discuss the different methodologies that children might use to

segment language. Each one of them is based on some property of human language - either

regarding its general structure, or the way we happen to speak it. These properties fall into

two broad categories: language dependent and language independent.

Language dependent properties are those that vary from particular language to particular

language. These sort of rules will be less important for the purposes of this thesis, since, in

most cases, they cannot be learned until the language is segmented. It is therefore difficult,

or even impossible to use them to begin the segmentation process. Language independent

properties are shared by all known human languages. For instance, all human languages can

be physically pronounced by human beings. This seems trivial, but it heavily constrains the

sort of sounds that can appear in language. These properties are much more useful, since they

typically do not require knowledge of a specific language in order to learn. Therefore they are

much more likely to provide an appropriate starting point for segmentation.
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2.1.1 Statistical Learning

The idea that infants use statistical cues to segment speech streams has a long history

[Chomsky (1955); Harris (1955); Hayes and Clark (1970); Wolff (1977); Pinker (1984); Goodsitt

et al. (1993)]. Specifically, the theory is that they use the transitional probabilities between

syllables as an indicator of word boundaries. Let the transitional probability from syllable A

to syllable B be defined as

Pr(A → B) = Pr(AB)
Pr(A)

It stands to reason that syllables that appear together inside of a word would have a

higher Transitional Probability (TP ) than those that do not. Therefore, the argument goes,

the transitional probabilities between syllables inside of words should be high, but the TP

between syllables that cross a word boundary should be low. Consider the utterance “pre-tty-

ba-by.” According to this theory, the transition probability Pr(pre → tty) should be higher

than Pr(tty → ba). This seems intuitive, since the syllable sequences inside of words appear

together whenever the word is spoken, and the syllable transition between words does not.

This should be a universal property of any sequence that is composed of unique lexical units

(words), which are themselves composed of tokens (syllables). The theory, then, is that infants

learn to recognize both common and uncommon syllable transitions, and postulate word breaks

at local minima in the transition probabilities of the speech stream.

2.1.1.1 Infant Segmentation Experiments

Human infants have been shown to be remarkably sensitive to these statistical cues. In a

now-famous series of experiments Saffran et al. showed that 8-month-old infants are capable

of segmenting an audio stimulus stream based solely on these transition probabilities [Saffran

et al. (1996)]. Several additional studies have demonstrated that adults have the same ability,

not only in the auditory but also in the visual domain [Saffran et al. (1997, 1999); Fiser and

Aslin (2002); Kirkham et al. (2002)].
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Saffran and colleagues performed their experiments using an artificial language made up

of the 4 nonsense words tupiro, golabu, bidaku, and padoti. These words are constructed from

12 unique syllables, so that the concatenation of no two words can produce another word in

the language. They artificially generated their stimulus streams using a voice synthesizer such

that the streams contained no pauses, variations in emphasis or meter, or any other cues as

to the word boundaries. The streams simply consisted of the nonsense words concatenated in

random order, and spoken in an even, monotonous tone.

The only clue as to the proper break locations of the stream were the transition probabilities

between syllables. The transition probability between syllables inside of words was always

100%. For instance, the syllable “tu” was followed by “pi” with probability 1, since the only

place those two syllables existed in the language was in the word tupiro. However, the syllable

“ro” (at the end of the word) could be followed by one of four possible syllables (the beginning

of the next word): “tu,” “go,” “bi,” or “pa.” Therefore, the transition probability between

words dropped to 25%. Saffran et al. postulated that if children were using statistical learning

to segment speech, they would be able to decipher these stimulus streams.

To test this hypothesis, they played this stimulus stream to 8-month-old infants for 2

minutes. After the children were acclimated to the sound, they played them a single repeated

word. Some of the children heard a word from the original language. Others heard a novel

word that was generated from the same syllables, but was not present in the original stimulus

stream. The infants spent a significantly longer period of time paying attention to the novel

word than the familiar one. This demonstrates that the children were able to segment the

original stimulus stream and learn the nonsense words after only 2 minutes of exposure. They

were also able to recognize a novel word, and were confused and interested enough to pay

attention to it.

The results of these experiments were taken as evidence that human infants really do pay

attention to the transitional probabilities between syllables, and that they use them to segment

audio speech. However, that’s not really what these experiments showed. They showed that

infants can segment audio speech using some kind of statistical model, and that it is powerful
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enough to work on the stimulus stream they were presented. Dips in inter-syllable transition

probability were the simplest cue that they could have used to segment the sequence, but

virtually any sophisticated model should have picked up this very simple pattern. And there

is significant evidence to suggest that infants, in fact, are not using TP s to do this.

Most dramatically, multiple studies have shown that the direct application of the TP

strategy performs poorly when used to segment phonetic transcripts of speech [Cairns and

Shillcock (1997); Gambell and Yang (2008)]. This exposes several of the weaknesses of the

traditional statistical learning approach. First of all, a very high percentage of common words

contain only one syllable. It is therefore impossible for there to be a TP valley on both sides of

the word. Moreover, the original conclusion that word-internal transitions should have higher

probabilities than word-external ones is not always true in practice. Often, the last syllable of

one word and the first syllable of the next happen to form a perfectly common pair. Similarly,

many words contain syllable combinations that are, in general, rare (perhaps only appearing

in a handful of words). The difference in single-syllable TP inside of and between words is

more of a trend than a reliable rule.

Because of these shortcomings, a different algorithm was chosen for the experiments pre-

sented here. However, the insight that motivates this theory will still play a crucial role. It

will simply take the form of a much more powerful model. And we should not forget the con-

tribution of the infant experiments. They demonstrate that we have some kind of mechanism

for statistical segmentation. These cues can be calculated right from the data, and learned

without supervision or prior domain knowledge. This positions this segmentation mechanism,

whatever it might be, as a likely starting point of the language learning process.

2.1.2 Isolated Words

Isolated words are obviously useful when learning a new language, to infants and adults

alike. And it is well known that infants learn the words that their parents use in isolation much

faster than other words [Brent and Siskind (2001); Bortfeld et al. (2005)]. It has also been

suggested that children use isolated words to bootstrap the learning of novel word boundaries
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through a process called “subtraction” [Peters (1983); Pinker (1984)]. Suppose a child already

knows the words “ball” and “red.” Then if she hears the sentence “The ball is red,” she can

subtract out the words she knows, leaving “The ... is ...”. This way she can learn two novel

words without needing to ever hear them in isolation.

However, children must still solve the problem of differentiating between isolated word

utterances and short phrases, since utterance length is not a consistent predictor [Gambell and

Yang (2008)]. For instance, the phrase “I am” is shorter than the single word “lasagna.” In

order to use isolated words to begin to learn speech, children must be able to identify when

isolated words are spoken.

Approximately 9% of words in infant directed speech are spoken in isolation [Brent and

Siskind (2001)]. This is disproportionately high compared to normal speech, but even so,

isolated words make up a small minority of the language that infants hear. Short phrases

consisting of two or three words are also very common. Without any mechanism by which to

tell the difference between isolated words and short phrases, the bootstrapping can never get

off the ground. This would seem to necessitate some other learning mechanism that precedes

and augments isolated word recognition - to bootstrap the bootstrapping.

So while isolated word recognition is clearly useful and necessary in the early stages of

language learning, it is not sufficient to account for the entire process. In fact, I suggest that

it is precisely this insufficiency that creates the need for distributional segmentation.

2.1.3 Allophonic Variation

The pronunciation of a phoneme varies based on its position within a word [Krakow (1999)]

and this may help children find word boundaries [Church (1987)]. For instance, the sound

made by a ‘t’ is usually aspirated at the beginning of a word, but not at the end. Notice the

difference in pronunciation between the ‘t’ in “tall” and the ‘t’ in “bat.” There are many such

regularities, particularly regarding the amount of co-articulation between phonemes. That is,

how much the pronunciation of one phoneme affects the pronunciation of the next. This affect

is noticeably stronger between phonemes inside of a word, and weaker when the phoneme pair
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crosses a word boundary [Liberman et al. (1967)]. If a child was sensitive to such cues, it would

certainly help her find word boundaries.

It has been pointed out, however, that this knowledge cannot be innate to the child [Gambell

and Yang (2008)], since allophonic variation is language dependent. These pronunciation

rules must be learned through exposure to the language, and therefore require significant

segmentation proficiency before they get off the ground. As with many of these cues, they

certainly play a role in the language learning process, but they could not be the initial starting

point. In fact, it seems as though younger infants pay less attention to these cues, while

older ones pay more [Jusczyk et al. (1999)]. This suggests that children become sensitive to

articulatory variations later in their development than both distributional cues and isolated

words.

2.1.4 Metrical Cues

Metrical or “prosodic” variation refers to the emphasis we place on certain syllables within

each word. In English, most words are “stress initial,” meaning that the emphasis is on the

first syllable. However, this is not universally true. For instance, the word “complete” is

stress final. And some homonyms are even distinguished by their stress. A “reject” (stress

initial) is a person that we all “reject” (stress final). Several studies have demonstrated that

infants develop a strong affinity to the metrical pattern of their native language [Jusczyk et al.

(1993a)].

This pattern, however, varies between languages. While English is predominantly stress

initial, others are predominantly stress final. A child would need to learn a significant number

of words in a language before the typical metrical pattern could be identified. Once again, this

would suggest that this is not a ground-floor strategy, but rather a bootstrapping add-on that

improves later performance.

Gambell and Yang have suggested an interesting alternative to the metrical segmentation

strategy [Gambell and Yang (2008)]. Perhaps children always assume that one syllable per

word is emphasized. This is generally true of human language (with a few exceptions), and
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would allow the child to begin segmentation without any prior knowledge. This, of course,

would not help specify the exact location of word breaks in many cases, but it certainly would

narrow down the possibilities. Also, a large number of common words consist of only one

syllable. This strategy would give the children those words for free.

It is not known whether children really do use this strategy, but it would seem advantageous

to do so. Metrical cues are certainly informative, and infants do make good use of them, but I

will not be addressing them further in this work. It is still speculative whether this propensity

is innate or learned in children. Metrical patterns certainly vary from language to language, so

those must definitely be learned. Whether infants assume that there is one stressed syllable per

word remains to be seen. Even if they do, this would not provide specific break locations, but

only clues to help narrow down the possibilities. Perhaps such cues could be used to augment

future acoustic segmentation models, but they do not seem promising as an initial starting

point.

2.1.5 Phonotactic Constraints

A syllable can be decomposed into onset and rime, and rime can be further decomposed

into a nucleus vowel and a coda. Both the onset and the coda consist of consonant clusters,

which are one or more consonant sounds. However, not all possible consonant clusters are

“legal” in onsets and codas in English. For instance, a syllable cannot start with two guttural

stops. Therefore the consonant cluster “pg” would not be a valid onset. In fact, there are not

a lot of consonant clusters that are allowed to serve as onsets [Halle (1978)].

The phonotactics of a language are the rules for the legal combination of phonemes into

syllables. These rules are not universal, and vary greatly between languages. This means, once

again, that children must learn them from experience. However, several studies have shown

that children as young as 9 months old have already learned the phonotactic constraints of

their native language [Jusczyk et al. (1993b, 1994); Mattys and Jusczyk (2001)].

Phonotactic knowledge can be used to induce breaks in an audio stream whenever a con-

sonant cluster violates one of the constraints. That cluster must actually mark a syllable
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boundary. For instance, in the sentence “help the chap get out of the car,” the consonant

cluster “pg” appears between “chap” and “get.” Even if a child didn’t know the word “chap,”

she could use phonotactic knowledge of English to induce a break.

Unfortunately, phonotactic rules can only be learned from segmented words. I will discuss

a handful of algorithms that attempt to use utterance boundaries to learn the phonotactics of

a language. However, they have proven rather poor at finding word boundaries from scratch,

but most useful in the improvement of other segmentation algorithms.

2.1.6 Conclusions

One particular cue stands out as the most likely starting point for infant speech segmen-

tation. Statistical learning requires no previous domain knowledge, no lexicon and no other

data besides the raw acoustic stream. This is not true of any of the other strategies. Metrical,

allophonic and phonotactic cues are all language specific, and require proficient segmentation

abilities before they could be learned. The only other candidate is isolated words. It’s true

that infants respond to isolated words at a very early age. However, some method is needed

to tell the difference between short phrases and whole words. Furthermore, infants would

require large amounts of data before enough isolated words had been learned to allow for use-

ful segmentation of novel sentences. Therefore, we can’t help but conclude that some sort of

distributional mechanism is most likely responsible for the initial segmentation. Perhaps it is

accompanied by isolated word recognition, or perhaps that ability is learned soon after. Either

way, statistical learning seems to be the most promising avenue for algorithm development.

Therefore, in this thesis, a segmentation algorithm is chosen that uses statistical information

to induce breaks in sequences.

2.2 Segmentation Algorithms

There have been a wide range of algorithms suggested for the unsupervised segmentation

of natural speech. These strategies vary both in their goals and their methodology. Some draw

heavy inspiration from developmental psychology, and attempt to build realistic models of the



15

process. Others merely focus on reproducing the results, without considering whether their

algorithms are “biologically plausible.” The algorithms also differ regarding which segmenta-

tion cues they regard as important, and how they define successful segmentation. Is it good

enough to merely indicate the indices of breaks, or is it also important to build a lexicon of

recognized words?

I will attempt to outline a representative set of previous segmentation algorithms, and

categorize them into several main approaches. Finally, I will describe the Voting Experts

algorithm, which will be used in all of the segmentation experiments in this thesis.

2.2.1 Probabilistic Models

Several segmentation algorithms attempt to learn a generative model of the language

stream. Typically, these models specify both a lexicon of possible words and probabilistic

rules for the use of those words. During training, some sort of lexicon is extracted and used to

parse the stream based on some rule or criteria. The selection of model, lexical structure and

parsing rules differentiates the individual algorithms.

2.2.1.1 MDL

One of the first of these models was due to Carl De Marcken [de Marcken (1995)], and was

based on finding the minimum description length of the given language strings. De Marcken

used the MDL principle to learn a probabilistic grammar with which to parse a given corpus.

Production rules were added to the grammar whenever their addition reduced the total num-

ber of bits needed to represent the corpus. The result of the algorithm was a hierarchy of

language segmentation - the highest level corresponding to phrases or sentences, and the low-

est level corresponding to each character in the text. The argument was that this multi-level

structure represented each level of linguistic segmentation, from letter to morph to word to

phrase. Unfortunately, there is no way to determine which level in the hierarchy corresponds

to “words.” In fact, that level varies from word to word. For that reason, this algorithm is not

very applicable to this research project, however useful it might be for text compression.
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2.2.1.2 Bayesian Models

The most well known Bayesian model of language segmentation was due to Michael Brent

[Brent (1999)], and was called INCDROP . INCDROP ’s abstract generative model produced

an utterance using the following 5 steps:

1. Choose an integer n, which represents the number of words in the lexicon

2. Choose n distinct strings which represent the n words Wi. Call this lexicon L =

{W1, ...,Wn}. Let W0 = $, the utterance boundary marker.

3. Choose a function f : {0, ..., n} → {0, 1, ...} where f(i) represents the number of times

word Wi appears in the sequence being generated.

4. Let m be the total number of words in the sequence being generated. Select an order-

ing function s : {1, ..., m} → {1, ..., n} that maps each location in the sequence to a

corresponding word in L.

5. Concatenate the word sequence w1...wm without removing utterance boundaries to pro-

duce an unsegmented corpus.

Notice that in this model, utterance boundaries are included. In order to perform segmen-

tation several simplifying assumptions were made. Specifically, a uniform prior was assumed

over all functions f and all word orders. That is, each subsequent word in the sequence was

assumed to be independent of its neighbors. This model can be used to calculate the likeli-

hood of a parse of a given unsegmented corpus (with utterance boundaries included). More

importantly, the model can be used to find the most likely parse of a given utterance.

Brent’s algorithm MBDP-1 does just that. It works by incrementally segmenting one

utterance at a time. Given an utterance, it uses dynamic programming to find the maximum

likelihood parse using its current lexicon L and word counts. Then, the word counts are

updated based on the parse, and any unparsed character sequences are added to the lexicon

as a new word. Initially, when the lexicon is empty, the entire utterance is added as a “word.”

However, utterances containing short phrases and isolated words allow the algorithm to get
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off the ground, and are used to break apart larger phrases. For instance, if the algorithm

is presented with the utterance “look” and then “lookhere,” it would first add “look” to the

lexicon, and then use it to parse “lookhere” into “look” and “here”. Sometimes short phrases

can also be used in the same way as isolated words. For instance if the algorithm was presented

the utterances “theredball” and then “grabtheredball,” it would use the first phrase to parse out

the word “grab” from the second. As more and more utterances are parsed the lexicon grows,

and eventually “correct” lexical elements begin to dominate over the initial incorrect ones.

The precision and recall of MBDP-1 settle above 80% when segmenting phonetic transcripts

of child directed speech [Brent (1999)].

There have been several other models whose structure and performance were similar to

Brent’s. Specifically, Anand Venkataraman proposed an online segmentation algorithm whose

results were extremely similar [Venkataraman (2001)]. Venkataraman’s algorithm made use

of bi-gram and tri-gram word models in order to approximate contextual information in the

model, however the results were shown to be insensitive to that addition. More recently,

Sharon Goldwater has suggested a more sophisticated model that treats word production as

a Dirichlet process [Goldwater et al. (2006)]. Her results were slightly superior to Brent and

Venkataraman.

These approaches are all somewhat promising, and have demonstrated the best performance

at segmenting phonetic speech transcripts of speech. However, all of these models leverage

utterance boundaries and isolated words to begin learning a lexicon. While this is certainly

part of the infant strategy, Saffran’s experiments have demonstrated that children do not need

these cues to begin segmenting speech streams. Moreover, it is difficult to see how these

algorithms might be applied to acoustic speech segmentation. These models require reliable

string matching to induce parses on utterances. Perhaps some sort of sophisticated pattern

matching may allow similar methods to be used on audio, but it is not straightforwardly

obvious how this could be done.
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2.2.2 Phonotactic Models

Phonotactic segmentation is based on the idea that there are only a small number of le-

gal phoneme sequences that can compose the onset or coda of a syllable in a given language.

These rules can be expressed statistically, representing the probability that a given sequence

of phonemes precedes or crosses a word boundary. It is easy to learn these probabilities from

a segmented corpus, and supervised phonotactic segmentation algorithms perform very well

[Cairns and Shillcock (1997)]. It is more difficult, however, to train these models on unseg-

mented text [Cairns and Shillcock (1997); Christiansen et al. (1998); Brent and Cartwright

(1996)]. All of these methods use utterance boundaries in order to learn the phonotactic mod-

els. That is, the probability that a bi-gram or tri-gram of phonemes precedes a word boundary

is approximated by the probability that that bi-gram or tri-gram precedes an utterance bound-

ary. These models perform very poorly, demonstrating that phonotactic knowledge is best

used to augment or improve a more primary segmentation strategy.

More recently, several studies have used phonotactic knowledge along with other segmenta-

tion strategies to improve performance. The WordEnds algorithm combined phonotactic and

lexical learning to obtain results competitive with other probabilistic model based approaches

[Fleck (2008)]. More impressively, Blanchard and Heinz demonstrated how to include bi-gram

and tri-gram phonotactic models of word boundaries into Brent’s INCDROP model [Blan-

chard and Heinz (2008)]. Essentially, they altered MBDP-1 such that the maximum likelihood

parse of an utterance also accounted for the learned phonotactic rules, which were extracted

from the lexicon. This addition improved the performance of the algorithm, demonstrating once

again the usefulness of phonotactic knowledge. However, each of these experiments reinforces

the point that phonotactic segmentation is not viable as an initial strategy for segmentation,

but instead is tremendously useful for bootstrapping and improving a pre-existing method.

2.2.3 CELL

The CELL model is the only algorithm mentioned in this section that was designed to

work with real audio streams [Roy and Pentland (2002)]. However, its purpose was not the
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segmentation of natural language, but the association of grounded meaning with individual

words. A by-product of this association was the ability to segment the words of interest out

of the acoustic stream, but this was not the central focus. Accordingly, the model did not

produce a neatly segmented sequence, but rather recognized a few words of interest.

CELL began by building a recurrent neural network to identify spoken phonemes using the

TIMIT speech corpus [Garofolo et al. (1990)]. It then learned to associate specific phoneme

sequences with objects from its environment, extracting “words” from the audio using MDL

principles, and associating them with objects using mutual information statistics. Of the

words extracted by the CELL architecture, 54% of them were segmented correctly. However,

the model was not built to extract every word, but only those that corresponded to objects in

its visual environment. Therefore it is not a suitable model for the purposes of this research.

It represents an entirely different approach to initial language learning - associating meaning

with a small set of extracted words instead of learning to segment a multitude of words whose

meaning is initially mysterious. This is undoubtedly important in the language learning pro-

cess, and its significance should not be underestimated. However, it is not strictly applicable

to the segmentation task at hand, although the two should ultimately be part of the same

mechanism.

2.2.4 Other Segmentation Algorithms

There are several other models for word segmentation that don’t fit neatly into the other

categories. For instance, there have been many attempts to train recurrent neural networks

to segment phoneme sequences [Aslin (1996); Christiansen et al. (1998); Elman (1990); Cairns

and Shillcock (1997)]. The networks were either used to predict utterance boundaries, or used

to induce breaks when the next phoneme could not be predicted by the previous few. The

performance of these methods was rather uninspiring, and neural network models soon fell out

of fashion. There have also been several attempts to use local statistics to segment speech

streams. For instance, Swingley (2005) used statistical clustering techniques to extract words

from both English and Dutch. And Ando and Lee (2000) used n-gram frequency to segment
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Japanese kanji, by postulating that high frequency n-grams were usually word-internal, while

low frequency n-grams were word-external.

This is by no means a complete list of all segmentation algorithms or strategies. However,

the vast majority of them fall into at least one of the categories that have been mentioned. I

have also tried to provide a representative sampling of algorithms in those categories. However,

none of the algorithms presented thus far admit a straightforward application to real audio,

save the CELL model. The probabilistic models are attractive, given their theoretical rigor and

the quality of their results. However, they rely too heavily on the ability to match elements

in a lexicon to tokens in a stream - a non-trivial task when dealing with real audio. In

other words, they rely on pristine data, and would be brittle when faced with noisy input.

Conversely, phonotactic models might rely on modern speech recognition to identify short

phoneme sequences, but are not well suited to begin the speech segmentation process. Even

the CELL architecture does not directly address the segmentation problem, but instead focuses

on learning the meaning of a handful of words. The rest of the models results are too poor to

make them attractive candidates.

What is needed is a model of segmentation that makes local splitting decisions, that is

efficient and can run on large amounts of data, that is theoretically sound and powerful, and

that can be extended to work on acoustic streams. The last algorithm to be presented in this

section is called Voting Experts, and I believe it to be the best algorithm for this task.

2.2.5 Voting Experts

Voting Experts (VE) is an algorithm for the unsupervised segmentation of discrete token

sequences. It was first suggested by Paul Cohen [Cohen et al. (2007)], and has been shown

to be proficient at segmenting large text corpuses from which all spaces and punctuation have

been removed.

VE is based on the idea that natural “chunks” (in this case “words”) exhibit two infor-

mation theoretic properties. The first is low internal information. The second is high

boundary entropy. For our purposes, when we say “information” we mean Shannon infor-
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mation [Shannon (1951)], where Information and Entropy are defined as follows:

I(x) = − log Pr(x)

H(X) =
∑

x∈X

Pr(x)I(x)

A “chunk,” in this case a short sequence s of letters, has low internal information precisely

when the negative log of the probability of s is low. This value is minimized as the probability

of s occurring approaches 1. So a chunk with low internal information is simply a sequence

that occurs with high probability.

Conversely, the boundary entropy of a chunk s is the entropy of the subsequent token t ∈ T

following s. This is equivalent to the expected information content of the next token after the

sequence s, which is defined as follows:

Hb(s) =
∑

t∈T

Pr(t|s)I(t|s)

The boundary entropy of a chunk s is maximized when all tokens t in the set of possible

tokens T are equally likely to follow s. It is minimized when a single token t ∈ T follows s

with a probability of 1, and all other tokens follow s with probability 0. Boundary entropy is

essentially a measure of how predictable the next token is.

If we consider a text corpus, we would expect the character sequences that make up words

to occur with higher probability than character sequences that do not. We would also expect

the characters to be highly predictable inside of words, but unpredictable at word boundaries.

This illustrates the intuitive idea behind the VE model - that natural chunks should occur with

high probability, and they should occur in many different contexts so that their boundaries are

unpredictable. The word “yellow” occurs much more often in printed english than “lowhat,”

and can be found surrounded by many different words in phrases like “the yellow hat” or “my

yellow car.”

2.2.6 Voting Experts Implementation

The VE model uses two measures of information to induce a segmentation on a sequence.

They are defined as follows. Let Γ = {e1, e2, ..., em} be an alphabet and s = (s1, . . . , sn) be a
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sequence where each element si ∈ Γ. The internal information of a subsequence c = (sj , . . . , sk)

is given by HI(c) = −log(Pr(c)). In other words, the internal information of a sequence is just

the Shannon information of that sequence. The boundary entropy of c is given by HB(c) =

−∑m
h=1 P (h, c)log(P (h, c)), where P (h, c) is defined as P (h, c) = Pr(sk+1 = eh|sj , . . . , sk).

In other words, the boundary entropy of a sequence is the entropy of the subsequent token

that follows the sequence, conditioned on the sequence. Said another way, it is the expected

Shannon information of the token following the sequence.

VE uses a sliding window to make local splitting decisions. This allows the algorithm to

run in linear time with respect to the size of the dataset, and therefore it can run on very long

sequences. The VE algorithm consists of three main steps. Given a sequence of characters for

segmentation:

Step 1

Build an n-gram trie of the sequence and use it to calculate the internal information and

boundary entropy of each subsequence of length less than or equal to n. The trie is a simple

tree structure that organizes and counts n-grams in an efficient way, such that they can be

queried in O(log(n)) time. Each value is then standardized across all subsequences of the

same length. Let H l
I be the average internal information for all sequences of length l, and σl

I

be the standard deviation of the internal information for all sequences of length l. Then the

standardized internal information of a chunk c of length l is defined as ĤI(c) = (HI(c)−H l
I)/σl

I .

The boundary entropy is standardized in exactly the same way, such that ĤB(c) = (HB(c)−
H l

B)/σl
B.

Step 2

Pass a sliding window of length N along the sequence. At each location, let each of

two experts vote on how they would split the contents of the window - one minimizing the

internal entropy of the two induced subsequences, the other maximizing the entropy at the

split. More precisely, given a window w = (x1, . . . , xN ), expert 1 votes to break w into two
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chunks c1 = (x1, . . . , xi) and c2 = (xi+1, . . . , xN ) such that ĤI(c1) + ĤI(c2) is minimized.

Expert 2 votes to break w into two chunks c1 = (x1, . . . , xj) and c2 = (xj+1, . . . , xN ) such that

ĤB(c1) is maximized (see Figure 2.1). Both experts use the trie to perform these calculations.1

Figure 2.1 From Cohen et al. (2007). This figure illustrates the function of
VE with N = 3 on the first few characters of George Orwell’s
“1984.” At each step both experts vote how to break the con-
tents of the window. In the original paper, Cohen used n-gram
frequency to approximate internal information, which is why
one expert is labeled “frequency.”

Step 3

Choose a threshhold Vt. Induce a split at each point in the sequence that recieved more

votes than its neighbors, so long as its total number of votes is greater than Vt. Essentially, this

threshold is used to ignore peaks with a small number of votes (e.g., a location that received 1

vote while its neighbors received 0). Lowering Vt causes the algorithm to induce more breaks,
1Instead of directly minimizing the internal entropy of induced subsequences, the original VE maximized

the frequency, since the entropy of a sequence is given by the log of its frequency [Cohen et al. (2007)]. In our
implementation of VE we did not maximize the frequency but instead minimized the entropy of the induced
subsequences. This change caused a slight improvement in the baseline performance of VE of about 1%, which
accounts for the difference between our results and those in the original paper.
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and raising it leads to fewer. It does not change how the votes are cast, but simply how

confident the algorithm must be at a break location.

For further technical and implementation details of the algorithm, discussion of the roles

of N and Vt, or for a comparison of VE with other segmentation algorithms, see the journal

article [Cohen et al. (2007)].

2.3 Hypothesis

The VE model bears a strong resemblance to the statistical learning approach mentioned

before. If the conditional probability between each syllable within a word is high, then by def-

inition the internal information of the word is low. But instead of evaluating each transitional

probability in isolation, VE looks for short sequences of tokens where all of the TP s are high.

Similarly, the boundary entropy of a sequence is high precisely when there is no particular to-

ken that is very likely to come next. However, instead of focusing on the transition probability

between two syllables that happened to be adjacent, VE looks at whether the TP is expected

to be high. This is an important difference, and it solves one of the major problems with the

transitional probability approach. When the last syllable of one word and the first syllable

of the next happen to form a likely pair, the TP based approach fails. But VE isn’t affected

when the TP at the word boundary is high, as long as the next token is unpredictable based

on several previous tokens. This extra power is afforded by the use of the more sophisticated

information metrics. Moreover, the model should still be extremely sensitive to the transitional

probability cues, since the entropy cues must be present wherever the TP cues are.

I suggest that this is the solution to the previous conundrum regarding statistical learning.

That is, that segmentation based on TPs works very poorly, and yet children seem to be able

to segment sequences based solely on TPs. The solution is that children have a more powerful

model of distributional segmentation, perhaps one akin to VE. Since statistical learning seems

to be the first step toward language segmentation, this makes VE an attractive candidate to

attempt to actually segment speech.

The central hypothesis of this thesis is that the VE model is a good model of the dis-
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tributional aspects of the human audio segmentation mechanism, and that it can be used to

segment audio data. This application is not trivial or straightforward, since the VE algorithm

is designed to segment token sequences with a small alphabet. The following chapters will

detail methods by which to apply VE to acoustic streams, and also ways to improve VE itself.
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CHAPTER 3. ACOUSTIC SEGMENTATION EXPERIMENTS

This chapter1 is divided into two main segmentation tasks. The first is an experiment which

reproduces the original Saffran results described in Chapter 2. The second is an attempt to

run the segmentation algorithm on a larger, natural language dataset. The work is organized

to address and illustrate several key points. First of all, human infants are known to be able

to segment acoustic stimulus streams based solely on distributional cues, particularly when

those distributional cues are very salient. This is known precisely because of the work of

Saffran et al. (1996). Any attempt to reproduce this ability must at least be able to reproduce

these basic results. Secondly, for a distributional segmentation strategy to be useful, it must

be able to find word breaks in natural language as well. The artificial language used in the

infant experiments was specifically designed to be segmentable using simple statistical cues.

Natural language does not exhibit such simple markers for word boundaries, and therefore

presents a much more difficult challenge for distributional segmentation algorithms. VE has

demonstrated the ability to segment the phonetic transcripts of natural speech [Miller and

Stoytchev (2008c)], but whether this will extend to natural language audio streams remains to

be seen.

As previously mentioned, the VE model is the chosen segmentation strategy in all of the

following experiments. It has been noted that the indicators of low internal entropy and high

boundary entropy are intuitive extensions of the transition probability strategy suggested by

the statistical learning community. But it should also be noted that the statistics required to

calculate those two quantities may be approaching the horizon of what can be heuristically

approximated by the human brain. No one is suggesting that infants are taking the logs
1The work presented in this chapter appears in Miller and Stoytchev (2008b) and Miller et al. (2009).



27

of probabilities to determine likely segmentations of their world. However, it is easy to pay

attention to the predictability inside of certain sequences, and the unpredictability at their

edges. So it is reasonable to presume that humans might be sensitive to metrics similar to

those in the VE model. It is, of course, unknown whether this is actually true, but it is certainly

plausible.

3.1 Infant Experiments Repeated

We obtained two stimulus streams from the original infant speech segmentation experiments

[Saffran et al. (1996)]. Each audio stream is 60 seconds long and contains roughly 90 “words.”

The first stream (stream A) was composed of randomly ordered instances of the four words

tupiro, golabu, bidaku and padoti. The second stream (stream B) was composed of random

instances of the words tilado, dapiku, pagotu and burobi. The second language is composed

of the same syllables as the first, but arranged so that the concatenation of words in either

language cannot produce a word from the other. So in some sense these two audio streams are

disjoint.

In the original experiment, the infants were played a stream composed the same way as

stream A, and then tested on a single word repeated over and over. This method is useful when

evaluating infants because it is simple. However, a more thorough evaluation of the model can

be performed, since it produces explicit break locations. It is more informative to test the

model by training it on one stimulus stream and then testing it on the other. This provides

more information on the performance of the model, but the results can clearly be compared

to those of the infant experiments.

In order to evaluate the segmentations induced by the algorithm, we manually recorded the

timestamps of all phoneme and word boundaries in the two stimulus streams. It is impossible

for this process to be absolutely precise, since spoken audio is not actually composed of distinct

phonemes. The sound morphs from one allophone to the next, providing few clear boundaries.

However, the speech in the streams used by Saffran et al. is very regular, which allowed us to

consistently place breaks at the same location in each word. The resulting “answer keys” were
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consistent, but the true breaks in a word are, after a certain point, a matter of opinion. This

is a fundamental problem in the evaluation of speech segmentation.

3.1.1 Acoustic Model

The VE algorithm as described in Chapter 2 is designed to segment a sequence of discrete

tokens from a fairly small alphabet. In order to use this algorithm to segment acoustic speech,

the audio stream must be represented as such a sequence. An acoustic model is needed - one

that can represent an audio stream as a sequence of tokens. This is not trivial, and the choice

of model will affect the segmentation performance of VE.

A raw audio clip C with n samples is merely a time series of n real values, i.e., C ∈ <n.

An individual sample Ci represents the intensity of the pressure wave of the sound at time i.

Another way to think of it is that Ci is the offset from neutral position of the speaker cone

that is playing back the audio at time i. Audio is typically sampled at a very high rate in

order to maintain the fidelity of the sound. In this thesis, all audio clips were recorded in a

single channel at 16000 hertz. So a single second of audio was represented by a sequence of

16000 real values. This is hardly appropriate input for the Voting Experts algorithm.

Two main steps are required to change the raw audio signal into a time series that VE can

segment. First, the audio must be turned into a sequence of meaningful features. The intensity

of the pressure wave at a single time step is not very useful information. However, using some

simple DSP we can obtain a much more useful and relevant representation of the data. The

second step is to use these extracted audio features to build a model that can discretize the

sound sequence into a token sequence, which is appropriate for segmentation by VE.

3.1.2 Audio Features

By far the most common features extracted from an audio sequence are the spectral features,

which are calculated using the discrete Fourier transform. The transform must be performed

over a short window of samples, usually numbering some power of 2. The Fourier transform

essentially decomposes the waveform into a number of sine functions, solving for both their
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amplitude and phase. The amplitudes of these sine waves indicate the intensity of the sound

at different frequency levels over the given time window. This is essentially a decomposition

of the sound into different frequency bins, and it is tremendously more informative for our

purposes than the waveform itself.

In order to represent a long audio stream using spectral features, it’s sufficient to break the

stream into many small windows, and calculate the spectral features of each one. Typically

the windows overlap by 1/3 to 1/2 of their width. In order to downplay the significance of the

overlap, the values of the samples in each window are faded in and out at the edges. Most

commonly a “Hamming window” is used. Given a sequence s of N real values, the Hamming

window of s is a sequence h of N real values such that

hi = w(i)si

w(i) = 0.54− 0.46 cos( 2πi
N−1)

This essentially weights the samples in the middle of the window more strongly, so that

the boundaries have less of an effect on the spectral features. Using overlapping Hamming

windows and the discrete Fourier transform we can convert a waveform into a sequence of

feature vectors, which represent the intensity of the sound in different frequency bins over

time. This sequence is typically called the “spectrogram” of the audio stream, and can be

visualized as in Figure 3.1.
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Figure 3.1 A spectrogram of the first few seconds of one of our audio
datasets. The vertical axis represents frequency bins, and the
horizontal axis represents time.
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I used the raised cosine windower, the pre-emphasizer and the discrete Fourier transform

in the Sphinx software package to obtain the spectrogram of each stimulus stream [Walker

et al. (2004)]. The Fourier Transform was performed at 512 points. However, since we are only

concerned with the power of the audio signal at each frequency level, and not the phase, the

points are redundant. Only the first 257 points contain unique information. This transforma-

tion converted a 16kHz mono audio file into a sequence of spectral features, representing the

intensity information in 257 frequency bins, taken every 10ms.

3.1.3 Vector Quantization

After converting an audio stream into a sequence of feature vectors, that sequence of vectors

must be represented by a sequence of discrete tokens. The most immediate and straightforward

strategy for creating such a representation is through vector quantization.

Vector quantization consists in representing a feature space using a small set of prototypical

vectors, and then mapping each feature to a single one of those prototypes - typically the

“closest” one. This is an extremely well studied problem, and there is a tremendous amount of

literature devoted to it. Since innovation in the field of vector quantization is not a goal of this

thesis, I chose to use an off-the-shelf software package and a standard, unsupervised algorithm

to perform the task.

A Self-Organizing Map (SOM) [Kohonen (1988)] was trained on the feature vectors ex-

tracted from the audio. In order to avoid specifying the number of SOM nodes a priori, I

used a Growing Grid SOM (GGSOM). A GGSOM is a self-organizing map that automatically

grows to an appropriate size [Fritzke (1995)]. It adds nodes to the SOM until the variance of

the instances mapped to any individual node is less than τ times the variance of the entire

dataset, where τ is the “error parameter.” This effectively ensures that no single node will

account for more than τ of the total error. This way the SOM ends up sized appropriately

for the particular problem, and the data is mapped roughly evenly among the nodes. For the

experiments I chose a τ = 0.05. I used the implementation of a Growing Hierarchical SOM

(GH-SOM) in the Java SOM Toolbox to train our Growing Grid [Dittenbach et al. (2000)].
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The GGSOM grew to contain 15 nodes for each stimulus stream. One would expect an

SOM trained on spoken audio to have many more distinct states, but the stimulus streams

are extremely limited, containing only 12 distinct syllables repeated over and over. Since

the GGSOM automatically chooses the appropriate number of nodes, 15 must be enough to

represent the data streams.

After training a GGSOM on the data it was used to classify each feature vector based on

which node in the SOM it was most similar to (see Figure 3.2). This process is analogous

to the technique of building a “codebook” that is often used for speech recognition [Rabiner

(1990)]. Typically the k-means algorithm is used to cluster the time slices, but in this case the

GGSOM was convenient since it automatically grew to an appropriate size.

In the resulting sequence, it was common for several consecutive instances to be mapped to

the same node in the SOM. For instance, silence always maps to the same SOM node, so any

period of silence in the original audio was represented by several instances of the same node

in the discrete sequence. This also happened when a single sound was held for any length of

time. In order to be time independent, these repeated sequences were collapsed into just one

instance of the given node. This effectively denotes a prolonged period of the same sound by a

single state (see Figure 3.2). This technique has also been successfully used to discretize natural

sounds that were then used to classify objects based on their acoustic properties [Sinapov et al.

(2009)].

3.1.4 Segmentation

The acoustic model then produced a sequence of node labels without any repeated states.

Ideally, this sequence would correspond to the sequence of the most salient sounds in the

acoustic stream. More importantly, the tokens of the sequence are discrete, and drawn from

a reasonably sized alphabet. This is precisely the sort of sequence that VE is designed to

segment. Accordingly, in order to segment the acoustic streams, I ran VE on the sequences

generated by the acoustic model. It induced breaks in the sequence, and after accounting for

the removed repeated states, those breaks could be mapped to timestamps in the original audio
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stream (see Figure 3.2). This is possible since each spectral feature vector, and therefore each

SOM node label, corresponds to a time window with constant width and overlap. The break

was assumed to be directly in between the centers of the two adjacent time windows.

There currently exists no principled way to set VE’s parameters N and Vt. For the purposes

of this experiment, I set N = 7 and Vt = 2. N was chosen to roughly approximate the expected

length of an average word, and also to be consistent with previous work. In all of Cohen’s

experiments, N was also set to 7 [Cohen et al. (2007)]. The mean number of votes per location

is always 2, due to the nature of the algorithm. Therefore, Vt was chosen such that a break

could be induced if a location received more than the average number of votes.
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Figure 3.2 The audio segmentation process: The spectrogram of an audio
stream is used to train an SOM, which is then used to label each
time slice of the spectrogram. The repeated labels are removed,
and that sequence is used to train the Voting Experts model,
which then segments the sequence and specifies the timestamps
of the induced breaks (in milliseconds).

This outlines a general, unsupervised algorithm for the segmentation of an audio stream.

First, use an FFT to obtain the power spectrum of the audio stream. Then train a GGSOM

on that data to cluster the time slices of the spectrogram into discrete tokens. Generate a new

sequence of discrete tokens corresponding to the labels of the SOM nodes closest to each time

slice in the spectrogram. Remove repeated labels. Run VE on the tokenized sequence and

determine the timestamps of the induced breaks.
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3.1.5 Evaluation Methodology

In order for an induced break to count as a correct break, it had to be placed within 13ms

of a true break location. The reason the breaks were given a 13ms window on either side is

that Sphinx uses a 26.6ms wide Hamming window to calculate the spectrogram information.

The breaks produced by the algorithm correspond to the center of that window. An induced

break was counted as “correct” if there was a true break anywhere inside that window.

A distinction was also made between breaks between phonemes and breaks between words.

When marking the true breaks in each stimulus stream, the exact beginning and end of each

word was recorded. Instead of marking a single break location between words, this specified a

window in which the break must occur. The time between some pairs of words was trivially

small. The time between others was longer. However, since the stimulus streams were gener-

ated artificially, the time between word pairs was consistent. An induced break was counted

as breaking two words if it was placed anywhere in the window between them, plus or minus

13.3ms. This made the evaluation of word breaks much more reliable than the evaluation of

phoneme breaks. The true break location between a pair of phonemes can be indeterminate.

So it is sometimes illegitimate to specify a break and then expect a segmentation algorithm to

induce that exact break within 13.3ms. However, the boundary between words can be more

clearly delimited, and we can be certain that the true word break lies in the window specifying

that boundary.

Unfortunately these large boundaries make it easier for the algorithm to accidentally induce

a break between two words. Thus, even random breaks will be counted as correct a significant

portion of the time. Accordingly, we used a Monte Carlo method to simulate random segmen-

tations for each experiment. Each reported result is accompanied by the results of inducing 100

random segmentations, each one having the same number of induced breaks as the algorithm

produced. These random trials are aggregated and provide a baseline from which to evaluate

the algorithm.

Two metrics were used to evaluate the induced segmentation of each experiment. The first is

the accuracy of the induced breaks. If t is the number of true breaks induced by the algorithm,



34

and n is the total number of breaks it induces, then the accuracy is given by a = t/n. The

complimentary metric is the hit-rate. If m is the total number of true breaks in the stimulus

stream and s is the number of true breaks that were also induced by the algorithm, then the

hit rate is given by h = s/m. For each experiment the accuracy and hit-rate of the induced

segmentation was computed over all breaks, including word breaks. Then the accuracy and

hit-rate of the segmentation was also computed when only considering the word breaks. That

is, the accuracy and hit-rate are reported as if the answer key contained only the word breaks.

Word breaks are, in some sense, more important than phonemic boundaries, and this is why

this additional evaluation was performed.

3.1.6 Experimental Results

The algorithm specified above constitutes a basic application of the VE model to a real audio

stream. The first question is whether this can induce an accurate segmentation. The second

question is whether we can use this system to model the human segmentation mechanism. The

following experiments were designed to answer both of these questions.

Experiment 1: The segmentation process described above was run on both stimulus

streams to obtain the induced breaks. Then the induced breaks were compared to the true

breaks for each stimulus stream. The results are shown in Table 3.1.

The segmentation induced on both audio streams was significantly more accurate than

chance. In particular, the algorithm found the vast majority of the word breaks in both cases.

Note that the accuracy drops less than expected when evaluating on all breaks versus evaluating

over just the word breaks. This means that most of the correctly induced breaks were at word

boundaries. For example, stimulus stream A contains 265 true breaks, 89 of those being word

breaks. The algorithm induced 205 breaks on the stream. Of those 205 breaks, 112 of them

corresponded to true breaks. It correctly labeled 70 out of the 89 word breaks, but only 42 of

the 176 phoneme breaks.

This is somewhat surprising, since there are twice as many breaks between phonemes as

breaks between words in the sequence. However, as discussed earlier, the placement of the
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Table 3.1 Results for Experiment 1.

Key Stream Accuracy (Rand) Hit Rate (Rand)
All A 0.546 (0.120) 0.411 (0.085)

Breaks B 0.441 (0.131) 0.387 (0.107)

Word A 0.341 (0.082) 0.764 (0.166)
Breaks B 0.308 (0.091) 0.791 (0.214)

phoneme breaks in the answer key is much more subjective than the placement of the word

breaks. Additionally, the information theoretic markers used by VE may be more consistently

expressed at the word breaks. In any case, it is clear that this algorithm is adept at finding

word boundaries in these stimulus streams.

Recall that these models were trained on only one minute of audio, containing roughly 90

spoken words. Even though the audio is simple and regular, this is still a very promising result,

and definite proof that this model has the potential to segment streams of speech.

Experiment 2: The point of this experiment is to demonstrate that an SOM trained on

stimulus stream A can still capture the information in stimulus stream B. The two streams are

composed of the same set of syllables. The only difference is the order in which the syllables are

heard, which may produce some interaction effects that the SOM cannot capture. However,

most of the sounds are the same, so the tokenization of stream B based on an SOM trained

on stream A should still be useful for inducing a tokenization on B.

To prove this, an SOM was trained on the spectrogram data of each stimulus stream

to obtain SOMA and SOMB. Then SOMA was used to tokenize the spectrogram data from

stimulus stream B and vice versa. Then a VE model was trained on each of the token sequences

and induced a segmentation. Once again the true breaks were used to evaluate the induced

segmentation. The results are shown in Table 3.2.

There is a drop in both the accuracy and hit rate of each segmentation in this experiment.

However, in each case the algorithm still performed much better than chance. Also, roughly

half of the word breaks are still identified in both cases. While an SOM trained on stimulus

stream A might not capture all of the sound information in stream B, it certainly captures



36

Table 3.2 Results for Experiment 2.

Key Stream Accuracy (Rand) Hit Rate (Rand)
All A 0.290 (0.126) 0.306 (0.127)

Breaks B 0.279 (0.129) 0.244 (0.105)

Word A 0.195 (0.086) 0.596 (0.250)
Breaks B 0.184 (0.088) 0.473 (0.209)

enough to induce a decent segmentation.

Experiment 3: This experiment is intended to replicate Saffran’s experiment on infants.

In those experiments, the children listened to one stimulus stream, and were then presented a

novel token. Similarly, in this experiment, our model is trained on one stimulus stream, and

then used to segment the other. That is, the SOM and the statistical model of VE are learned

from stream A, and then that model is used to segment stream B and vice versa.

Table 3.3 Results for Experiment 3.

Key Stream Accuracy (Rand) Hit Rate (Rand)
All A 0.167 (0.127) 0.011 (0.009)

Breaks B 0.167 (0.163) 0.004 (0.004)

Word A 0.000 (0.087) 0.000 (0.018)
Breaks B 0.167 (0.123) 0.011 (0.008)

The algorithm is almost completely unable to induce a segmentation. In no case did it

perform significantly better than chance. And, in fact, in some cases it performed worse. From

the results of experiment 2 we can conclude that the poor performance is not the fault of the

acoustic model. Instead, the language model trained on one language is insufficient to induce

a segmentation in another.

The most interesting result was the number of breaks induced by the algorithm. Only 18

breaks were induced on stream A, and 6 on stream B. The reason for this lack of breaks is

best illustrated by the votes cast by each expert. Recall that VE works by sliding a window

along a token sequence, and using two experts to vote how to split the contents of the window

at each location. The result is that at each possible break location (i.e., between each pair
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of tokens) some number of votes are cast, representing whether a break should be induced

at that location. In theory, the true break locations should receive many votes, and the rest

should receive few or none. Figure 3.3 shows the histograms of the number of votes cast at the

break locations (i.e., between the time slices) in stimulus stream A in both Experiment 1 and

Experiment 3.
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Figure 3.3 The histograms of the number of votes received at break lo-
cations for both Experiment 1 and Experiment 3. Notice the
difference in vote distribution between Experiment 1 and Ex-
periment 3.

Notice that the votes from Experiment 1 contain many zeros, and also many locations with

a large number of votes. This means that the experts agreed on many vote locations, and

voted for the same ones consistently. However, the votes from Experiment 3 display exactly

the opposite characteristic. There are very few locations with 0 votes, and also very few

with more than 4 votes. The model is “confused” by the data it is trying to segment. It

lacks statistical information about the sound sequences and is therefore unable to distinguish
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between common and uncommon audio chunks. It has little basis from which to calculate the

internal or boundary entropy of subsequences. Therefore, the votes are spread more evenly

among the break locations, they rarely exceed the threshold Vt, and so almost no breaks are

induced. If Vt is lowered then more breaks are induced, however they are extremely inaccurate

and do not improve the performance.

This corresponds precisely with the situation of the 8-month-old who listens to stimulus

stream A, and then hears a novel word. The child has learned the sounds present in the

stream, and has learned a statistical model that characterizes it. Then, suddenly, that model

is violated. The child is initially unable to use the old model to “understand” the novel word,

and therefore becomes confused.

3.1.7 Summary

This section shows that the VE model is capable of inducing an accurate segmentation on

an audio stimulus stream with very limited training data. It also shows that the behavior of

this model mimics the behavior of 8-month-old infants. This should be counted as a small

victory for both the hypothesis of statistical learning and the VE model. It is possible to use

statistical information theoretic metrics to automatically induce word boundaries in an audio

stream. Specifically, the low internal entropy and high boundary entropy of chunks provide

sufficient markers to do so. Additionally, the algorithm has passed the requisite test for any

suggested model of human segmentation - it has behaved in the same way as the infants. Had

the model behaved differently it would have precluded it from plausibility. But what is still

unknown is exactly how effective such a model might be on more complex human speech. The

next section addresses this question directly.

3.2 Segmentation of an Audio Book

In order to further evaluate the segmentation algorithm specified above, it was used to

segment the audio from the first of 9 CDs taken from an audio recording of George Orwell’s

novel “1984.” The audio file was roughly 40 minutes in length. The reason this particular audio
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book was chosen is that the text from 1984 was used in the original segmentation experiments

with VE [Cohen et al. (2007)]. This experiment was performed to evaluate the procedure’s

effectiveness on language spoken by a person, as compared to artificially generated language.

3.2.1 Evaluation Methodology

Evaluating the output of the algorithm proved to be very difficult. The segmentation was

tested by using human volunteers to verify the breaks. For each induced break, they checked

the audio stream to see whether it was placed correctly. In order for it to count as a correct

break, it had to be placed within 13ms of an obvious break location. Such locations include

the beginning and ending of words, as well as phoneme boundaries where the audio stream

suddenly changes in intensity or frequency. Any break placed in the silence between words or

phonemes was also counted as correct. These locations were verified visually using software

we wrote to view the waveforms and the breaks.

Unfortunately, it was impossible to measure the hit-rate of the induced breaks in this case,

since the number of true breaks in the stream was not known. The segmentation could only

be evaluated in terms of the accuracy of the induced breaks. However, the accuracy of the

induced breaks is not sufficient for a complete evaluation. After all, for a break to be considered

“correct” it simply had to fall within 13ms of any artifact in the audio stream that a human

would consider a logical breaking point. As it turns out, this is actually pretty likely. To

account for this, the performance of our algorithm was measured against randomly generated

breaks.

Over the 40 minutes of audio, the algorithm induced roughly 16,000 breaks. It would have

been impossible to manually check every single one of them. Instead, random subsets of the

data were chosen for evaluation. Five sections of 1 minute each were randomly chosen from the

audio stream, each one containing roughly 400 breaks. The breaks in these 1 minute segments

were recorded. For each of these sections the same number of break timestamps over the same

1 minute were randomly generated. We wrote a Java program to load all the breaks at once,

visualize the waveform, and allow the volunteers to scroll through the breaks and make their
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decisions quickly (see Figures 3.4 and 3.5).

Figure 3.4 A short sample of the audio from the experiment which shows
the breaks generated by our algorithm. The “correct” breaks
are highlighted in green. The two blue lines around each break
show the bounds of the 26ms window.

Figure 3.5 The same audio segment as shown in Figure 3.4, but with the
randomly generated breaks shown instead.

There are several reasons to think that “spot checking” the algorithm is a good measure of

its overall accuracy. The time windows used to check the segmentation were chosen randomly,

and therefore should be representative of its overall quality. Also, enough points were sampled

to ensure that the estimated accuracy was reliable.

The volunteers were not told which file contained random breaks, and were instructed to

use their best judgment to determine the correctness of each break. They were specifically

told to use consistent judging criteria between the two files. This way the performance of this

algorithm was compared to an algorithm that randomly generates roughly the same number

of breaks. Figure 3.4 shows an sample section of audio with the induced breaks drawn in.

Figure 3.5 shows the same section of audio with the randomly generated breaks. These sections

have already been graded, and the “correct” breaks are marked in green.
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3.2.2 Intercoder Reliability

Two volunteers were trained how to use the visualization software, and how to visually

identify breaks in the audio stream. One grader was chosen to grade all 10 break files (5

generated by the algorithm and 5 generated randomly), to maintain consistency over the entire

dataset.

The second grader was used to test intercoder reliability (Holsti 1969). That is, how

consistently human beings will make the same grading decisions regarding the correctness of

an induced audio break. The second grader was trained separately from the first, and given 2

pairs of files to evaluate. Thus, the second grader evaluated roughly 40% of the same data as

the first grader. If t is the total number of decisions to be made by two graders and a is the

number of times they agree, then the intercoder reliability is given by ICR = a/t. The ICR

values for both experiments are summarized in Table 3.4. The agreement between our graders

is fairly high, considering the subjective nature of most audio break judgments. Typically, an

intercoder reliability of 0.8 is considered acceptable.

Table 3.4 The Intercoder Reliability

Total Breaks Agreed Breaks ICR
1564 1356 0.867

3.2.3 Results

The graded segmentation results are shown in Table 3.5. The breaks induced by the

algorithm are shown next to the breaks that were randomly assigned. As you can see, the VE

segmentation performed substantially better than chance. The accuracy was above 80%, which

is considerably high. However, the probability of a random break being placed at a correct

location is above 60%. It is impossible to know whether a significant portion of the algorithm’s

breaks were placed “randomly,” and then accidentally marked as correct by the graders.

However, anecdotally, the breaks induced by VE were much more logical than the random

ones, even in cases when its breaks were incorrect. They tended to be placed at the beginning
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Table 3.5 Accuracy Results

Total Correct Accuracy
Breaks Breaks

Algorithm 1910 1538 0.805
Random 1910 1220 0.639

and ending of words, and at dramatic shifts in the audio signal. Many times the “incorrect”

breaks came at locations that could have been phoneme boundaries, but were impossible to

distinguish visually by the graders. An audio evaluation of each break would have taken a

substantial amount of time compared to the quick visual grading, and we lacked the manpower

and resources to perform that experiment.

Also, the randomly generated breaks got a substantial number “correct” that happened to

fall in the silence between words. We instructed the volunteers to count any breaks that fell in

silence as correct, so these breaks helped to increase the accuracy of the random segmentation.

The VE breaks, however, generally did not exhibit this behavior. They were usually placed

either neatly between the words, or at the end of the silence before the next word began.

These qualitative observations are not reflected in the difference in accuracy between the VE

segmentation and the random one. Which leads us to believe that further evaluation will show

a much greater gap between the two methods. Figures 3.4 and 3.5 illustrate a typical example

of the difference in segmentation.

3.2.4 Summary

This experiment demonstrates the acoustic segmentation algorithm’s ability to work on real

world audio, as well as its tractability when dealing with large datasets. The segmentation and

evaluation, however, are imperfect. This is an unfortunate consequence of working with such a

large, unlabeled natural language stream. However, despite these limitations, the algorithm’s

performance was significantly better than chance. Therefore, the distributional cues used by

VE must be useful for the unsupervised segmentation of natural language. Not only can this

model reproduce the behavior of 8-month-old infants using artificially generated speech, but it
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can also identify breaks in more complex spoken audio. The next logical question is whether

the use of a more sophisticated acoustic model might improve segmentation performance, and

this is the subject of the next chapter.
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CHAPTER 4. AN IMPROVED ACOUSTIC MODEL

The previous chapter showed that VE can be used to segment audio streams. This chap-

ter1 introduces a more complicated acoustic model that’s similar to more traditional speech

recognition systems. This model is then used to repeat the infant experiments from Chapter 3.

The purpose of this experiment is to demonstrate that an improvement in the acoustic model

translates directly into an improvement in the performance of the segmentation algorithm.

This represents a step toward an unsupervised acoustic model that is robust and powerful

enough to represent human speech well enough for a distributional segmentation algorithm to

break it into words.

4.1 Improved Acoustic Model

The acoustic model described in Chapter 3 used the Fourier transform to extract the

spectral features of a given audio stream, and then quantized those features to produce a state

sequence. This is a simple, and older method that is rarely used in modern speech recognition

systems [Rabiner (1990)]. Both the feature vectors and the model itself can be improved.

4.1.1 Mel-Frequency Cepstral Coefficients

The spectral features of an audio stream are certainly useful, but may not be the most ideal

for dealing with human speech. In fact, the most common features used for speech recognition

are the Mel-frequency cepstral coefficients and their first and second order time derivatives

[Davis and Mermelstein (1980)]. These are calculated using the spectral features, and are

based on empirical study of the sensitivity of human coclea.
1The work presented in this chapter has not yet been published, but it has been submitted for review.
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In order to calculate the Mel cepstrum, the frequency intensities obtained from the spectral

features are first passed through a filter bank. The bank typically consists of 40 different

triangular filters, each one sensitive to a different frequency range. This step essentially smooths

the power spectrum, and reduces its dimensionality down to just 40 values. The filters in

the bank have been chosen to mimic the sensitivities of the human ear. That is, they are

spread through the acoustic spectrum in roughly the same distribution to which humans are

responsive.

The values obtained from the filter bank are then passed through a cosine transform, to

obtain a set of 13 cepstral coefficients. So, essentially, the cepstral features are a transform of a

transform. They represent oscillations across frequency bins, which are very common in human

speech. When our vocal chords make a tone, they also emit sound at several harmonic levels

above the fundamental frequency. Additionally, the first coefficient accounts for the intensity

of the sound across the entire sample. The remaining 12 coefficients give a volume-independent

representation of the sound. Along with these 13 coefficients, it’s common to include their first

and second time derivative as features. This is calculated by fitting a line to the points in a

small time window, usually extending back 5-9 samples. Also, the value of the first coefficient

increases exponentially as the perceived volume of the sound increases linearly, so often the log

energy of the signal and the log energy of each derivative are also included. Together, the Mel

frequency cepstral features are composed of the 13 cepstrum, 13 first order and 13 second order

derivatives, and the log energy of each. This gives a grand total of 42 features per sample.

In all experiments described in this chapter, the acoustic streams were first converted into a

sequence of Mel-cepstrum feature vectors in precisely this way. This is a standard method

of feature extraction for speech processing, and it was performed using the Matlab package

“Voicebox.”

4.1.2 Modern Speech Recognizers

The design of modern speech recognition systems is extremely complex. Most often they

use a hierarchy of Markov models and rule based systems for grammar and syntax. Most of
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these components are not applicable to the task at hand. However, we can focus specifically

on typical phoneme recognition models. These models sit at the lowest level of the speech

recognizer, and attempt to label the sequence of acoustic feature vectors as a sequence of

phonemes. I will describe a stereotypical phoneme model, and then demonstrate how a similar

model can be used to improve the quantization of our acoustic feature vectors.

Typically each phoneme is represented by it’s own Gaussian Mixture Hidden Markov Model

(GMHMM). There are several common graph architectures that are used for these phoneme

models, but the most common are the 3-node and 4-node skip chains. In this thesis, we always

use a 3-node Markov chain with Bakis topology for the phoneme model [Rabiner (1990)], so

we will use that structure in all further examples (see Figure 4.1).

Figure 4.1 A 3-node Markov chain with standard Bakis topology.

In a discrete HMM each node in the graph defines a probability mass function (pmf) over

the possible, discrete observations. In this case, the observation sequences are continuous

real valued vectors with high dimensionality. So instead of a pmf, each node in the HMM

represents the probability density of observations using a mixture of Gaussian functions. This

completely specifies the likelihood of an observation given a state. We can then use standard

HMM algorithms to calculate the most likely state sequence given a sequence of observation

vectors, or calculate the likelihood of a sequence given the model. However, learning the model

parameters is a bit more complex.

The means, covariance matrices, and mixture matrices of the Gaussian mixture models

associated with each state must be learned through expectation maximization (EM). They must
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be initialized, either randomly or through some other means, and then iteratively improved

to maximize the likelihood of the data. Suppose we wished to train a 3-node Markov chain

to recognize the phoneme “th,” where each node was represented by a 1-Gaussian mixture

model. This is the simplest case, where each node is not actually a “mixture,” but rather a

single Gaussian.

We might first use a phonetically transcribed and labeled audio speech corpus to obtain

several hundred different pronunciations of the syllable “th.” Each short audio clip would be

converted into a sequence of Mel ceptral features, along with their time derivatives and the

log energy. With 3 nodes and 1 Gaussian per node, we must initialize 3 means. One common

method is to perform k-means clustering on all of the feature vectors from all of the clips with

3 means. Given these 3 clusters, we can estimate the 3 means, along with their covariance

matrices, based on the feature vectors assigned to each cluster. These parameters can then be

assigned to the three nodes of the Markov model.

Once the model is initialized, all that remains is to use EM to optimize the parameters.

The maximization step consists of using Viterbi decoding to calculate the most likely state

sequence given the observation sequence. Then the expectation step involves re-estimating the

Gaussian mixture models given the feature vectors that are assigned to each state.

Typically this process, or one very similar, is repeated for each phoneme in the target

language. Notice that this is a supervised process, and can only be accomplished using a large

set of labeled spoken phonemes. The result is a set of roughly 40 Markov chains (depending on

the language), each one trained to recognize a different phoneme. Their parameters are then

improved by using EM to bootstrap over a large audio corpus.

We will draw inspiration from these models, however we cannot apply the techniques ex-

actly. In the infant experiments the children learned to segment novel language streams in a

completely unsupervised way. Therefore, any model of this process must also be entirely unsu-

pervised. These HMMs are typically trained on labeled data, disqualifying them as plausible

models. Specifically, a separate Markov chain is typically trained to represent each phoneme

in the language. The models are built using a large set of hand-labeled instances of each
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phoneme. Instead, we will suggest an unsupervised model that can convert an audio stream

into a state sequence suitable for segmentation, but one that does not necessarily correspond

to the phoneme sequence as a human would label it.

4.1.3 Unsupervised Acoustic Model

The critical observation is that we don’t necessarily need a sequence that corresponds to

the true phonemes of the language. All that’s needed is a model that decomposes an audio

stream into a sequence of its most salient acoustic features. These may or may not correspond

to the “phonemes” as a human might label them. But that is irrelevant, at least as far as VE

is concerned.

Just such a model was suggested by Iwahashi (2006), and implemented by Brandl et al.

(2008). A version of that model is used in this work. Each phoneme was represented using

a 3-node Markov chain with Bakis-topology, with the observation probability density of each

state represented by a mixture of Gaussian functions [Rabiner (1990)]. In order to train

these models without labeled data, a completely connected Markov network containing 10

Gaussian mixture states was trained on the acoustic stream. The parameters of the network

were initialized using k-means, and then optimized using EM, so no labeled data was required.

Then, paths of length 3 through that network were stochastically sampled based on the learned

transition probabilities. Self-connections were ignored in the sampling, to ensure that the paths

were composed of 3 unique states. The m most common paths were used to initialize m 3-node

Markov chains. The last state of each chain was connected to the first state of every other

chain, including itself, initialized with uniform transition probability (see Figure 4.2). The

parameters of this larger Markov model were then optimized over the corpus using EM.

In one implementation, m was set using the Akaike information criterion [Brandl et al.

(2008); Akaike (1974)]. Instead I used m = 10 to build the models used in this chapter. I

did vary this parameter, and found that it did not have a strong effect on the performance

of the model on these tasks. A thorough evaluation of its effect was not performed, since it
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Figure 4.2 The structure of the entire Markov model after the individual
chains are connected. Ideally, each chain should represent a
unique phoneme in the language. The experiments described in
this chapter use ten 3-node Markov chains.

was not considered germane to this investigation. However such an evaluation would certainly

be worthwhile if this model were to be applied to other, more common speech recognition or

learning tasks. It is sufficient, for our purposes, that this parameter could be set automatically.

In other words, human infants might learn how many phonemes are in the language they hear,

and learn to recognize each one.

4.1.4 Segmentation

Given a model as described above and an acoustic stream for segmentation, the stream was

converted into a state sequence using Viterbi decoding. The state sequence was simplified by

assuming that all nodes from the same Markov chain were equivalent. So instead of a sequence

of nodes in the HMM, the stream was represented as a sequence of 3-node Markov chain labels.

This created sequences with long stretches of the same label repeated over and over. These

repeated labels were collapsed into a single token. So the final token sequence represented

the order in which these chains were visited in the decoding of the stimulus stream, with no
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information about how long the sound stayed in the same chain. If the chains corresponded

to the phonemes of the language, as they do in more typical acoustic models, the result would

be a transcription of the spoken phonemes of the stream. The idea is that the unsupervised

model approximates the phoneme sequence, but perhaps extracts a slightly different set of

fundamental sounds.

In order to segment the stream, VE was run on the resulting label sequence. VE placed

breaks at locations of low internal entropy and high boundary entropy. Then, after accounting

for the collapsed (i.e., repeated) states, it produced the time stamps of all of the induced break

locations in the audio stream. These timestamps were then used to evaluate the segmentation.

4.2 Infant Experiments Repeated

In order to evaluate the effect of the improved acoustic model, the infant segmentation

experiments described in Chapter 3 were repeated. The segmentation of the audio book was

not repeated, since its evaluation proved to be so difficult, and the results would have been

somewhat uninformative.

4.2.1 Datasets

We used the same two stimulus streams that were used before, except, in this case, phoneme

breaks were ignored. After performing the first set of experiments, it was concluded that the

marked phoneme breaks were simply too unreliable to provide a decent evaluation of the

segmentation. Furthermore, the goal is not to segment acoustic streams into phonemes, but

instead into words. Therefore the breaks of interest are those that fall between word boundaries.

Counting breaks between phonemes simply served to raise the measured “accuracy” of the

induced segmentations by providing more “correct” locations. However, it is unclear whether

those break locations should be counted as “correct” at all. For these reasons, they were

excluded from this evaluation. In order to compare the two models, the results reported here

should be compared with the results on “word breaks only” from Chapter 3.
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4.3 Evaluation Methodology

In order for an induced break to count as a correct break, it had to be placed between

the specified end of the previous word and the beginning of the next one, within an error of

one time slice. The feature vectors that composed the audio stream were calculated using a

window that was 0.016 seconds wide with a 50% overlap. This means that the additional time

slice allowed at each boundary increased the break window by 0.008 seconds. This leeway was

provided to compensate for labeling errors or other boundary conditions. Note that this is a

tighter bound than the 13.3ms used in Chapter 3. The difference comes from the size of the

window used to compute the Mel-cepstral feature vectors.

An induced break was counted as breaking two words if it was placed anywhere in the

window between them. Both stimulus streams were 61.2 seconds long. Stimulus stream A

contained approximately 7.7 seconds of “break” time, and stream B contained 7.2 seconds.

The reason for the discrepancy is that the different pronunciations of the first and last syllables

of the words in each stream led to slightly different amounts of time between them. It should

be noted that these “breaks” are not perceivable when listening to the stream, and are no

longer than the space between the phonemes within words (See Figure 4.3).

Unfortunately these boundaries make it easier for the algorithm to accidentally induce a

break between two words. Thus, even random breaks will be counted as correct some of the

time. Accordingly, a Monte Carlo method was used to simulate random segmentations for each

experiment. Each reported result is accompanied by the results of inducing a large number of

random segmentations, each one having the same number of induced breaks as the algorithm

produced. The random breaks were induced in the same compressed state sequence used by

VE, and were evaluated in the same manner. These random trials are averaged and provide a

baseline from which to evaluate the algorithm.

The quality of the segmentation is evaluated based on the accuracy, hit-rate and f-measure

of the induced breaks. In this case, accuracy is the percentage of induced breaks that are
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Figure 4.3 Evaluation of the breaks induced by VE. Each break is mapped
to its location in the expanded state sequence, which corre-
sponds to a timestamp in the audio stream. The break counts
as correct if it falls within the marked boundary between two
words. The states are represented by their numeric index in the
Markov model.

correct, hit-rate is the percentage of true breaks found by the algorithm, and the f-measure is

the harmonic mean of the two, given by

f-measure= 2 ∗ accuracy ∗ hitrate
accuracy + hitrate

The f-measure is treated as most important, since it strikes a balance between the other

two. It’s possible to increase the accuracy of the segmentation by inducing fewer breaks, but

being more confident about those that are induced. However, this will lower the hit-rate.

Similarly we can raise the hit-rate by inducing more breaks, but this will lower the accuracy.

The Voting Experts algorithm lets us explicitly make this trade off by adjusting the threshold

Vt for the minimum number of votes required to induce a break at a location. All three of

these metrics will be reported for each of the experiments. Additionally, the experiments will

be repeated for a range of thresholds Vt, and the sensitivity of these metrics to variation in

that threshold will be demonstrated.

It should be noted that the initialization of the acoustic models is a stochastic process,

and leads to a unique model every time. The EM algorithm does not necessarily find a

global optimum for the model parameters, but only a local maximum. Therefore, the model
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should not be evaluated based on a single instantiation, but rather based on several trials.

Accordingly, 10 different acoustic models were trained on each of the two stimulus streams.

All three experiments were performed 10 different times with 10 different pairs of models. The

results were averaged to produce the results reported. This is much more thorough evaluation

of the model than the one performed in Chapter 3, since only one GGSOM was trained in that

case.

Additionally, the segmentation step, where VE was run on the token sequence, was repeated

for different threshold values Vt ranging from 1 to 8 for each experiment. Notice the trade off

between accuracy and hit-rate as Vt varies. The f-measure, accuracy and hit-rate are reported

both for the aggregate over all 10 models, as well as for the random trials over the same data.

For each trial that was done with a single model, 10 random trials were performed. So, overall,

100 random trials were performed in each experiment for each stimulus stream.

4.3.1 Experimental Results

The procedure described above replaces the vector quantization method described in Chap-

ter 3. Instead of training a GGSOM based on the spectral features of an audio stream, a series

of 3-node GMHMM chains is trained on the Mel cepstral features. Instead of a state sequence

corresponding to SOM nodes, the model produces a state sequence corresponding to chain

labels. The output of both models has the same structure - a sequence of discrete tokens with

the repeats removed. This sequence can be segmented and evaluated in precisely the same

way as in Chapter 3. The hypothesis, however, is that the more complex model will more

accurately represent the underlying acoustic stream, and the segmentation induced using it

will be of higher quality. In order to test this hypothesis, the three experiments that were run

on the infant dataset were re-run using the new model.

Experiment 1: The segmentation process described above was run on each stimulus

stream individually. Then the induced breaks were compared to the true breaks for each

stimulus stream. The results are shown in Figure 4.4.
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Figure 4.4 The F-measure, accuracy and hit-rate of the segmentation of
both stimulus streams in Experiment 1, along with the perfor-
mance of random segmentations on both datasets.

The segmentation induced on both audio streams was significantly more accurate than

chance, and superior to the performance reported in Chapter 3. Table 4.1 shows a direct com-

parison between the performance of the GGSOM model and the more sophisticated GMHMM

model. The values reported for the GMHMM model are those obtained when Vt = 2, which

is the same threshold that was used for all experiments in Chapter 3. Notice that the hit-rate

on word breaks reported in the previous chapter is higher than the hit rate in this trial. How-

ever, the accuracy is substantially lower. This means that the previous results correspond to

a threshold that induces many more breaks in the streams, which actually serve to degrade its

overall performance. As a result, the F-measures obtained in this experiment are substantially

higher than those previously achieved.
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Table 4.1 Comparison of results for Experiment 1 between the GGSOM
used in Chapter 3 and the GMHMM described here. The com-
parison is done using the same value for Vt, which is 2.

Model Stream Accuracy Hit Rate F-measure
GGSOM A 0.341 0.764 0.472

B 0.308 0.791 0.443

GMHMM A 0.615 0.716 0.661
B 0.565 0.637 0.599

Experiment 2: The point of this experiment is to demonstrate that an acoustic model

trained on stimulus stream A can still be used to segment the audio from stream B, and vice

versa. The two streams are composed of the same set of syllables. The only difference is the

order in which the syllables are spoken, which may produce some interaction effects that the

GMHMM cannot model. However, most of the sounds are the same. So, for instance, the

tokenization of stream B by an acoustic model trained on stream A should still be useful for

inducing a segmentation on B.

Table 4.2 Comparison of results for Experiment 2 between the GGSOM
used in Chapter 3 and the GMHMM described here. The com-
parison is done using the same value for Vt, which is 2.

Model Stream Accuracy Hit Rate F-measure
GGSOM A 0.195 0.596 0.294

B 0.184 0.473 0.265

GMHMM A 0.381 0.545 0.449
B 0.445 0.583 0.505

To demonstrate this, an acoustic model was trained on each stream to obtain GMHMMA

and GMHMMB. Then GMHMMA was used to tokenize the feature vectors from stimulus

stream B and GMHMMB to tokenize stream A. Then a VE model was trained on each of the

token sequences and induced a segmentation. Once again the true breaks were used to evaluate
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Figure 4.5 The F-measure, accuracy and hit-rate of the segmentation of
both stimulus streams in Experiment 2. Once again, the per-
formance of random segmentation is also shown.

the results (see Figure 4.5).

There is a slight drop in both the accuracy and hit rate of each segmentation in this

experiment. However, in each case the algorithm still performed much better than chance.

There is not a tremendous loss due to the unmodeled interaction of the diphones in the stimulus

streams. Furthermore, the results presented here are far superior to those from experiment

2 in Chapter 3. Once again, the hit-rates from before were slightly higher than those shown

here, but the accuracy was very much lower. The results are compared in Table 4.2.

Experiment 3: This experiment is intended to replicate the results of the infant studies.

In those experiments, the children listened to one stimulus stream, and were then presented

a novel token from the second stream. Similarly, in this experiment, the model is trained on

one stimulus stream, and then used to segment the other. That is, the GMHMM and the

statistical model of VE (the experts) are trained on stream A, and then that model is used to

segment stream B and vice versa.
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Figure 4.6 The F-measure, accuracy and hit-rate of the segmentation of
both stimulus streams in Experiment 3, along with the results
of the random segmentation.

The results show that the algorithm is almost completely unable to induce a segmentation.

It performs only slightly better than chance, and this is most likely due to its ability to pick

out syllables. From the results of Experiment 2 we can conclude that the poor performance is

not the fault of the acoustic model. Instead, the language model trained on one language is

insufficient to induce a segmentation in another.

As the threshold increases, the algorithm induces very few breaks. When Vt is higher than

5, almost no breaks are induced (e.g., no breaks were induced at all when Vt = 8). This explains

why the accuracy becomes erratic at higher threshold levels, and the hit-rate drops very low.

The random segmentations only contained as many breaks as the algorithm induced, so the

random hit-rate drops as well. The fact that not very many breaks were induced indicates

that the experts did not vote for the same break locations very often. They could not agree

on suitable breaking points, and therefore did not create many breaks.
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This corresponds precisely with the situation of the 8-month-old who listens to stimulus

stream A, and then hears a novel word from stream B. The child has learned the sounds present

in the stream, and has learned a statistical model that characterizes it. Then, suddenly, that

model is violated. The child is initially unable to use the old model to “understand” the novel

word, and therefore becomes confused.

4.4 Summary

The results from these experiments precisely mirror those originally demonstrated in Chap-

ter 3. The only difference is that the superior acoustic model utilized here lead to a much higher

quality segmentation. Furthermore, more in-depth analysis of the role of Vt, the averaging over

multiple acoustic models, the exclusive use of word breaks, and the focus on the combination

of accuracy and hit-rate serve to make this evaluation much more reliable and informative than

the previous results.

The most important conclusion to be drawn from these experiments is that a better acous-

tic model enables a distributional segmentation algorithm to obtain better results. In other

words, one way to improve segmentation performance is to improve the quality of the repre-

sentation of the acoustic stream. This is one possible direction of future work - developing

more sophisticated unsupervised acoustic models.

This chapter has focused on the implementation and evaluation of an acoustic model, used

to transform an audio stream into a state sequence suitable for segmentation using the VE

algorithm. The next logical step is to consider whether the VE algorithm can be improved or

extended itself. That is the focus of the next chapter.
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CHAPTER 5. HIERARCHICAL VOTING EXPERTS

In the previous chapters the VE model has been demonstrated to be capable of segmenting

acoustic language streams given an appropriate representation. However, those results relied

upon the original VE as described in Chapter 2. As has been mentioned, the sliding window

implementation is a heuristic that approximates the optimal segmentation based on the VE

model. This chapter1, suggests improvements and extensions of the original VE algorithm.

Specifically, it will demonstrate how VE can be applied iteratively to a sequence, to produce

a hierarchical segmentation. It will also suggest a strategy for adding a third voting expert

that uses information from higher order models to improve lower level segmentation accu-

racy. Several experiments are performed to determine the behavior and effectiveness of these

extensions.

5.1 Hierarchical Segmentation

Real world data often exhibits an inherently hierarchical structure, and it is well known

that humans chunk the world hierarchically [Miller (1956); Fiser and Aslin (2005)]. When we

read text our eyes scan the letters and sense black and white shapes. These shapes are chunked

into letters, which are chunked together into words, which are chunked into phrases and so on.

This hierarchical grouping is fundamental to our interaction with the world.

This chapter extends the VE algorithm to segment hierarchically structured sequences. It

shows that VE can be generalized to work on hierarchical data and investigates the applicability

of this extension to determine its strengths and limitations. More specifically, we will strive

to understand when the underlying information theoretic model for segmentation is valid, and
1The work presented in this chapter won a best paper award at the IEEE International Conference on

Development and Learning (ICDL) in 2008 [Miller and Stoytchev (2008a)]
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when it is not. This chapter will also show how the higher order models can be used to improve

the accuracy of the segmentation at lower levels.

5.2 Related Work

In addition to the segmentation algorithms detailed in Chapter 2, the SEQUITUR algo-

rithm has demonstrated the ability to discover hierarchical structure in sequence data, and has

been altered to perform unsupervised segmentation tasks [Nevill-Manning and Witten (1997);

Cohen et al. (2007)]. The main use of SEQUITUR, however, is not to segment sequences,

but to compress them. It does so by iteratively extracting repeated subsequences in a time

series, and replacing them with a lexical symbol. When the process is complete, the result is a

significantly compressed sequence of symbols, and a grammar for expanding the sequence back

into its original form. It’s possible to treat each high-level symbol as representing a “chunk,”

and thereby treat this compression as a segmentation of the original sequence. However, the

segmentation performance is significantly inferior to that of VE [Cohen et al. (2007)].

5.3 Hierarchical Voting Experts

The original application of VE was to segment text that had been stripped of punctuation

and spaces. The implementation took sequences of characters as input and chunked them

together to produce strings. However, the model for segmentation is a general one, and the

implementation can be extended to work in more general domains. The most natural extension

is to segment any sequence of tokens instead of just characters. In order to efficiently build

and use an n-gram trie the tokens must be comparable, and it must be possible to impose a

total ordering on them. Assuming this is the case, the same information theoretic metrics can

be used by each expert to induce boundaries between tokens in the sequence.

The resulting chunks, then, are not strings but sequences of tokens. Notice that it is

possible to compare sequences of tokens lexicographically in the same way we compare strings

lexicographically based on their characters.
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HVE
VE

asequence for hierarchical segmentation

a se quence f or hier arch ical seg men tation

a s e q u e n c e f o r h i e r a r c h i c a l s e g m e n t a t i o n

VE

Figure 5.1 An example of 2-level HVE segmentation. VE is applied twice,
the second time treating the chunks of the first iteration as
tokens. This can be repeated arbitrarily many times.

The extension to Hierarchical Voting Experts (HVE) is then natural. Generalized VE is

run on a sequence of tokens to obtain a sequence of chunks, each chunk composed of a short

sequence of tokens. Those chunks are treated as the tokens of a new sequence, which can

be chunked to create chunks of chunks. To do this, generalized VE is run again on the new

sequence, building the n-gram trie by imposing a lexicographical ordering on the chunks. The

experts use the trie to vote on how to split the sequence of chunks, and boundaries are induced

in the same way as on a set of tokens. This process can be repeated indefinitely for any number

of hierarchical layers (see Figure 5.1).

Consider text as an example. Suppose we created a mapping from each letter to a random

three digit integer, and then translated a piece of text by replacing each letter with its three

digits (see Figure 5.2). This sequence would have a simple hierarchical structure. Three digit

subsequences could be grouped into letters, and the letters could be grouped into words. If we

ran two level HVE on this data it would first segment the digit sequence in just the same way
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as VE. Assuming it was successful, it would produce a sequence of chunks, each one of them

containing three integer tokens. HVE would then run VE again on this sequence of chunks.

The second level of HVE would produce a sequence of chunks of chunks of tokens. Ideally they

would correspond to the words of the original text. In fact, this experiment was performed,

and the results are included as Experiment 4.

HVE is a general extension of VE that can accept any sequence of comparable tokens as

input. It is not at all necessary to use characters as the fundamental tokens. Any type of

object that can be ordered and compared is valid. This includes RGB pixels or class labels or

intensity values from a Fourier transform of an audio signal. It is one step further toward a

general chunking algorithm. However, it is limited to one-dimensional ordered sequences with

low token noise. So it is not a truly general solution, but it is a step in the right direction.

5.4 Experiments with HVE

Several experiments were designed to test the HVE algorithm. They demonstrate that the

application of HVE to hierarchical data can induce accurate segmentation at each level.

However, the experiments also show that HVE is sensitive to the structure of its input. HVE

segments a sequence based on the assumption that the true subsequences will be marked with

low internal information, and their boundaries will be marked with high entropy. Sequence data

that does not follow this pattern will be inscrutable to any incarnation of HVE. Conversely,

0 6 4

0 6 4

0 6 4 6 1 2 6 0 5 1 1 6 0 3 3

6 1 2 6 0 5 1 1 6 0 3 3

6 1 2 6 0 5 1 1 6 0 3 3

i

i

Figure 5.2 An illustration of hierarchical chunking. The digits are grouped
into chunks that represent letters. Those chunks are then
grouped into chunks that represent words.
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the more the data conforms to this pattern the more successful HVE will be in segmenting it.

This gives a clear theoretical delineation of the proper domain of this algorithm.

5.4.1 Dataset

The first 35,000 words (converted to lower case and stripped of punctuation and spaces) of

George Orwell’s novel “1984” were used as the base text for all of the experiments presented

in this chapter. This was one of the benchmark datasets used to evaluate the original VE

algorithm, so it was chosen for comparison [Cohen et al. (2007)]. To perform our experiments,

this data was translated in several ways.

VE and HVE run in linear time with respect to the size of the dataset, and so they can

be used to segment very long sequences [Cohen et al. (2007)]. However, the accuracy of the

segmentation asymptotically approaches an upper bound, and there is little utility in using a

corpus much larger than the base dataset. Additionally, the translations multiplied the length

of the sequence, causing it to approach a million characters for some experiments. Even so,

each experiment took only 5 to 10 minutes to run on a standard desktop computer.

5.4.2 Metrics

Three different metrics were used to evaluate the segmentation results for each experiment:

f-measure, accuracy, and hit rate. These are the same metrics used to evaluate the original VE

algorithm [Cohen et al. (2007)]. They are defined as follows. Let n be the number of correctly

induced boundaries and let m be the total number of induced boundaries and let c be the total

number of true boundaries in the sequence, then the accuracy of the segmentation is given by

a = n/m and the hit-rate is given by h = n/c. The f-measure of the segmentation is then

defined to be f = 2ah/(a + h). The value of the f-measure ranges from 0 to 1, 1 being perfect

segmentation. It was chosen because it strikes a balance between measuring the accuracy of

the induced boundaries, and the overall percentage of true boundaries that are found. The

f-measure on the original text data set for single level HVE is 0.776. This value will be used

as the baseline for evaluation of all second level segmentation, and it is included in each of the
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pertinent tables. If the first level segmentation is perfect, we would expect the second level

segmentation to have the same f-measure as the base text.

The choice of threshold Vt in step three of the VE algorithm has an effect on these metrics.

Specifically, as Vt is raised, it takes more votes to induce a split. This causes the accuracy of the

segmentation to go up, and the hit rate to go down. Conversely, lowering Vt generally lowers

the accuracy and raises the hit rate. In each of our experiments we chose the Vt that struck

a balance between the two. This method was also used in the original VE algorithm [Cohen

et al. (2007)]. We hope to eventually find a principled way to set Vt, so that the algorithm

needs no hand-tuning.

Figure 5.3 Fonts 1, 2 and 3 used in Experiment 1. Fonts 1 and 2 both
have resolution 8x8 for each letter, and font 3 has resolution
12x8. However, even though fonts 1 and 2 have the same reso-
lution, font 2 is more complex than font 1, in that each letter
is composed of more unique pixel columns.

Experiment 1

We simulated the process of optically scanning the text to see if HVE could segment out

the letters and then group them into words. For each character we considered each vertical

column of black and white pixels in order, from left to right, ignoring all white space. A

pixel column can be represented as a sequence of bits, which can be translated into a unique

integer. We replaced each character in the text with the sequence of integers corresponding to

the sequence of vertical columns of pixels that compose that character. Each integer became
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a fundamental token of the sequence, as if the pixel column was viewed as a single token by

the algorithm (see Figure 5.4). Three fonts were used, whose resolution and complexity varied

(see Figure 5.3). For each font the text was transcribed and then two-level HVE was run on

the translated data to segment the letters and then the words. The results demonstrate that

HVE successfully segmented the sequence at both levels of the hierarchy (see Table 5.1).
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Figure 5.4 An illustration of the conversion of the letter “a” to a sequence
of integers corresponding its pixel columns. The pixels are con-
verted to bits, and each column of bits is converted to a decimal
number. The white space is removed before and after each letter
so that there are no boundary markers in the sequence.

5.4.3 Strengths and Limitations of HVE

A secondary goal of this chapter is to find the limitations of HVE, in order to clearly delin-

eate its proper domain of applicability. The following experiments were designed to illustrate

why and how HVE can fail to yield an accurate segmentation. Understanding its performance

in these cases will allow us to understand what kinds of problems it should not be used to
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Table 5.1 Experiment 1: Pixels to Characters to Words. The results are
shown for each font at both levels of segmentation. The baseline
segmentation is included for comparison.

Font F-measure Accuracy Hit Rate

L
ev

el
2 Font 1: 8x8 0.551 0.533 0.569

Font 2: 8x8 0.742 0.734 0.750
Font 3: 12x8 0.754 0.750 0.758
Baseline 0.776 0.756 0.797

L
ev

el
1 Font 1: 8x8 0.751 0.739 0.763

Font 2: 8x8 0.931 0.943 0.918
Font 3: 12x8 0.972 0.985 0.959

solve. Table 5.2 illustrates the translation applied to the dataset for each of these experiments.

The results are shown in Table 5.3, and are analyzed in Section 5.5.

Table 5.2 Translations from the original text to hierarchical sequences for
experiments 2-4.

Letter i t w a s
Morse Code 0 0 1 0 1 1 0 1 0 0 0
ASCII Octal 1 5 1 1 6 4 1 6 7 1 4 1 1 6 3
Random Octal 0 6 4 6 1 2 6 0 5 1 1 6 0 3 3

Experiment 2

Each character in the text was translated into its Morse code representation. The Morse

code was represented with a sequence of bits - 0 corresponded to “dit” and 1 corresponded to

“dah.” Two-level HVE was run on the data to attempt to segment the Morse code into letters,

and then the letters into words.

Experiment 3

Each character in the text was translated into its standard ASCII octal representation. So

each character was translated into 3 digits ranging from 0 to 7. Two-level HVE was run on

the translated data.
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Experiment 4

A mapping from each letter to a random three digit octal number was generated. This

mapping was used to translate the base text by replacing each character in it with its corre-

sponding three digits. Two-level HVE was run on this data to segment the letters and then

the words.

Table 5.3 Experiment 2-4: The results for each experiment are shown for
the first and second level of segmentation. The baseline is in-
cluded for comparison.

Dataset F-measure Accuracy Hit Rate

L
ev

el
2 Morse Code 0.100 0.107 0.095

ASCII Octal 0.028 0.030 0.027
Random Octal 0.743 0.768 0.719
Baseline 0.776 0.756 0.797

L
ev

el
1 Morse Code 0.397 0.444 0.358

ASCII Octal 0.254 0.261 0.247
Random Octal 0.944 0.978 0.913

5.4.4 Phoneme Segmentation

As mentioned in Chapter 2, most segmentation algorithms that have been applied to natural

language have been used to segment phonemic translations of audio speech. It is, in some

sense, unfair to compare the results of HVE’s segmentation of text with other algorithms

segmentation of phoneme or syllable sequences. Text is not a naturally occurring sequence.

It is an encoding of a naturally occurring sequence - spoken language. The encoding might

obscure the information theoretic signatures in the same way Morse code or ASCII octal might.

At the very least we shouldn’t expect any care to be taken to preserve them. Therefore, it

should be at least as easy to segment sequences of phonemes into words as it is to segment

sequences of text.

The spellings of words are cobbled together over the centuries through the converging

and diverging of many different languages, with words being borrowed from here and there as

necessity dictates. Conversely, if humans use these information theoretic signatures to segment
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speech, we would expect the sounds of speech to evolve concordantly. The sounds of words

are more than an encoding of ideas, they are a natural and organic part of the way we think.

We would expect that our language should evolve to make the segmentation task easier. The

phonetic sequences should demonstrate the markers required for segmentation more clearly

than text, which has not had the time or the pressure to adopt these markings. Presumably,

it is disadvantageous if children have a hard time learning to segment their native language,

but not nearly so bad if the same is true of their written words. After all, words are written

with spaces between them, so the child need never learn to segment them, should they be

written without. Therefore it is interesting to compare the performance of the algorithm in

both domains.

Experiment 5

The CMU Pronouncing Dictionary was used to translate each word in the dataset into its

phonemic representation. The CMU Dictionary uses a text base representation of 39 phonemes

to represent over 125,000 words. Each word in the dataset was replaced with its corresponding

phonetic representation. For instance, the opening phrase of Orwell’s 1984 “It was a bright

cold day in April,” became “ih1 t * w aa1 z * ah0 * b r ay1 t * k ow1 l d * d ey1 * ah0 n * ey1

p r ah0 l” (delimiters added for clarity). A few words in the dataset were not present in the

dictionary, including some of the proper names and some words invented by George Orwell.

These were omitted from the translated text. One-level HVE was run on the translated data.

Table 5.4 summarizes the results which are analyzed in the next section.

Table 5.4 Phoneme Results: Note that the segmentation of phonemes to
words is slightly better than the baseline segmentation of text
to words.

Dataset F-measure Accuracy Hit Rate
Phonemes 0.807 0.808 0.806
Baseline 0.776 0.756 0.797
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5.5 Analysis of Results and Discussion of HVE

It is clear that HVE is able to perform higher order segmentation of hierarchically structured

data, given that the data exhibits the necessary information theoretic markers. In Experiment

1 (font conversion) the first order segmentation f-measure increased as the complexity of the

font increased. In particular, it performed very well on fonts 2 and 3. As expected, the second

order segmentation approached the baseline in both of these cases. The first order segmentation

for font 1 was not as good, and as a result the second order segmentation was worse. However,

even though the level 1 segmentation was only 74% accurate, the f-measure for level 2 was

still .551. This indicates that the algorithm it at least partially robust to segmentation noise

between levels. And we can see with font 2 that, once the level 1 segmentation accuracy reaches

roughly 90%, the level 2 segmentation is very close to the baseline. It seems that the algorithm

can compensate for a small amount of segmentation error in the lower level.

In Experiments 2 and 3 (Morse code and ASCII), HVE had considerably poor performance

and was unable to find the letter boundaries at the lowest level of segmentation. Naturally,

the second level segmentation was also very poor. It is important to understand why this

happened in order to understand the limitations of this model.

In Experiment 2 there was too much ambiguity in the sequence. Every binary string of

length less than 5 has a meaning in Morse code. Given a sequence of dits and dahs, it is

simply indeterminate where the breaks should go. In practice, Morse code is not sent in one

continuous stream. The sender places short pauses between each letter, and longer pauses

between each word. Thus the receiver does not have to perform a segmentation task, but

only a translation. The algorithm was not given these breaks, but was asked to induce them.

However, as stated, virtually any segmentation of the Morse code would have induced legal

letters. In HVE’s terms, this means that the internal entropy of the true subsequences is no

lower than the internal entropy of false subsequences of roughly the same length. HVE relies

on the assumption that most combinations of symbols of a given length are not a proper chunk,

and are in fact random noise. Non-chunks should have high internal entropy - they should be

uncommon. The true subsequences should occupy only a small subset of the total space of
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possible subsequences. But in this case all sequences of the appropriate length could have been

a chunk. The “low internal information” marker was not present, so the algorithm was unable

to segment the sequence.

In Experiment 3 the ASCII octal subsequences did, in fact, have low internal entropy

compared with the false subsequences. Only 26 of the possible 512 three digit octal numbers

are used to map lowercase letters. So most three digit combinations had very high entropy

(appeared infrequently) compared to the ones associated with characters. However, the octal

representation of the ASCII character set for English lowercase letters ranges from 141 to 172.

Every number starts with a 1. This means that at the end of each three digit number in the

translated text, it is always certain which digit is coming next. It will be the leading “1” from

the next letter’s representation. This means that the boundary entropy at the end of each

octal number is 0. The “high boundary entropy” marker was not present, so the algorithm

was unable to segment the sequence.

In Experiment 4 an octal representation was still used for each character, except the map-

ping was generated randomly instead of being taken from the ASCII table. The internal

information of the correct subsequences was just as low as in Experiment 3, but the bound-

ary entropy was much higher. Randomly distributing the character representations through

the domain disambiguated them. Accordingly, HVE was able to segment the lower level with

a high accuracy and hit rate. And since that segmentation was accurate, the second order

segmentation’s performance approached the baseline segmentation of the original text (see

Table 5.3).

In Experiment 5 the segmentation of the phonemes is slightly better than the baseline

segmentation of the original text. This lends a little bit of credence to the idea that the

signatures used by VE are more salient in spoken speech than in printed text. Moreover, the

results reported here are much better than those in Chapters 3 and 4, illustrating the inherent

difficulty of working with audio. However, if an acoustic model could be trained to transcribe

speech into phonemes as accurately as the CMU phonetic dictionary, we might expect similar

results.
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5.6 HVE-3E

In addition to extending VE to work on hierarchical data, a mechanism was devised to

use higher order model information to increase segmentation accuracy at the lower level. To

do this standard HVE was run on a given sequence to obtain a sequence of chunks. Then

the second order model (ngram trie) was built using those chunks. Finally, the algorithm was

re-run on the original sequence with the addition of a third voting expert. This modification

of the algorithm is called HVE-3E, where 3E stands for 3 voting Experts.

The third voting expert uses the higher order model to help split the lower order sequence.

For each position of the sliding window, it checks whether any subsequence starting at the

beginning of the window matches one or more chunks known to the higher order model. If so,

it votes to place a break after the most common of those subsequences (see Figure 5.5). If no

match is found, it does not vote. After the third expert has added its votes to those of the first

and second experts, the sequence is split based on the cumulative votes. When inducing the

split, it is necessary to raise the threshhold Vt by one to accomodate the additional votes. This

process can be repeated at each level of the hierarchy. So, when using the third voting expert,

segmentation must be done twice at each level - once to build a temporary second order model

for use by the third expert, and a second time to produce the final segmentation.

3rd Expert

Model

   i   t   w   a   s   a   b   r   i   g   

“was”

Vote

3rd Expert

Model

   i   t   w   a   s   a   b   r   i   

no match
(no vote)

match:

Figure 5.5 An illustration of the third voting expert. Given a sliding win-
dow, it tries to find a sequence that its model recognizes, start-
ing at the beginning of the window. If it doesn’t, it does not
vote. If it does, it votes to place a break after that sequence.
This vote is combined with those from the other two experts.
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The rationale behind the third voting expert is that, after building a higher order model,

the most common tokens in that model will correspond to true common segments in the lower

level sequence. So the third expert can recognize sequences that commonly become chunks,

and vote to reinforce them. This reinforcement improves the overall segmentation accuracy.

Experiment 6

To test the third voting expert Experiments 1 and 4 were re-run with the additional expert

added. The third expert was used to increase segmentation accuracy on both the first and

second level of the hierarchy. Table 5.5 demonstrates the improvement at both levels.

Table 5.5 Experiment 6: HVE-3E. Compare with Table 5.1 and Table 5.3.
The % Change of the F-measure is included for comparison.

Dataset F-measure Accuracy Hit Rate
Result % Change

L
ev

el
2 Font 1: 8x8 0.642 +16.5% 0.614 0.672

Font 2: 8x8 0.772 +4.0% 0.771 0.773
Font 3: 12x8 0.768 +1.9% 0.756 0.781
Random Octal 0.775 +4.3% 0.776 0.781

L
ev

el
1 Font 1: 8x8 0.806 +7.3% 0.795 0.817

Font 2: 8x8 0.959 +3.0% 0.999 0.921
Font 3: 12x8 0.974 +0.2% 0.989 0.959
Random Octal 0.972 +3.0% 0.992 0.959

5.6.1 Analysis of Results and Discussion of HVE-3E

Experiment 6 clearly shows the improvements gained from the addition of the third voting

expert. They are small, but present at each level of segmentation, and for each data set. This

shows that it is possible to improve lower level segmentation by using information from higher

order models. Additionally, the improvement is more substantial on the more difficult data

sets. It seems that there is more to gain from reinforcing common chunks on difficult sequences.
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More generally we would expect the higher order model to be able to help bootstrap the

lower level in many ways. HVE-3E is a very simple implementation of this idea, in that it only

finds exact matches inside the current window. It is expected that more sophisticated methods

of propagating information back down the hierarchy could improve segmentation even more.

Cheng and Mitzenmacher have described a more sophisticated third expert which improved

segmentation accuracy slightly more than this one [Cheng and Mitzenmacher (2005)]. Their

algorithm, however, is not hierarchical, and is much more complex than our third expert.

Additionally, both experts are compatible, i.e., they could be used simultaneously to increase

accuracy even further. In any case, we already see improvements at each level of the hierarchy

with simple chunk matching, demonstrating that information from higher order models can be

put to good use increasing the segmentation accuracy at lower levels.

5.7 Summary

This chapter described a natural extension of the Voting Experts (VE) algorithm [Cohen

et al. (2007)], called Hierarchical Voting Experts (HVE), which segments hierarchically struc-

tured sequences. It was shown that HVE can successfully perform hierarchical segmentation on

a variety of datasets. Also, it was demonstrated that HVE is sensitive to information theoretic

features of the dataset. Specifically it requires that the information theoretic signatures of

chunks be present and unobscured. A technique for improving the segmentation accuracy by

making use of higher order models was also demonstrated, and it was effective at each level of

the hierarchy.

It seems that many of the domains in which we would like to be able to apply this kind of

algorithm naturally exhibit the signatures of chunks. Therefore, the possible applications of

the HVE chunking model are numerous. A general method for the segmentation of any kind

of sensory data based on internal and boundary entropy would presumably be a powerful and

fascinating model. We are nowhere close to such an algorithm, but we are interested in its

feasibility and possible applications. In any case, the VE model has continually proven itself

powerful, and it deserves further study.
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CHAPTER 6. SUMMARY AND DISCUSSION

In this thesis I have described a technique for the unsupervised segmentation of acoustic

speech using the Voting Experts algorithm. To my knowledge, this is the first unsupervised

algorithm of this sort. In particular, the previous work in this field has been focused on the

segmentation of text or textual phonetic transcripts of speech. In Chapter 3 I showed that

the VE model is capable of inducing an accurate segmentation on an audio stimulus stream

with very limited training data. Specifically, the results of a famous series of infant speech

segmentation experiments were reproduced.

Additionally, the same algorithm was used to segment a very large natural language speech

stream (an audio book). The resulting segmentation was evaluated by human graders, and

was determined to be significantly more accurate than chance. This demonstrated that the

algorithm is capable of inducing breaks in real spoken language, and not just artificially gener-

ated speech. In other words, the information theoretic markers used by VE really are present

in natural language streams, and can be used to find word breaks. However, the evaluation

of that particular dataset only showed that the algorithm worked better than chance. It gave

no objective measure of the segmentation quality, or how useful that segmentation might be

for the purpose of language learning. This was an unfortunate consequence of using a large,

unlabeled natural language dataset.

In Chapter 4 an improved acoustic model was suggested, which was more closely related to

modern speech recognition systems. It was implemented and shown to significantly improve

the performance of VE’s segmentation on the infant datasets. The original experiments were

repeated using the new model, and a much more thorough evaluation of the algorithm’s per-

formance and its sensitivity to its parameters was performed. This evaluation conclusively
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demonstrated VE’s ability to segment acoustic speech streams, as long as they contain the

requisite statistical cues.

In Chapter 5 the Voting Experts algorithm itself was generalized and extended to Hi-

erarchical Voting Experts. This extension proved able to segment hierarchically structured

sequences, such as vertical pixel columns extracted from text. It was also thoroughly tested

to demonstrate its limitations, and to identify situations where it fails to produce a reliable

segmentation. Finally, a third voting expert was introduced that used higher order models

to improve the segmentation at lower levels of HVE. This new algorithm HVE-3E showed

significant improvement in the segmentation quality at each level of the hierarchy.

So now we can see the progression of the work. A basic application of Voting Experts

to acoustic streams induces segmentations with accuracy significantly greater than chance,

both on artificially generated and spoken language. This segmentation can be improved by

improving the acoustic model. VE itself can be extended and improved as well.

This specifies two independent directions for future work on this topic. The first is devel-

oping better unsupervised acoustic models. Given the maturity of speech recognition research,

this is most certainly possible. The second is extending VE to improve its performance. The

VE model is not married to the sliding window implementation that uses the experts. Its

model is simply the intuition that words exhibit low internal information, and high entropy at

their boundaries. It seems likely that this intuition could admit of many incarnations, some

of which might be better suited to acoustic segmentation. Moreover, several strategies for the

improvement of segmentation were discussed and then dismissed in Chapter 2, since they were

more appropriate for bootstrapping than beginning the process. However, there is no reason

that VE couldn’t be augmented with this same bootstrapping.

The results of this work are encouraging, and lay the foundation for future investigation.

For now, we know that the acoustic models and algorithms presented here are capable of

beginning the language segmentation process. They do not constitute a complete model of

the infant segmentation mechanism, but that was never the goal. The goal was a practical

algorithm inspired by infant speech segmentation. The algorithms presented here are clearly
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on that path, even if they haven’t reached full maturity.

It’s unknown how accurately a purely distributional algorithm could segment natural speech

streams. Perhaps the best it could do is to produce breaks with barely enough accuracy to

learn phonotatic rules, or to uncover some other, more reliable cue. Perhaps it could induce a

near perfect segmentation, rendering the other cues meaningless. Neither of these possibilities

seems very likely. The only way to find out for sure is to develop and refine distributional

segmentation algorithms, and see how well they can perform. The algorithms presented in

this thesis represent an initial baseline. Their performance is surprisingly good given their

simplicity and the inherent difficulties associated with acoustic speech streams. They are a

first step, small but definite, toward the unsupervised acquisition of language. Moreover, they

are a first step with the promise of many more. If nothing else, this work demonstrates the

potential of the statistical segmentation of audio. As with any proper scientific development,

it is incremental, certain and thorough. But it also exhibits the most desirable trait that any

new advancement might admit - it is inspirational. It calls attention to an area of dramatic

potential. Hopefully this work will encourage further research along these lines, and yield other

useful, powerful and innovative results.
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