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Abstract—This paper proposes a method for interactive recog-
nition of household objects using proprioceptive and auditory
feedback. In our experiments, the robot observed the changes
its proprioceptive and auditory sensory streams while performing
five exploratory behaviors (lift, shake, drop, crush, and push) a
50 common household objects (e.g., bottles, cups, balls, toyk. g
The robot was tasked with recognizing the objects it was manipu-
lating by feeling them and listening to the sounds that they make
without using any visual information. The results show that both
proprioception and audio, coupled with exploratory behaviors,
can be used successfully for object recognition. Furthermorehe
robot was able to integrate feedback from the two modalities,
to achieve even better recognition accuracy. Finally, the results
show that the robot can boost its recognition rate even further ly
applying multiple different exploratory behaviors on the object.

Fig. 1. The robot used in this study, shown here holding on¢hef50
household objects used in the experiments.

I. INTRODUCTION
UMAN beings have the remarkable ability to represent
object knowledge using multiple modalities, includingap, which is used to convert the high-dimensional input

vision, touch, and proprioception [7]. Research in psyoppl from each modality into a discrete sequence of most-highly
has shown that multiple modalities are required to captu@gtivated states in the map. This feature representaturces
many object properties such as weight, roughness, and stiffe dimensionality of the sensory feedback, which alloves th
ness. [21]. In contrast, most object recognition systenesiusise of standard machine learning methods designed to handle
in robotics today use almost exclusively computer visiopequential data. Using these extracted features, the gedpo
techniques and thus rely on a single modality [30], [39]][34method enables the robot to learn behavior-grounded object
[31]. With a clear view of the target object, such systemf&cognition models, each of which is coupled with a specific
can achieve high accuracy, but suffer from several linotai behavior and sensory modality.
For example, using vision alone, a robot cannot distinguishThe framework was tested with an upper-torso humanoid
between a heavy object and a light object that otherwise loatbot (see Fig. 1), which interacted with 50 different hdwald
the same. Furthermore, such a system would be of little uskjects, one of the largest number of objects used in rabotic
if the object is outside the robot’s field of view (e.g., grsp experiments. The robot recognized the objects by extractin
an object inside of a bag). The human visual system is alfeatures from its proprioceptive and auditory sensoryastre,
subject to these same limitations - not surprisingly, husnawhile applying five different exploratory behaviors on the
need other sensory modalities to capture knowledge abalects: lift, shake drop, crush and push The robot was
objects [21], [35], [11]. evaluated on the task of object recognition given the feeklba

To address the inherent limitations of the visual sensofsom either one or both of the sensory modalities used in this
modality, this paper proposes a novel behavior-groundedper. The results show that both auditory and propriogepti
method for interactive recognition of household objectsigis feedback, coupled with specific behaviors, contain infdroma
proprioceptive and auditory feedback. While vision-baspd aindicative of the object being manipulated. In additione th
proaches typically use passive observation, our framewsels robot was able to integrate feedback from multiple modsiti
active interaction to recognize the objects. More spedifica and multiple behaviors performed on each test object, which
proprioceptive feedback is extracted from the joint-taq@l- resulted in recognition accuracy of over 98%. Further asialy
ues of the robot over the course of an interaction, while audif these results gives a strong indication that equippifmpi®
tory feedback is extracted from the Discrete Fourier Trarmsf with a diverse set of exploratory behaviors is necessary in
of the sound detected during the interaction. The robohkarorder to scale up interactive recognition methods to a large
a model for each sensory modality using a Self-Organizinmimber of objects.



Il. RELATED WORK described here is not specific to proprioception, but cateats
A. Psychology and Cognitive Science be applied to two (and possibly more) different modalities.
In other related work, Nakamurat al. [23] describe a
bot that uses proprioception along with visual and augito
information when interacting with objects. The robot usee o

'ﬂeft 'rrgggrtriggen ?;szsnsgg Er}r;((;ijlllltéessotherl t[r;)aSr; gsslzzlfep;omodality to infer the outputs of another (e.g., whether ajecth
J 9 ' ple, Saxipal, W?uld make noise when picked up after only looking at it).

a study in which toddlers were presented with a sponge trmetta et al. [22] show that integrating proprioception with

was deceptively painted as a rock. As expected, the toddk\a”rgion can bootstrap a robot’s ability to manipulate olgect

believed that the object was a rock until the moment they . . .
interacted with it (by touching it or picking it up). This and. Similarly, there has been some work on the use of auditory

several other studies (see [11]) illustrate that propiitive information for recognizing objects and their properti€ne

information about objects can be very useful when visiomalo of the first studies in this area was conducted by Kroteov
is insufficient ) y al. [15]. Their robot was able to identify the material type

rgaluminum, brass, glass, wood, or plastic) of several dbjec

It g%yvrsalu‘;’o; ndelrscsil\?: :\?e:tnspgrggntgsrc;%fenge'rgg.rgz?st'c;% probing them with its end effector. Auditory-based miatier
. op . . >o0gn Jec recognition has also been the topic of research conducted
their properties even when a direct line of sight is not alag.

The ecological approach to perception provides the inglyitt by Richmondet al. [33] [32], who described a platform for
. . gical app )P ption provi ! measuring contact sounds between a robot’s end-effectbr an
listening consists of perceiving the properties of the sound

source (e.g., bouncing ball, car engine. footsteps ; gojects made of different materials. The robot was able to
-g., oL 9 ' gine, -PS, aat)e acquire acoustic models for four objects of different miater
than the properties of the sound itself (e.g., pitch, tote,) e

. . by repeatedly striking the objects at different positions.
[8]. Thus, the human auditory system plays a crucial role 'ryTorres-Jaraat al.[40] demonstrated a robot that can perform

both understanding and representing object knowledge. Qur_~ .. : . .
hypothesis is that this association can be learned by q@pla%oustlc based object recognition using the sounds geeera

behavi ‘ d biects with th d d Wwhen tapping on the objects with its end effector. When
enhaviors periormed on objects wi € sounds producg ping on a novel object, the spectrogram of the detected
during these interactions.

o . . . sound was matched to one that was already in the trainin
These insights have been confirmed by multiple experime y 9

. . Qét, which resulted in a prediction for the object’s typeisTh
thal :]tur(]jles. Eor exarmtplle, ?'Ordﬁs) aI.LQ] %gmgnsr:atte(rji tlhat allowed the robot to correctly recognize four different etif.
umans can accurately recognize an objects materia ’(e'g'More recently, Sinapoet al. [38] have shown that object

wood, glass, steel or plexiglass) when listening to the EISunrecognition using auditory feedback can be scaled up to a

gener_ated when the_ object is s_truck. S_ound also a_llows uslz;?ger number of objects - 36 - and extended to multiple robot
perceive many physical properties of objects. Grassil. [10] haviors (e.g., grasp, shake, tap, drop, push). The rohst w
a&%

The work presented in this paper is directly inspired byo
research in psychology and cognitive science, which higiti

showed that human subjects were able to provide reason e to recognize with high accuracy both the type of object

good estimates for the size of a ball dropped on plates h fi . : | havi
simply hearing the impact sound. Motivated by these androt Ic:/ihz ggic?eén;iﬁfgon (i.e., exploratory behaviorings

examples, this paper investigat_es amthod that alloyvsq;tr_o Following this line of research, this paper describes a
to use sound as a source of information about objects i@y, qq for interactive object recognition using a comborat

similar manner. of proprioceptive and auditory feedback. While most putdish
experiments with robots typically use less than 10 objects,

B. Robotics our method was evaluated using a large-scale experimental
Traditionally, most object recognition systems used bstudy with 50 household objects, one of the largest number

robots have relied heavily on computer vision techniqued objects reported in the robotics literature. We build mpo

[30], [39], [31] and/or 3D laser scan data [34]. There hagur previous work in acoustic [38], [36] and proprioceptj4¢

been relatively little previous work dealing exclusivelyithv object recognition. This paper uses the same data set a§ in [4

proprioceptive and auditory object recognition. One offdng but also uses the auditory feedback, which was previously

examples is the work by Nataket al. [25] in which a robot ignored. This study also improves the object recognition

was able to recognize seven objects with the help of a Seflfiodel developed in [38] by allowing the robot to use a

Organizing map using proprioceptive data extracted froe thveighted combination rule when combining feedback from

robot’s hand as it grasped an object. multiple sensory modalities and multiple behavior-groemhd
Proprioceptive data has also been used to estimate rapognition models.

object’s mass and moment of inertia [16], [17]. Methods for .

estimating the dynamics of a robot’s body (see [2], [12]]]24

[14]) could also be applied to estimate the mass of an object [Il. EXPERIMENTAL SETUP

or some other properties. In contrast, the research pregémt

this paper explores how a general sequential represemtatio A. Robot

high-dimensional sensory data, coupled with standard mach The robot used in this study was an upper-torso humanoid

learning algorithms, can be used by the robot to learn tobot, with two 7-DOF Barrett WAMs for arms and two 3-

recognize the objects that it manipulates. Thus, the methfiniger Barrett Hands as end effectors (see Fig.1). The robot



Fig. 2.

made of various materials, including plastic, metal, wood aamgep

&8

The 50 household objects used in this study (not shiowstale). The object set includes cups, toys, balls, sotdad containers. The objects are

was controlled in real time from a Linux PC at 500 Hz oveMicrophone pre-amplifier, and subsequently processeditfro
a CAN bus interface. The raw torque data was captured aad.exicon Alpha bus-powered audio interface, which corsect

recorded at 500Hz using the robot’s low-level API.

to the PC using USB. Sound input was recorded at 44.1 KHz

The robot’s head was equipped with an Audio-Techniaasing the Java Sound API over a 16-bit channel.
U853AW cardioid hanging microphone. The microphone’s
output was first routed through an ART Tube MP Studig. Objects

Crush Drop Shake Lift

Push

Before

After

The robot interacted with a set of objectd, consisting

of 50 common household objects, including cups, bottled, an
toys (see Fig. 2). The objects were made of various materials
such as metal, plastic, paper, foam, and wood. Objects were
selected using three criteria: 1) they must be graspablédy t
robot; 2) they must not break or permanently deform when
the robot interacts with them; and 3) they must not damage
the robot.

C. Behaviors

The set of behaviors5, consisted of five exploratory
behaviors that the robot performed on each objkftt:shake
drop, crush and push The behaviors were performed with
the robot’s left arm, and encoded with the Barrett WAM API.
Fig. 3 showsbefore and after images for each of the five
exploratory behaviors. The raw proprioceptive data (jant
torques) and the raw audio were recorded for the duration
of each behavior (start to end). Prior to the execution oheac
trial, each object was placed in roughly the same configumati
(position and orientation). Due to human error, howevesreh
was still some variation of the grasp contact points, as all
the contact points with the object during tpeshand crush
behaviors across multiple trials with the same object.

IV. LEARNING METHODOLOGY
A. Proprioceptive Feature Extraction

The first step in the feature extraction routine was to noise
filter the raw joint torque values of the left arm, which were
recorded during each interaction. As can be seen in Fig. 4,
the raw values were somewhat noisy, containing many spike
readings. To handle this noise, the raw data was filterecdjusin

Fig. 3. Beforeandafter snapshots of the five behaviors used by the robota filter of width 10, which checked for data points that lie mor
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Fig. 4. Joint torque values fofs as the robot lifts the dumbbell object. The
thinner line shows the raw joint torques recorded using timts low-level
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than 3 standard deviations away from the window median. Any H
such values were thrown out and replaced with the window
median. The time series was then smoothed using a moving- ]

average filter of size 10. The solid line in Fig. 4 shows
the resulting smoothed torque values after the noiseifiljer
procedure was performed.

The proprioceptive feedback?;, from the i*" interaction
was represented as a sequence of states in a Self-Organizing l l
Map (SOM) [13], one of several ways to quantize data Auditory SOM
vectors. This representation was obtained as follows: let
T; = [ti,t5,...,t,] be the noise-filtered joint torque values
for some interaction, such that each’ € R” denotes the
torque values for all 7 joints of the left arm at time stgp
Given a set of joint torque recordg = {T;}X,, collected
over K interactions with different objects, a set of individual
joint torque vectors was sampled at random and used asra 5. lllustration of the procedure used to train the piopeptive and
input training data set for the SOM. In other words, the Sor_wditory Self-Organizing Mapsi?roprioqeption (I_eft c_olumn):' ijen aset of
was trained with seven-dimensional input vectofs,c 7, ot TS fecorded at 500 iz durng imulple nieracsonty difere
where each data point denoted a particular record of joitk SOM. Each of these vectors isl{ and denotes the values of the 7 joint
torque values (for all 7 joints). To avoid overfitting and tdgcf)q,\ljes 2%:16 VOgOI’S 's_ﬁ aer_a_tn?tpf;lf“cu'afngqn: i{? fmmﬁ;aifngg"\;he
speed u_p the training procesg, .Orll)j/5 of the a\_lailab!e inqu statescghe n?gs? h)i/gpr)lf;/ Ia(fcutSatjg(lj stgtgl)llfczoc?riglr?tucilll?mng): cé%iveﬁ a set ?)f
data points were used for training. The Growing Hierarchic@iscrete Fourier Transform (DFT) spectrograms, a set of roolwectors is
SOM toolbox was used to train a 6 by 6 SOM (i.e., 36 totgp(tracte_d (each ii®33) and used as a data set for training the auditory SOM.
nodes) using the default parametefor a non-growing 2D [e, e SOM can then map any parculer DFT columy wecunta
single layer map [5]. Figure 5 gives an overview of the tragni
procedure while Figure 6 shows how a torque recdrg,can
be mapped to a discrete sequence of states in the SOM. the proprioceptive feedback, thus affording the use ofdsigmh

After training the SOM, each torque record; = machine learning algorithms designed to work on sequential
[t},t5,...,ti,] was mapped to a sequence of SOM nodes, lolata.
mapping each vector; to a node in the map. A mapping
function was definedMap(t;) — pj, wheret; € R is
the input torque vector ang: is the node in the SOM
with the highest activation value given the current inpiit
Thus, each torque recorfl; was represented as a sequenc
P, = pipy...pj,, wherep; € TI',, T, was the set of
nodes of the proprioceptive SOM, aidwas the number of
samples in the torque recoffi, as shown in Fig. 6. Thus,
each P; was represented as a discrete sequence over a fi
alphabet. This representation reduced the dimensionefity

B. Auditory Feature Extraction

Similarly, the auditory feedback from each interactioh,

as also represented as a sequence of states in another Self-
grganizing Map (SOM) (see Figure 7). To do this, features
from each sound were first extracted using the log-normélize
Discrete Fourier Transform (DFT), usir®f + 1 = 33 fre-
Quency bins with a window 026.6 milliseconds, computed
every 10.0 milliseconds. The SPHINX4 natural language pro-
cessing library was used to compute the DFT [19]. Figure 7

1planar SOM with Euclidean distance metric, learning rate 0.7, and5 SNOWs the resulting spectrogram after applying the Fourier
training cycles. The size of the SOM (6 by 6) was heuristicaliosen based transform on a recorded sound. The spectrogram encodes the

on prior work [38] and was not tuned to maximize performanceafaters ; i i ; ;
governing the growth of the map did not affect the results bsedhe training intensity level of each frequency bin (vertical axis) at feac

option for a non-growing map was used. given point in time (horizontal axis).



Joint Torque Record C. Data Collection

Let B = {lift, shake drop, crush push be the set of
exploratory behaviors available to the robot. For each of
the five interactions, the robot performed ten trials with al
50 objects for a total ofs x 10 x 50 = 2500 recorded

a)

|

t interactions. During the'” trial, the robot recorded a data
Trained SOM point of the form (B;,0;, P;, A;), where B; € B was the
1 executed behaviorQ; € O was the object in the current
Discrete Proprioceptive Sequence interaction, P; = pip5 ... p;; was the proprioceptive sequence

b) of most highly activated states in the proprioceptive SOM] a
P R i ; ;
i A; = ajay ... a; ; was the auditory sequence of most highly
activated states in the auditory SOM. The recorded data set
Fig. 6.  Processing the proprioception data stream: a) Theerfitered and the source code for this paper are available on-line at

torque data for all 7 joints recorded while the robot lifte tlumbbell object. http://www.ece.iastate.edwdlexs/lab/datasets/.
The horizontal axis denotes time while the color in each bamlicates the
torque values for each particular joint (white indicates Malues while black

indicates high values); b) The sequence of states in the S®@Mspondingto D. Object Recognition from a Single Modality
the torques recorded during this interaction, obtainedrafachR? column . . . ]
vector of torque data is mapped to a node in the SOM. The lengtheo  Given a proprioceptive or an auditory feedback sequeRge,

sequencer is I*, which is the same as the length of the horizontal timeyr A;, detected as the robot performed behaviron the test
fv'ﬂl‘?g?i”is"fhihietfé‘?“seo‘batﬁoﬂé‘év.m in a). Bach sequence Wken Iy, gpyiect, the task of the robot was to estimate the correctcbbje
label O, for the object in the interaction. The robot solved
this problem by learning recognition models as follows. For
each behavioB € B, the robot learned recognition models
MJ and MP, which could estimate the correct object label
O; given the respective proprioceptive and auditory feedback
sequences”; and A;. For example, given a proprioceptive
sequence’; detected as the robot performed fife behavior,

1 the proprioceptive recognition modeV1//* could estimate
Trained SOM the probability Prl//*(O; = o|P;) for each objecto € O.
7 Similarly, the auditory recognition model could estimalte t

. . probability of the object clas®ri/*(O; = o|A;) given the
Discrete Audio Sequence auditory feedback sequenck. In both cases, the test object
b) | 4. = _ was assigned the label with the highest estimated probabili
In practice, the modeI:Mf and MZ can be implemented
_ ing the auditory data stream: &) The Discretaid by any machine Ie_arning method_ that can handle Qiscrete
'Fl'lrg.ngf;)rm FDrIc;(':l'e)gS:sspl)r(]eg(’:trtog(fra?r:J olf tr?:e detected sodnd durireyetecution of sequences over a finite alphabet (i.e., strings) as an ifput.

the shakebehavior on the mac&cheese box. The horizontal axis denates ti this paper, these models were implemented by the k-Nearest
while the vertical dimension denotes the 33 frequency binan@e-yellow Neighbors algorithm, a distance-based method, which does n
s e e,y build an explicit model of the training daa [1], 2. Instea
this interaction, obtained after eadk?® column vector of the DFT was given a test data point, it simply finds theclosest neighbors
mar;]ped to g noo:(e inI Jrrfnszgﬂtbéhg?,tﬁgeigenu%tg oef Cttfrlg srgg]ueEmge sg;aé and outputs a prediction, which is a smoothed average over
Egkterfa?ueml“ae,r \/(\J/hecroel“a is the set of SOM %odeg in thg auditor;SOM. those nelghbo'_’s_' In this Studk, was _set to 3. An estimate
J for the probability of each object, given the sequences, was
computed by counting the class labels of theneighbors.
For instance, if two of the three neighbors had an object
As in the case with proprioceptive data, a 6 by 6 SOMjass labelplastic ball then Pr(O; = plastic bal) = 2.
was trained on extracted column vectors from the set of DFimilarly, if the class label of the remaining neighbor was
spectrograms detected by the robot (see Figure 5). In othgsstic cup then Pr(0; = plastic cu = 1. The value for
words, the SOM was trained with input data point&if? that k. was chosen heuristically, such that it is both large enough
represented the intensity levels for each of the 33 spe@nog o allow probabilistic interpretation of the model's outpand
frequency bins at a given point in time. also small enough relative to the number of trials per object
Once the auditory SOM was trained, a column vector frothat were used to train each of the robot's behavior-grodnde
any particular spectrogram could be efficiently mapped toracognition models (e.g., 9 trials when performing 10-fold
unique state in the SOM that has the highest activation valomss-validation).
given the input vector. Thus, each sound was represented ashe k-NN algorithm requires a distance measure, which can
a sequenced; = atal ... ajni, where eachz}'C el',, 'y was be used to compare the test data point to the training data
the set of nodes in the auditory SOM, amd was the number points. Since each data point in this study was represented
of column vectors in the spectrogram (see Fig. 7). as a sequence over a finite alphabet, the Needleman-Wunsch




Execution ofdrop behavior

E. Combining Multiple Modalities

Finally, we show how the robot can combine the outputs
from its proprioceptive and auditory recognition modelsaim
efficient manner. Let(B;, Oycqt, Pi, A;)Y., be the recorded
data after the robot has performeéd behaviors on the object
O:est. FOr example, this could be the sequential application
of the lift, shake and drop behaviors. For the modelﬁ/lf
and M7, let w] andw/ be the estimates for the models’
object recognition performance (e.g., accuracy estimétgd
performing cross-validation on the training set). Giveesh
estimates and the input dat®;, O, P;, A;)Y.,, the robot
could label the object with the object labethat maximizes:
>3 [wp Pri (Orest = 0| Py) + wl Pri (Oyest = 0| A))]

i

- - - In other words, given one or more interactions with the
‘ Proprioceptive SOM‘ ‘ Auditory SOM ‘ same object, the robot combines the predictions from differ
l l sensory modalities using estimates for the reliability atke
channel of information. Note that the reliability weightsr f

Mgmp Mo each modality are contingent on the behavior - e.g., auditor
\ / feedback may be very reliable when dropping the object, but
much less reliable when the object is simply lifted. Figure 8
Weighted Combination illustrates the combination of auditory and proprioceptiv
of Model Predictions feedback after performing an interaction with a test object

It turns out that this method of integrating multiple moelali
. — - ties is similar to the way humans complete the same task [7].
Object Probability Estimates For example, when asked to infer an object property given

proprioceptive and visual feedback, humans use a weighted
combination of the predictions of the two modalities, where

the weights are proportional the estimated reliability atle
modality [7]. The weighted combination of model predicton
ensures that a sensory modality that is not useful in a given
context will not dominate over other more reliable modakti
] | "‘ | ‘ . 2 or channels of information. For example, if it is expectedtth

e B the auditory object recognition model will not achieve high
Fig. 8. lllustration of the procedure used to combine préaist from aC,C“raCY when the r,ObOt .performs thie behavpr (since the
the proprioceptive and auditory object recognition modéisthis trial, the Object will generate little, if any, sound), then, in thanoext,
VDO_bOI ?éoggﬁgetrh?rr;isstfoﬂegﬁc étlﬁg ;i(é?édzg ;2:9 jTOrilnet t%g?f WL% rf[;e the prediction from that model should be combined using a
dilssccrr:tized using the trained SeIf-OrganizinggMabs (ogemedam. Thg low re“ablllty weight. The_ _neXt section presents the resul
resulting proprioceptive and auditory sequences were ddmut to the object  after evaluating the specific moder and MZ for each

recognition models\15"°? and Mg "°?, whose outputs were combined usingbehavior B € B, as well as the weighted combination rule
weights corresponding the estimated performance of each mdtlel final ;

output was a probability estimate for each object label (thiect pictures are that was Just presented.
used for visualization only).

V. RESULTS
A. Object Recognition with a Single Behavior

global alignment algorithm [26], [27] was used to estimate The first experiment evaluates the performance of the pro-
the similarity between two sequences. While normally useqmtioceptive object recognition modehszl;,B and auditory object
for comparing biological or text sequences, the algoritsm recognition models\{Z for each behavioB € B using a sin-
applicable to other situations that require a distance oreasgle behavioral interaction with a test object. The perfance
between two strings. The algorithm requires a substitutimst  of each model is reported in terms of the percentage of correc
to be defined over each pair of possible sequence tokepeedictions (i.e., accuracy) where:

e.g., the cost of substituting ‘a’ with ‘b’. Since each token % A _ # correct predictions . 14,
represents a node in a Self-Organizing Map, the cost for each 0 ACCUTACY = "I oral predictions

pair of tokens was set to the Euclidean distance between thel-l—he performance is estimated using 10-fold cross-

corresponding SOM nodes in the 2-D plane. Section V.¢ulidation: the set of data pOim(SBi,Oi,PuAi)ﬁip where

de%cribes trge object recognition performance of the models= 7500, s split into ten folds corresponding to the tenlsria
M, and M for all behaviorsB ¢ B. performed with each object. During each of the ten iteratjion
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Fig. 9. Recognition rates for the robot’s behavior-grouhdéject recognition models (using both proprioceptive anditary feedback) as a function of the
number of objectsy, in the data set. For each valueof 10-fold cross-validation was performed 20 different timesch with a different randomly selected
object subset of size. The solid lines indicate the resulting mean accuracy estisnatile the error bars indicate the standard deviation a$ehestimates.

nine of these folds are used for training the models and theThe results also show that combining the predictions from
remaining fold is used for evaluation. the two modalities improves the recognition accuracy fahea

The weighted combination of the auditory and propriocef®’ the five behaviors. This improvement is greatest for be-
tive models is also evaluated. During each round of the erod¥viors that yield reasonable performance for both maealit
validation procedure, the reliability weights? and w? for ~(€.9-.dropandcrush). However, even for behaviors where one
each behavioB € B are estimated by the robot by performing®f the modalities is far less reliable than the other (€ify),
cross-validation on the training set only (i.e., the accyrate there is still an improvement in object recognition accyrac

for each modality and behavior combination is estimatechfro | N€S€ results indicate that the use of multiple sensory fnoda
the training set, without access to the test set). ities in object recognition models leads to greater rolkesin

. . . . .and higher overall accuracy.
Table | shows the resulting object recognition accuraces f g y

each combination of behavior and modality, as well as that

of the weighted combination model. As a reference, a chanBe Scalability with a Single Behavior

predictor would be expected to achigie'|O|) x 100 = 2.00% The second experiment looks at how the object recognition
accuracy (for|O| = 50 different objects). Both the auditory performance varies as the robot interacts with more and more
and proprioceptive recognition models perform substéntia objects. Most studies in robotics typically use a small nemb
better than chance, with the auditory model achieving dijgh of objects. Presumably, it may be possible to achieve a high
better accuracy on average. It is clear that the reliabilityach recognition accuracy when dealing with a small set of olsject
modality is contingent on the type of behavior being perfedm but low recognition accuracy when the number of objects is
on the object. For example, when the object is lifted, thecreased. To test this hypothesis, the number of objegts,
proprioceptive model fares far better than the auditory elodwas varied from 2 to 50 and for eaehsmaller than 50, the
(since little sound is generated when an object is lifted)eWh model was evaluated on 20 different randomly chosen object
performing thepushbehavior, on the other hand, the auditorgubsets of sizer. For each subset, the accuracy of each of
modality dominates in performance. the five behavior-grounded models was recorded and used to

Overall, the auditory stream is most informative when theompute the expected accuracy (and standard deviation) for
object is dropped. The sound produced when the object Hagch value of:.
the table implicitly captures many properties of the ohject Figure 9 shows the mean accuracies and standard deviations
material type' size, and even Shape_ Proprioception, on ]fﬁéa” five behaVior'grOUnded reCOgnition models as a fiomct
other hand, is most reliable when the object is crushed. TAE the number of objects in the data set, when using the
proprioceptive sequence implicitly captures the compiéanWeighted combination of the proprioceptive-auditory miode
and the height of the object through the initial contact éorcoutputs. With a small number of objects, the robot is able
and the timing of the first contact with the object. As expdgtet0 achieve a high recognition rate. As the robot interactf wi

proprioception is also useful when lifting the object, siic  More and more objects, however, the recognition rate drops
implicitly captures the object’s weight. since a larger set of objects inherently contains objecth wi

similar physical properties. The same trend can also beigeen
Figure 10, which shows the mean accuracy rates for the three
modality conditions, averaged across all behaviors. Theze

OBJECTRECOGNITIONI\%@L_JERAICY USING kNN MODEL robots that learn about objects should ultimately be evatla
on large sets of objects in order to obtain more realistic and
Behavior [[ Audio | Proprioception| Combined robust performance estimates.
Lift 17.4 % 64.8 % 66.4 %
Shake || 27.0 % 15.2 % 29.4 % _ . _ _ _
Drop || 76.4 % 45.6 % 80.8 % C. Object Recognition with Multiple Behaviors
Crush || 73.4 % 84.6 % 88.6 % The next experiment evaluates whether the robot’s object
Push || 63.8 % 15.4 % 65.0 % recognition performance on all 50 objects can be improved by
Average || 516% | 451% 66.0 % applying multiple behaviors to the test object and comigjnin
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Fig. 10. Average recognition accuracies from a single bihavinteraction Fig. 11.  Object recognition performance with all 50 objectng pro-
as the number of objects, is varied from2 to 50. For each value ofi, 10- prioceptive and auditory feedback with k-NN as the numberntéractions
fold cross-validation was performed 20 different times, eatth a different with the test objects is varied from 1 (resulting in the agerger behavior
randomly selected object subset of size accuracies shown in Table 1) to 5 (applying all five behavionsthe object,
and combining the resulting predictions). Overall, whenfqrening all five
behaviors on the test object, the robot’s object recogmidiccuracy i98.2%.

40

the resulting predictions. For example, it should be edasier
recognize the test object if the robot lifts, shakes and the . . .
) o o . . of exploratory behaviors were also estimated and stored in a
drops the object, than if it applies just a single behavior. . ) : . . .
. . . . . .5 x 5 matrix. The diagonal entries of this symmetric matrix
In this experiment, the number of available interactiontwi . . : .
N . contain the5 accuracy estimates obtained when performing
the test object is varied from 1 (the default case, used te g ; . ) ) .
. : : . e same behavior twice, while the 10 lower-diagonal estrie
erate Table I) to 5 (i.e., performing all five behaviors). When . . e
N . . ... contain the accuracy obtained when combining feedback from
estimating the performance for 2, 3 and 4 interactions with t . : . )
. . - . . each of the 10 unique pairs of behaviors. These estimates wer
object, all possible combinations of behaviors are comsitle

. . . .. used to compute the improvement in recognition accuracy for
(e.g., for 2 interactions, there are 10 possible combina)io . L ; :
. - different combinations of behaviors as described below.
and the mean accuracy is reported. Model predictions from ) _ . -
Let acc(M", M?) be the estimated recognition accuracy

multiple interactions with the object are combined using th

reliability weights estimated for each combination of beibe. When combining the outputs of recognition modgl¢' ar;)d
and modality, as described in the previous section. M associated with behavio; and B;, and letacc(M")

Figure 11 shows the results of this experiment. Not surprié‘-nd acc(M?) be their individual accuracies estimated when

. o : . forming a single behavior execution on the test object.
ingly, the recognition accuracy improves dramatically s t ber ; ) :
gy 9 y Imp y Given two behaviorsB; and B; (which may be the same if

robot interacts with the object using more and more behavior o .
; 9 .= j), the recognition improvementR(;;) obtained when

once all five behaviors are performed, it reaches 98.2%. Tli{szl ina the two behaviors sequentiallv on the test obiect
shows thatinteractive object recognition can provide highly pplying W Vi quentially J

accurate classification for a large set of objects, as long @ be measured relative to the recognition accuracy of the

the robot is allowed to perform several behavioral intecact individual behaviors, i.e., ‘ ‘
with the object and combine their resulting predictions in a RI; = ace(M?, MI) — acc(M") + ace(M)
efficient manner. 2

A subsequent question to answer is whether the same typ&vith this formulation we can test whether combining feed-
of recognition improvement can be achieved by performirgg thhack from two different behaviors results in greater redtign
same behavior multiple times on the test object (as oppasedbost than combining feedback from two executions of the
applying multiple different behaviors). An evaluation exip same behavior. The results of this evaluation, shown inrgigu
ment was conducted in which the data set was splitinto 5 foldg, confirm that the recognition improvement is higher when
(each containing 2 trials with all five behaviors performeedwvo different exploratory behaviors are applied on the test
on each object) and 5-fold cross validation was performedbject, as opposed to applying the same behavior twice.
In other words, during each of the five iterations, the modahis result gives a strong indication that the diversity loé t
was trained on 4 of the folds, and tested on the remainiegploratory behaviors is more important than the number of
one. For each of the five behaviors, the test set now contaifties each behavior is executed when classifying an object.
two instances of the same behavior applied on each of the
50 objects. The test set also contains 4 instances for each ) )
of the (3) = 10 unique combinations of different behaviors>- The Boosting Effect of Exploratory Behaviors
(e.g., lift-shake) per object. After all five rounds of cress The previous experiments showed that by performing mul-
validation, the individual accuracies of the five behavieese tiple exploratory behaviors a robot can query multiple geco
estimated from the recorded model outputs when comparediition models, each tied to a specific behavior and sensory
the actual object IDs. The accuracies for each combinatiamdality, and thus dramatically improve its object recoigni




TABLE Il

- - - THE RELATIONSHIP BETWEEN A PAIR OF RECOGNITION MODELS
30 San;e behg‘?o.r twofdlffefient behaviors M AND M7 CAN BE EXPRESSED USING A2 X 2 TABLE, WHICH
37V periormed twice performed once SHOWS HOW OFTEN THEIR PREDICTIONS COINCIDEN ' AND
< N) AND HOW OFTEN THEY DISAGREE(N® AND N19).
g _ ,
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Fig. 12.  Object recognition improvement obtained by combiningdel § 40
outputs after two executions of tlamebehavior as well as two executions e M
of different behaviors, estimated using 5-fold cross-validation. Incalées, E 30 ¢
the recognition improvement is higher when combining feeddack two 5 A6
distinct exploratory behaviors. When applying the same hiehawice, the g 20 g I__|09
standard deviation of the recognition improvement was es@ichdtom 5 g °
samples, one for each behavior. When applying two differehtaiers, the $ 101
standard_dewanon was estimated from 10 samples, one for waghe pair & Proprioception only
of behaviors. of o o Audio only

O Combined
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rate. But what is the cause of this apparent boost in recognit Disagreement Measure

rate? To answer this question, we turn to research in machiri@ 13. The relationship between the pairwise disagreemaasure and
learing theory, which has shown that the rate of classioat e, *Ce0Tien prverent fr st of e 10 possle eietovor
improvement of a classifier ensemble can be linked to paérwigombined), estimated using 10-fold cross-validation.

measures of classifier diversity [6], [18]. For example, bam

ing classifier predictions from two diverse or complementar

classifiers generally results in higher recognition raté8].] the object was correctly recognized by modet?, but mis-
These machine learning results rely on the assumption tletassified by modelM’ (see Table 11). In other words, the
the data points in the original data set are identically artisagreement measure is equal to the number of trials intwhic
independently distributed (i.i.d.) and that each indiébdas- one model was correct and the other was wrong divided by the
sifier is trained on a biased subset of the original data get.tbtal number of trials. Calculating this measure is eqeral
our setting, each behavior-grounded recognition modelsis ato computing the normalized Hamming distance between the
trained on a biased subset of the data set, correspondihg tovectorsy; andy;. The range of this measure is always in the
data produced by the specific behavior and sensory modalityerval of 0.0 to 1.0, with low values indicating that the two
associated with that model. However, the i.i.d. assumptionodels tend to agree, regardless of whether they are right or
is clearly violated — for example, the sounds produced hyrong.

dropping the objects come from a different distributionrtha _ . . .

the sounds produced when shaking the objects. The datalspoint':Igure 13 shows the reilguor}shlp between the d|§agre§ment
are also not independently distributed, since the initialsg measure and the_ recognition improvement (as o_Ieflned n the
configuration can influence both the proprioceptive and tpgevious subsection) for each one of the .1.0 unique pairs of
auditory feedback produced by the subsequent explorat haylors gnd for all three ”'FOda"ty conditions: audio only
behaviors. Despite these differences, the next experiment proprioception only, or combined. The plot shows that the

amines whether the relationship between classifier disxers?moum of disagreement is linearly related to the expected
and recognition improvement still holds improvement. Thus, the collection of the robot’s behavior-

Given a behavior-grounded recognition model?, let y; groundgd r_ecognition mod_el_s acts as an gnsemble of classifie
— [yrsr- .. yxi” be a K— dimensional binary vector, Th!s is indeed a surprising result, since in the_ machine
such fhatyki 2 if the model M correctly labels the Iear'nmg Iltera.ture it is assgmed that.the classifiers 'lr.1d¢bie
object explo}ed during triak, and O otherwise. The pairWiselectlon are trained on identically and independently distied

diversity between two model$t’ and M7 can be measured data points. Nevertheless, even when the i.i.d. assumfgion
by comparing the corresponding vectgrsandy;. One such violated, the concept of classifier diversity was found to be
5

metric is the disagreement measure [18], which is defined 45€ful for explaining the improvement in recognition a@myr
in the robot experiments. This finding establishes an ingmart

DIS; ; = N4+ N0 link between research in machine learning theory and studie
7 N1 N10 4 NOL 4 VOO in robotics that make use of multiple exploratory behaviors
where N?? is the number of trials (out of’) for whichy, ; = and sensory modalities (see [37] for further details). @ler

p andy,; = ¢, e.g., N'0 is the number of trials in which the results from this experiment highlight the importanée o



enabling robots to perceive objects using multiple, as wagll behavior. Integrating proprioceptive and tactile infotioa
diverse, channels of information (e.g., different behesiiand from the robot’s hand, as well as color and depth information

different sensory modalities).

VI. CONCLUSIONS ANDFUTURE WORK

from the robot's camera will allow the robot to further impen
its ability to learn about common household objects. Robots
that can interactively explore objects and make use of pialti

sensory modalities will ultimately be better suited for &iog
The main contribution of this paper is a framework for interin human-inhabited environments.

active object recognition, that can handle multiple exaiory
behaviors and multiple sensory modalities. The proposed
object recognition framework was evaluated using a large-
scale experimental study, in which the robot manipulated
different objects using five exploratory behaviolift { shake
drop, crush andpush and two sensory modalities (audio and
proprioception). The feedback from the two sensory modal-
ities, detected by the robot while interacting with an objec (1
was represented as two sequences of the most highly activate
nodes in two Self-Organizing Maps (one for each modality)[?!
Using global sequence comparison coupled with the k-Neares
Neighbors algorithm, the robot was able to recognize th¢s]
explored object with accuracy substantially better thaancle. ]
The robot was also able to compute estimates for the ratiabil

of each sensory modality and use them to improve its object
recognition accuracy. 5]

More importantly, after applying all 5 exploratory beha&o
on the test object, the robot’s recognition accuracy redche
98.2%, highlighting the importance of combining informa-
tion extracted using multiple behaviors and multiple seyso el
modalities. Analysis of the results also showed that thenksh
behavior-grounded recognition models act as an ensemble &t
classifiers. Thus, by applying a set of diverse behaviorsron 3g]
object, the robot can boost its recognition accuracy.

These results give a strong indication that traditionaiovis [
based object recognition systems can be further improved by
the additional use of auditory and proprioceptive feedbacko]
This is particularly important for objects that may not bsisa 1]
recognized using vision alone (e.g., a heavy and a Iightotbbjé
that look identical). Thus, active interaction (as opposed [12]
passive observation) is a necessary component for regolvin
perceptual ambiguities about objects. Active object evgtion 13]
is one of the hallmarks of human and animal intelligence (sge]
[29], [20]), which lends further credence to our approach to
object recognition using exploratory behaviors. [15]

There are several possible avenues for future work. First,
other methods for dimensionality reduction (e.g., vectaar
tization, or Spatio-Temporal Isomap, as used in [28]) can bg
applied in order to find meaningful patterns in the robot’s
proprioceptive and auditory sensory streams. Second,ewhil
the robot in our study was tested on an object recognitick tag; 7,
it is also possible to use auditory and proprioceptive feekb
to detect certain physical properties of the object (ef3., i
material type, whether it is hollow or solid, etc.). Somélg]
preliminary results indicate that after applying all 5 bebes
on a novel object, the robot can detect its material typé!
and other physical properties significantly better thannclea
[36]. Furthermore, the method for integrating informatfoom
proprioceptive and auditory feedback can be generalizeohto
arbitrary number of sensory modalities, allowing the rotmt 21]
detect the reliability of each modality for each explorgtor

(20]
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