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Abstract—This paper proposes a method for interactive recog-
nition of household objects using proprioceptive and auditory
feedback. In our experiments, the robot observed the changesin
its proprioceptive and auditory sensory streams while performing
five exploratory behaviors (lift, shake, drop, crush, and push) on
50 common household objects (e.g., bottles, cups, balls, toys, etc.).
The robot was tasked with recognizing the objects it was manipu-
lating by feeling them and listening to the sounds that they make
without using any visual information. The results show that both
proprioception and audio, coupled with exploratory behaviors,
can be used successfully for object recognition. Furthermore, the
robot was able to integrate feedback from the two modalities,
to achieve even better recognition accuracy. Finally, the results
show that the robot can boost its recognition rate even further by
applying multiple different exploratory behaviors on the object.

I. I NTRODUCTION

H UMAN beings have the remarkable ability to represent
object knowledge using multiple modalities, including

vision, touch, and proprioception [7]. Research in psychology
has shown that multiple modalities are required to capture
many object properties such as weight, roughness, and stiff-
ness. [21]. In contrast, most object recognition systems used
in robotics today use almost exclusively computer vision
techniques and thus rely on a single modality [30], [39], [34],
[31]. With a clear view of the target object, such systems
can achieve high accuracy, but suffer from several limitations.
For example, using vision alone, a robot cannot distinguish
between a heavy object and a light object that otherwise look
the same. Furthermore, such a system would be of little use
if the object is outside the robot’s field of view (e.g., grasping
an object inside of a bag). The human visual system is also
subject to these same limitations - not surprisingly, humans
need other sensory modalities to capture knowledge about
objects [21], [35], [11].

To address the inherent limitations of the visual sensory
modality, this paper proposes a novel behavior-grounded
method for interactive recognition of household objects using
proprioceptive and auditory feedback. While vision-based ap-
proaches typically use passive observation, our frameworkuses
active interaction to recognize the objects. More specifically,
proprioceptive feedback is extracted from the joint-torque val-
ues of the robot over the course of an interaction, while audi-
tory feedback is extracted from the Discrete Fourier Transform
of the sound detected during the interaction. The robot learns
a model for each sensory modality using a Self-Organizing

Fig. 1. The robot used in this study, shown here holding one ofthe 50
household objects used in the experiments.

Map, which is used to convert the high-dimensional input
from each modality into a discrete sequence of most-highly
activated states in the map. This feature representation reduces
the dimensionality of the sensory feedback, which allows the
use of standard machine learning methods designed to handle
sequential data. Using these extracted features, the proposed
method enables the robot to learn behavior-grounded object
recognition models, each of which is coupled with a specific
behavior and sensory modality.

The framework was tested with an upper-torso humanoid
robot (see Fig. 1), which interacted with 50 different household
objects, one of the largest number of objects used in robotics
experiments. The robot recognized the objects by extracting
features from its proprioceptive and auditory sensory streams,
while applying five different exploratory behaviors on the
objects: lift , shake, drop, crush, and push. The robot was
evaluated on the task of object recognition given the feedback
from either one or both of the sensory modalities used in this
paper. The results show that both auditory and proprioceptive
feedback, coupled with specific behaviors, contain information
indicative of the object being manipulated. In addition, the
robot was able to integrate feedback from multiple modalities
and multiple behaviors performed on each test object, which
resulted in recognition accuracy of over 98%. Further analysis
of these results gives a strong indication that equipping robots
with a diverse set of exploratory behaviors is necessary in
order to scale up interactive recognition methods to a large
number of objects.



II. RELATED WORK

A. Psychology and Cognitive Science

The work presented in this paper is directly inspired by
research in psychology and cognitive science, which highlights
the importance of sensory modalities other than vision for ob-
ject recognition tasks. For example, Sappet al. [35] described
a study in which toddlers were presented with a sponge that
was deceptively painted as a rock. As expected, the toddlers
believed that the object was a rock until the moment they
interacted with it (by touching it or picking it up). This and
several other studies (see [11]) illustrate that proprioceptive
information about objects can be very useful when vision alone
is insufficient.

Natural sound is also an important source of information.
It allows us to perceive events and to recognize objects and
their properties even when a direct line of sight is not available.
The ecological approach to perception provides the insightthat
listening consists of perceiving the properties of the sound’s
source (e.g., bouncing ball, car engine, footsteps, etc.),rather
than the properties of the sound itself (e.g., pitch, tone, etc.)
[8]. Thus, the human auditory system plays a crucial role in
both understanding and representing object knowledge. Our
hypothesis is that this association can be learned by coupling
behaviors performed on objects with the sounds produced
during these interactions.

These insights have been confirmed by multiple experimen-
tal studies. For example, Giordanoet al. [9] demonstrated that
humans can accurately recognize an object’s material (e.g.,
wood, glass, steel or plexiglass) when listening to the sounds
generated when the object is struck. Sound also allows us to
perceive many physical properties of objects. Grassiet al. [10]
showed that human subjects were able to provide reasonably
good estimates for the size of a ball dropped on plates by
simply hearing the impact sound. Motivated by these and other
examples, this paper investigates a method that allows a robot
to use sound as a source of information about objects in a
similar manner.

B. Robotics

Traditionally, most object recognition systems used by
robots have relied heavily on computer vision techniques
[30], [39], [31] and/or 3D laser scan data [34]. There has
been relatively little previous work dealing exclusively with
proprioceptive and auditory object recognition. One of thefew
examples is the work by Nataleet al. [25] in which a robot
was able to recognize seven objects with the help of a Self-
Organizing map using proprioceptive data extracted from the
robot’s hand as it grasped an object.

Proprioceptive data has also been used to estimate an
object’s mass and moment of inertia [16], [17]. Methods for
estimating the dynamics of a robot’s body (see [2], [12], [24],
[14]) could also be applied to estimate the mass of an object
or some other properties. In contrast, the research presented in
this paper explores how a general sequential representation for
high-dimensional sensory data, coupled with standard machine
learning algorithms, can be used by the robot to learn to
recognize the objects that it manipulates. Thus, the method

described here is not specific to proprioception, but can instead
be applied to two (and possibly more) different modalities.

In other related work, Nakamuraet al. [23] describe a
robot that uses proprioception along with visual and auditory
information when interacting with objects. The robot used one
modality to infer the outputs of another (e.g., whether an object
would make noise when picked up after only looking at it).
Metta et al. [22] show that integrating proprioception with
vision can bootstrap a robot’s ability to manipulate objects.

Similarly, there has been some work on the use of auditory
information for recognizing objects and their properties.One
of the first studies in this area was conducted by Krotkovet
al. [15]. Their robot was able to identify the material type
(aluminum, brass, glass, wood, or plastic) of several objects
by probing them with its end effector. Auditory-based material
recognition has also been the topic of research conducted
by Richmondet al. [33] [32], who described a platform for
measuring contact sounds between a robot’s end-effector and
objects made of different materials. The robot was able to
acquire acoustic models for four objects of different materials
by repeatedly striking the objects at different positions.

Torres-Jaraet al. [40] demonstrated a robot that can perform
acoustic-based object recognition using the sounds generated
when tapping on the objects with its end effector. When
tapping on a novel object, the spectrogram of the detected
sound was matched to one that was already in the training
set, which resulted in a prediction for the object’s type. This
allowed the robot to correctly recognize four different objects.

More recently, Sinapovet al. [38] have shown that object
recognition using auditory feedback can be scaled up to a
larger number of objects - 36 - and extended to multiple robot
behaviors (e.g., grasp, shake, tap, drop, push). The robot was
able to recognize with high accuracy both the type of object
and the type of interaction (i.e., exploratory behavior) using
only the detected sound.

Following this line of research, this paper describes a
method for interactive object recognition using a combination
of proprioceptive and auditory feedback. While most published
experiments with robots typically use less than 10 objects,
our method was evaluated using a large-scale experimental
study with 50 household objects, one of the largest number
of objects reported in the robotics literature. We build upon
our previous work in acoustic [38], [36] and proprioceptive[4]
object recognition. This paper uses the same data set as in [4],
but also uses the auditory feedback, which was previously
ignored. This study also improves the object recognition
model developed in [38] by allowing the robot to use a
weighted combination rule when combining feedback from
multiple sensory modalities and multiple behavior-grounded
recognition models.

.

III. EXPERIMENTAL SETUP

A. Robot

The robot used in this study was an upper-torso humanoid
robot, with two 7-DOF Barrett WAMs for arms and two 3-
finger Barrett Hands as end effectors (see Fig.1). The robot



Fig. 2. The 50 household objects used in this study (not shownto scale). The object set includes cups, toys, balls, bottles, and containers. The objects are
made of various materials, including plastic, metal, wood and paper.

was controlled in real time from a Linux PC at 500 Hz over
a CAN bus interface. The raw torque data was captured and
recorded at 500Hz using the robot’s low-level API.

The robot’s head was equipped with an Audio-Technica
U853AW cardioid hanging microphone. The microphone’s
output was first routed through an ART Tube MP Studio
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Fig. 3. Beforeandafter snapshots of the five behaviors used by the robot.

Microphone pre-amplifier, and subsequently processed through
a Lexicon Alpha bus-powered audio interface, which connects
to the PC using USB. Sound input was recorded at 44.1 KHz
using the Java Sound API over a 16-bit channel.

B. Objects

The robot interacted with a set of objects,O, consisting
of 50 common household objects, including cups, bottles, and
toys (see Fig. 2). The objects were made of various materials
such as metal, plastic, paper, foam, and wood. Objects were
selected using three criteria: 1) they must be graspable by the
robot; 2) they must not break or permanently deform when
the robot interacts with them; and 3) they must not damage
the robot.

C. Behaviors

The set of behaviors,B, consisted of five exploratory
behaviors that the robot performed on each object:lift , shake,
drop, crush, and push. The behaviors were performed with
the robot’s left arm, and encoded with the Barrett WAM API.
Fig. 3 showsbefore and after images for each of the five
exploratory behaviors. The raw proprioceptive data (i.e.,joint
torques) and the raw audio were recorded for the duration
of each behavior (start to end). Prior to the execution of each
trial, each object was placed in roughly the same configuration
(position and orientation). Due to human error, however, there
was still some variation of the grasp contact points, as wellas
the contact points with the object during thepushand crush
behaviors across multiple trials with the same object.

IV. L EARNING METHODOLOGY

A. Proprioceptive Feature Extraction

The first step in the feature extraction routine was to noise
filter the raw joint torque values of the left arm, which were
recorded during each interaction. As can be seen in Fig. 4,
the raw values were somewhat noisy, containing many spike
readings. To handle this noise, the raw data was filtered using
a filter of width 10, which checked for data points that lie more
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Fig. 4. Joint torque values forJ3 as the robot lifts the dumbbell object. The
thinner line shows the raw joint torques recorded using the robot’s low-level
API. The thicker line shows the filtered joint torques. See the text for filter
details.

than 3 standard deviations away from the window median. Any
such values were thrown out and replaced with the window
median. The time series was then smoothed using a moving-
average filter of size 10. The solid line in Fig. 4 shows
the resulting smoothed torque values after the noise-filtering
procedure was performed.

The proprioceptive feedback,Pi, from the ith interaction
was represented as a sequence of states in a Self-Organizing
Map (SOM) [13], one of several ways to quantize data
vectors. This representation was obtained as follows: let
Ti = [ti

1
, ti

2
, . . . , ti

li
] be the noise-filtered joint torque values

for some interactioni, such that eachtij ∈ R
7 denotes the

torque values for all 7 joints of the left arm at time stepj.
Given a set of joint torque recordsT = {Ti}

K
i=1

, collected
over K interactions with different objects, a set of individual
joint torque vectors was sampled at random and used as an
input training data set for the SOM. In other words, the SOM
was trained with seven-dimensional input vectors,tij ∈ R

7,
where each data point denoted a particular record of joint
torque values (for all 7 joints). To avoid overfitting and to
speed up the training process, only1/5 of the available input
data points were used for training. The Growing Hierarchical
SOM toolbox was used to train a 6 by 6 SOM (i.e., 36 total
nodes) using the default parameters1 for a non-growing 2-D
single layer map [5]. Figure 5 gives an overview of the training
procedure while Figure 6 shows how a torque record,Ti, can
be mapped to a discrete sequence of states in the SOM.

After training the SOM, each torque recordTi =
[ti

1
, ti

2
, . . . , ti

li
] was mapped to a sequence of SOM nodes, by

mapping each vectortij to a node in the map. A mapping
function was defined,Map(tij) → pi

j , where tij ∈ R
7 is

the input torque vector andpi
j is the node in the SOM

with the highest activation value given the current inputtij .
Thus, each torque recordTi was represented as a sequence,
Pi = pi

1
pi
2
. . . pi

li
, where pi

k ∈ Γp, Γp was the set of
nodes of the proprioceptive SOM, andli was the number of
samples in the torque recordTi, as shown in Fig. 6. Thus,
eachPi was represented as a discrete sequence over a finite
alphabet. This representation reduced the dimensionalityof

1Planar SOM with Euclidean distance metric, learning rateλ = 0.7, and5

training cycles. The size of the SOM (6 by 6) was heuristically chosen based
on prior work [38] and was not tuned to maximize performance. Parameters
governing the growth of the map did not affect the results because the training
option for a non-growing map was used.
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Fig. 5. Illustration of the procedure used to train the proprioceptive and
auditory Self-Organizing Maps.Proprioception (left column): Given a set of
joint torques recorded at 500 Hz during multiple interactions with different
objects, a set of vectors is sampled at random and used as a dataset for training
the SOM. Each of these vectors is inR

7 and denotes the values of the 7 joint
torques of the robot’s left arm at a particular point in time. Once trained, the
SOM can map any particular joint torque configuration to one ofthe SOM’s
states (the most highly activated state).Audio (right column): Given a set of
Discrete Fourier Transform (DFT) spectrograms, a set of column vectors is
extracted (each inR33) and used as a data set for training the auditory SOM.
The trained SOM can then map any particular DFT column vector from a
novel spectrogram to the SOM node with the highest activation value.

the proprioceptive feedback, thus affording the use of standard
machine learning algorithms designed to work on sequential
data.

B. Auditory Feature Extraction

Similarly, the auditory feedback from each interaction,Ai,
was also represented as a sequence of states in another Self-
Organizing Map (SOM) (see Figure 7). To do this, features
from each sound were first extracted using the log-normalized
Discrete Fourier Transform (DFT), using25 + 1 = 33 fre-
quency bins with a window of26.6 milliseconds, computed
every10.0 milliseconds. The SPHINX4 natural language pro-
cessing library was used to compute the DFT [19]. Figure 7
shows the resulting spectrogram after applying the Fourier
transform on a recorded sound. The spectrogram encodes the
intensity level of each frequency bin (vertical axis) at each
given point in time (horizontal axis).
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Fig. 6. Processing the proprioception data stream: a) The noise-filtered
torque data for all 7 joints recorded while the robot lifts the dumbbell object.
The horizontal axis denotes time while the color in each band indicates the
torque values for each particular joint (white indicates low values while black
indicates high values); b) The sequence of states in the SOM corresponding to
the torques recorded during this interaction, obtained after eachR

7 column
vector of torque data is mapped to a node in the SOM. The length of the
sequencePi is li, which is the same as the length of the horizontal time
dimension of the torque data shown in a). Each sequence tokenpi

j ∈ Γp,
whereΓp is the set of SOM nodes.
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Fig. 7. Processing the auditory data stream: a) The Discrete Fourier
Transform (DFT) spectrogram of the detected sound during one execution of
theshakebehavior on the mac&cheese box. The horizontal axis denotes time,
while the vertical dimension denotes the 33 frequency bins. Orange-yellow
color indicates high intensity, while blue-ish color denotes low intensity. b)
The sequence of states in the SOM corresponding to the DFT recorded during
this interaction, obtained after eachR33 column vector of the DFT was
mapped to a node in the SOM. Thus, the length of the sequenceAi is equal
to the number of column vectors of the input spectrogram. Each sequence
tokenai

j ∈ Γa, whereΓa is the set of SOM nodes in the auditory SOM.

As in the case with proprioceptive data, a 6 by 6 SOM
was trained on extracted column vectors from the set of DFT
spectrograms detected by the robot (see Figure 5). In other
words, the SOM was trained with input data points inR

33 that
represented the intensity levels for each of the 33 spectrogram
frequency bins at a given point in time.

Once the auditory SOM was trained, a column vector from
any particular spectrogram could be efficiently mapped to a
unique state in the SOM that has the highest activation value
given the input vector. Thus, each sound was represented as
a sequence,Ai = ai

1
ai
2
. . . ai

mi , where eachai
k ∈ Γa, Γa was

the set of nodes in the auditory SOM, andmi was the number
of column vectors in the spectrogram (see Fig. 7).

C. Data Collection

Let B = {lift , shake, drop, crush, push} be the set of
exploratory behaviors available to the robot. For each of
the five interactions, the robot performed ten trials with all
50 objects for a total of5 × 10 × 50 = 2500 recorded
interactions. During theith trial, the robot recorded a data
point of the form (Bi, Oi, Pi, Ai), where Bi ∈ B was the
executed behavior,Oi ∈ O was the object in the current
interaction,Pi = pi

1
pi
2
. . . pi

li
was the proprioceptive sequence

of most highly activated states in the proprioceptive SOM, and
Ai = ai

1
ai
2
. . . ai

mi was the auditory sequence of most highly
activated states in the auditory SOM. The recorded data set
and the source code for this paper are available on-line at
http://www.ece.iastate.edu/∼alexs/lab/datasets/.

D. Object Recognition from a Single Modality

Given a proprioceptive or an auditory feedback sequence,Pi

or Ai, detected as the robot performed behaviorBi on the test
object, the task of the robot was to estimate the correct object
label Oi for the object in the interaction. The robot solved
this problem by learning recognition models as follows. For
each behaviorB ∈ B, the robot learned recognition models
MB

p andMB
a , which could estimate the correct object label

Oi given the respective proprioceptive and auditory feedback
sequencesPi and Ai. For example, given a proprioceptive
sequencePi detected as the robot performed thelift behavior,
the proprioceptive recognition modelMlift

p could estimate
the probabilityPrlift

p (Oi = o|Pi) for each objecto ∈ O.
Similarly, the auditory recognition model could estimate the
probability of the object classPrlift

a (Oi = o|Ai) given the
auditory feedback sequenceAi. In both cases, the test object
was assigned the label with the highest estimated probability.

In practice, the modelsMB
p andMB

a can be implemented
by any machine learning method that can handle discrete
sequences over a finite alphabet (i.e., strings) as an input.In
this paper, these models were implemented by the k-Nearest
Neighbors algorithm, a distance-based method, which does not
build an explicit model of the training data [1], [3]. Instead,
given a test data point, it simply finds thek closest neighbors
and outputs a prediction, which is a smoothed average over
those neighbors. In this study,k was set to 3. An estimate
for the probability of each object, given the sequences, was
computed by counting the class labels of thek neighbors.
For instance, if two of the three neighbors had an object
class labelplastic ball then Pr(Oi = plastic ball) = 2

3
.

Similarly, if the class label of the remaining neighbor was
plastic cup, then Pr(Oi = plastic cup) = 1

3
. The value for

k was chosen heuristically, such that it is both large enough
to allow probabilistic interpretation of the model’s output, and
also small enough relative to the number of trials per object
that were used to train each of the robot’s behavior-grounded
recognition models (e.g., 9 trials when performing 10-fold
cross-validation).

The k-NN algorithm requires a distance measure, which can
be used to compare the test data point to the training data
points. Since each data point in this study was represented
as a sequence over a finite alphabet, the Needleman-Wunsch
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Fig. 8. Illustration of the procedure used to combine predictions from
the proprioceptive and auditory object recognition models.In this trial, the
robot dropped the test object and recorded the joint torque data and the
Discrete Fourier Transform of the audio signal. They were subsequently
discretized using the trained Self-Organizing Maps (one per modality). The
resulting proprioceptive and auditory sequences were fed as input to the object
recognition modelsMdrop

p andMdrop
a , whose outputs were combined using

weights corresponding the estimated performance of each model. The final
output was a probability estimate for each object label (the object pictures are
used for visualization only).

global alignment algorithm [26], [27] was used to estimate
the similarity between two sequences. While normally used
for comparing biological or text sequences, the algorithm is
applicable to other situations that require a distance measure
between two strings. The algorithm requires a substitutioncost
to be defined over each pair of possible sequence tokens,
e.g., the cost of substituting ‘a’ with ‘b’. Since each token
represents a node in a Self-Organizing Map, the cost for each
pair of tokens was set to the Euclidean distance between their
corresponding SOM nodes in the 2-D plane. Section V.A
describes the object recognition performance of the models
MB

p andMB
a for all behaviorsB ∈ B.

E. Combining Multiple Modalities

Finally, we show how the robot can combine the outputs
from its proprioceptive and auditory recognition models inan
efficient manner. Let(Bi, Otest, Pi, Ai)

N
i=1

be the recorded
data after the robot has performedN behaviors on the object
Otest. For example, this could be the sequential application
of the lift, shake, and drop behaviors. For the modelsMB

p

and MB
a , let wB

p and wB
a be the estimates for the models’

object recognition performance (e.g., accuracy estimatedby
performing cross-validation on the training set). Given these
estimates and the input data(Bi, Otest, Pi, Ai)

N
i=1

, the robot
could label the object with the object labelo that maximizes:

∑N

i [wBi

p PrBi

p (Otest = o|Pi) + wBi

a PrBi

a (Otest = o|Ai)]

In other words, given one or more interactions with the
same object, the robot combines the predictions from different
sensory modalities using estimates for the reliability of each
channel of information. Note that the reliability weights for
each modality are contingent on the behavior - e.g., auditory
feedback may be very reliable when dropping the object, but
much less reliable when the object is simply lifted. Figure 8
illustrates the combination of auditory and proprioceptive
feedback after performing an interaction with a test object.

It turns out that this method of integrating multiple modali-
ties is similar to the way humans complete the same task [7].
For example, when asked to infer an object property given
proprioceptive and visual feedback, humans use a weighted
combination of the predictions of the two modalities, where
the weights are proportional the estimated reliability of each
modality [7]. The weighted combination of model predictions
ensures that a sensory modality that is not useful in a given
context will not dominate over other more reliable modalities
or channels of information. For example, if it is expected that
the auditory object recognition model will not achieve high
accuracy when the robot performs thelift behavior (since the
object will generate little, if any, sound), then, in that context,
the prediction from that model should be combined using a
low reliability weight. The next section presents the results
after evaluating the specific modelsMB

p and MB
a for each

behaviorB ∈ B, as well as the weighted combination rule
that was just presented.

V. RESULTS

A. Object Recognition with a Single Behavior

The first experiment evaluates the performance of the pro-
prioceptive object recognition modelsMB

p and auditory object
recognition modelsMB

a for each behaviorB ∈ B using a sin-
gle behavioral interaction with a test object. The performance
of each model is reported in terms of the percentage of correct
predictions (i.e., accuracy) where:

% Accuracy =
# correct predictions
# total predictions

× 100

The performance is estimated using 10-fold cross-
validation: the set of data points(Bi, Oi, Pi, Ai)

N
i=1

, where
N = 2500, is split into ten folds corresponding to the ten trials
performed with each object. During each of the ten iterations,
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Fig. 9. Recognition rates for the robot’s behavior-grounded object recognition models (using both proprioceptive and auditory feedback) as a function of the
number of objects,n, in the data set. For each value ofn, 10-fold cross-validation was performed 20 different times,each with a different randomly selected
object subset of sizen. The solid lines indicate the resulting mean accuracy estimates while the error bars indicate the standard deviation of those estimates.

nine of these folds are used for training the models and the
remaining fold is used for evaluation.

The weighted combination of the auditory and propriocep-
tive models is also evaluated. During each round of the cross-
validation procedure, the reliability weightswB

p and wB
a for

each behaviorB ∈ B are estimated by the robot by performing
cross-validation on the training set only (i.e., the accuracy rate
for each modality and behavior combination is estimated from
the training set, without access to the test set).

Table I shows the resulting object recognition accuracies for
each combination of behavior and modality, as well as that
of the weighted combination model. As a reference, a chance
predictor would be expected to achieve(1/|O|)×100 = 2.00%
accuracy (for|O| = 50 different objects). Both the auditory
and proprioceptive recognition models perform substantially
better than chance, with the auditory model achieving slightly
better accuracy on average. It is clear that the reliabilityof each
modality is contingent on the type of behavior being performed
on the object. For example, when the object is lifted, the
proprioceptive model fares far better than the auditory model
(since little sound is generated when an object is lifted). When
performing thepushbehavior, on the other hand, the auditory
modality dominates in performance.

Overall, the auditory stream is most informative when the
object is dropped. The sound produced when the object hits
the table implicitly captures many properties of the object:
material type, size, and even shape. Proprioception, on the
other hand, is most reliable when the object is crushed. The
proprioceptive sequence implicitly captures the compliance
and the height of the object through the initial contact force
and the timing of the first contact with the object. As expected,
proprioception is also useful when lifting the object, since it
implicitly captures the object’s weight.

TABLE I
OBJECTRECOGNITION ACCURACY USING K-NN MODEL

Behavior Audio Proprioception Combined

Lift 17.4 % 64.8 % 66.4 %
Shake 27.0 % 15.2 % 29.4 %
Drop 76.4 % 45.6 % 80.8 %
Crush 73.4 % 84.6 % 88.6 %
Push 63.8 % 15.4 % 65.0 %

Average 51.6 % 45.1 % 66.0 %

The results also show that combining the predictions from
the two modalities improves the recognition accuracy for each
of the five behaviors. This improvement is greatest for be-
haviors that yield reasonable performance for both modalities
(e.g.,drop andcrush). However, even for behaviors where one
of the modalities is far less reliable than the other (e.g.,lift ),
there is still an improvement in object recognition accuracy.
These results indicate that the use of multiple sensory modal-
ities in object recognition models leads to greater robustness
and higher overall accuracy.

B. Scalability with a Single Behavior

The second experiment looks at how the object recognition
performance varies as the robot interacts with more and more
objects. Most studies in robotics typically use a small number
of objects. Presumably, it may be possible to achieve a high
recognition accuracy when dealing with a small set of objects,
but low recognition accuracy when the number of objects is
increased. To test this hypothesis, the number of objects,n,
was varied from 2 to 50 and for eachn smaller than 50, the
model was evaluated on 20 different randomly chosen object
subsets of sizen. For each subset, the accuracy of each of
the five behavior-grounded models was recorded and used to
compute the expected accuracy (and standard deviation) for
each value ofn.

Figure 9 shows the mean accuracies and standard deviations
for all five behavior-grounded recognition models as a function
of the number of objects in the data set, when using the
weighted combination of the proprioceptive-auditory model
outputs. With a small number of objects, the robot is able
to achieve a high recognition rate. As the robot interacts with
more and more objects, however, the recognition rate drops
since a larger set of objects inherently contains objects with
similar physical properties. The same trend can also be seenin
Figure 10, which shows the mean accuracy rates for the three
modality conditions, averaged across all behaviors. Therefore,
robots that learn about objects should ultimately be evaluated
on large sets of objects in order to obtain more realistic and
robust performance estimates.

C. Object Recognition with Multiple Behaviors

The next experiment evaluates whether the robot’s object
recognition performance on all 50 objects can be improved by
applying multiple behaviors to the test object and combining
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Fig. 10. Average recognition accuracies from a single behavioral interaction
as the number of objects,n, is varied from2 to 50. For each value ofn, 10-
fold cross-validation was performed 20 different times, eachwith a different
randomly selected object subset of sizen.

the resulting predictions. For example, it should be easierto
recognize the test object if the robot lifts, shakes and then
drops the object, than if it applies just a single behavior.

In this experiment, the number of available interactions with
the test object is varied from 1 (the default case, used to gen-
erate Table I) to 5 (i.e., performing all five behaviors). When
estimating the performance for 2, 3 and 4 interactions with the
object, all possible combinations of behaviors are considered
(e.g., for 2 interactions, there are 10 possible combinations),
and the mean accuracy is reported. Model predictions from
multiple interactions with the object are combined using the
reliability weights estimated for each combination of behavior
and modality, as described in the previous section.

Figure 11 shows the results of this experiment. Not surpris-
ingly, the recognition accuracy improves dramatically as the
robot interacts with the object using more and more behaviors -
once all five behaviors are performed, it reaches 98.2%. This
shows thatinteractive object recognition can provide highly
accurate classification for a large set of objects, as long as
the robot is allowed to perform several behavioral interactions
with the object and combine their resulting predictions in an
efficient manner.

A subsequent question to answer is whether the same type
of recognition improvement can be achieved by performing the
same behavior multiple times on the test object (as opposed to
applying multiple different behaviors). An evaluation experi-
ment was conducted in which the data set was split into 5 folds
(each containing 2 trials with all five behaviors performed
on each object) and 5-fold cross validation was performed.
In other words, during each of the five iterations, the model
was trained on 4 of the folds, and tested on the remaining
one. For each of the five behaviors, the test set now contains
two instances of the same behavior applied on each of the
50 objects. The test set also contains 4 instances for each
of the

(

5

2

)

= 10 unique combinations of different behaviors
(e.g., lift-shake) per object. After all five rounds of cross-
validation, the individual accuracies of the five behaviorswere
estimated from the recorded model outputs when compared to
the actual object IDs. The accuracies for each combination

1 2 3 4 5
40

50

60

70

80

90

100

Number of Behaviors with Test Object

%
 O

bj
ec

t R
ec

og
ni

tio
n 

A
cc

ur
ac

y

 

 

Proprioception only
Audio only
Combined

Fig. 11. Object recognition performance with all 50 objects using pro-
prioceptive and auditory feedback with k-NN as the number of interactions
with the test objects is varied from 1 (resulting in the average per behavior
accuracies shown in Table I) to 5 (applying all five behaviorson the object,
and combining the resulting predictions). Overall, when performing all five
behaviors on the test object, the robot’s object recognition accuracy is98.2%.

of exploratory behaviors were also estimated and stored in a
5 × 5 matrix. The diagonal entries of this symmetric matrix
contain the5 accuracy estimates obtained when performing
the same behavior twice, while the 10 lower-diagonal entries
contain the accuracy obtained when combining feedback from
each of the 10 unique pairs of behaviors. These estimates were
used to compute the improvement in recognition accuracy for
different combinations of behaviors as described below.

Let acc(Mi,Mj) be the estimated recognition accuracy
when combining the outputs of recognition modelsMi and
Mj associated with behaviorsBi and Bj , and letacc(Mi)
and acc(Mj) be their individual accuracies estimated when
performing a single behavior execution on the test object.
Given two behaviorsBi and Bj (which may be the same if
i = j), the recognition improvement (RIij) obtained when
applying the two behaviors sequentially on the test object
can be measured relative to the recognition accuracy of the
individual behaviors, i.e.,

RIij = acc(Mi,Mj) −
acc(Mi) + acc(Mj)

2

With this formulation we can test whether combining feed-
back from two different behaviors results in greater recognition
boost than combining feedback from two executions of the
same behavior. The results of this evaluation, shown in Figure
12, confirm that the recognition improvement is higher when
two different exploratory behaviors are applied on the test
object, as opposed to applying the same behavior twice.
This result gives a strong indication that the diversity of the
exploratory behaviors is more important than the number of
times each behavior is executed when classifying an object.

D. The Boosting Effect of Exploratory Behaviors

The previous experiments showed that by performing mul-
tiple exploratory behaviors a robot can query multiple recog-
nition models, each tied to a specific behavior and sensory
modality, and thus dramatically improve its object recognition
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Fig. 12. Object recognition improvement obtained by combiningmodel
outputs after two executions of thesamebehavior as well as two executions
of different behaviors, estimated using 5-fold cross-validation. In allcases,
the recognition improvement is higher when combining feedbackfrom two
distinct exploratory behaviors. When applying the same behavior twice, the
standard deviation of the recognition improvement was estimated from 5
samples, one for each behavior. When applying two different behaviors, the
standard deviation was estimated from 10 samples, one for eachunique pair
of behaviors.

rate. But what is the cause of this apparent boost in recognition
rate? To answer this question, we turn to research in machine
learning theory, which has shown that the rate of classification
improvement of a classifier ensemble can be linked to pairwise
measures of classifier diversity [6], [18]. For example, combin-
ing classifier predictions from two diverse or complementary
classifiers generally results in higher recognition rates [18].
These machine learning results rely on the assumption that
the data points in the original data set are identically and
independently distributed (i.i.d.) and that each individual clas-
sifier is trained on a biased subset of the original data set. In
our setting, each behavior-grounded recognition model is also
trained on a biased subset of the data set, corresponding to the
data produced by the specific behavior and sensory modality
associated with that model. However, the i.i.d. assumption
is clearly violated – for example, the sounds produced by
dropping the objects come from a different distribution than
the sounds produced when shaking the objects. The data points
are also not independently distributed, since the initial grasp
configuration can influence both the proprioceptive and the
auditory feedback produced by the subsequent exploratory
behaviors. Despite these differences, the next experimentex-
amines whether the relationship between classifier diversity
and recognition improvement still holds.

Given a behavior-grounded recognition modelMi, let yi

= [y1,i, . . . , yK,i]
T be a K− dimensional binary vector,

such thatyk,i = 1 if the model Mi correctly labels the
object explored during trialk, and 0 otherwise. The pairwise
diversity between two modelsMi andMj can be measured
by comparing the corresponding vectorsyi andyj. One such
metric is the disagreement measure [18], which is defined as:

DISi,j =
N01 + N10

N11 + N10 + N01 + N00

whereNpq is the number of trials (out ofK) for which yk,i =
p and yk,j = q, e.g., N10 is the number of trials in which

TABLE II
THE RELATIONSHIP BETWEEN A PAIR OF RECOGNITION MODELS
M

i ANDMj CAN BE EXPRESSED USING A2 X 2 TABLE , WHICH
SHOWS HOW OFTEN THEIR PREDICTIONS COINCIDE(N11 AND

N
00) AND HOW OFTEN THEY DISAGREE(N01 AND N

10).

Mj correct Mj wrong

Mi correct N11 N10

Mi wrong N01 N00
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Fig. 13. The relationship between the pairwise disagreementmeasure and
the recognition improvement for each of the 10 possible pairs of behaviors,
under three different modality conditions (audio only, proprioception only, or
combined), estimated using 10-fold cross-validation.

the object was correctly recognized by modelMi, but mis-
classified by modelMj (see Table II). In other words, the
disagreement measure is equal to the number of trials in which
one model was correct and the other was wrong divided by the
total number of trials. Calculating this measure is equivalent
to computing the normalized Hamming distance between the
vectorsyi andyj. The range of this measure is always in the
interval of 0.0 to 1.0, with low values indicating that the two
models tend to agree, regardless of whether they are right or
wrong.

Figure 13 shows the relationship between the disagreement
measure and the recognition improvement (as defined in the
previous subsection) for each one of the 10 unique pairs of
behaviors and for all three modality conditions: audio only,
proprioception only, or combined. The plot shows that the
amount of disagreement is linearly related to the expected
improvement. Thus, the collection of the robot’s behavior-
grounded recognition models acts as an ensemble of classifiers.

This is indeed a surprising result, since in the machine
learning literature it is assumed that the classifiers in thecol-
lection are trained on identically and independently distributed
data points. Nevertheless, even when the i.i.d. assumptionis
violated, the concept of classifier diversity was found to be
useful for explaining the improvement in recognition accuracy
in the robot experiments. This finding establishes an important
link between research in machine learning theory and studies
in robotics that make use of multiple exploratory behaviors
and sensory modalities (see [37] for further details). Overall,
the results from this experiment highlight the importance of



enabling robots to perceive objects using multiple, as wellas
diverse, channels of information (e.g., different behaviors and
different sensory modalities).

VI. CONCLUSIONS ANDFUTURE WORK

The main contribution of this paper is a framework for inter-
active object recognition, that can handle multiple exploratory
behaviors and multiple sensory modalities. The proposed
object recognition framework was evaluated using a large-
scale experimental study, in which the robot manipulated 50
different objects using five exploratory behaviors (lift , shake,
drop, crush, andpush) and two sensory modalities (audio and
proprioception). The feedback from the two sensory modal-
ities, detected by the robot while interacting with an object,
was represented as two sequences of the most highly activated
nodes in two Self-Organizing Maps (one for each modality).
Using global sequence comparison coupled with the k-Nearest
Neighbors algorithm, the robot was able to recognize the
explored object with accuracy substantially better than chance.
The robot was also able to compute estimates for the reliability
of each sensory modality and use them to improve its object
recognition accuracy.

More importantly, after applying all 5 exploratory behaviors
on the test object, the robot’s recognition accuracy reached
98.2%, highlighting the importance of combining informa-
tion extracted using multiple behaviors and multiple sensory
modalities. Analysis of the results also showed that the learned
behavior-grounded recognition models act as an ensemble of
classifiers. Thus, by applying a set of diverse behaviors on an
object, the robot can boost its recognition accuracy.

These results give a strong indication that traditional vision-
based object recognition systems can be further improved by
the additional use of auditory and proprioceptive feedback.
This is particularly important for objects that may not be easily
recognized using vision alone (e.g., a heavy and a light object
that look identical). Thus, active interaction (as opposedto
passive observation) is a necessary component for resolving
perceptual ambiguities about objects. Active object exploration
is one of the hallmarks of human and animal intelligence (see
[29], [20]), which lends further credence to our approach to
object recognition using exploratory behaviors.

There are several possible avenues for future work. First,
other methods for dimensionality reduction (e.g., vector quan-
tization, or Spatio-Temporal Isomap, as used in [28]) can be
applied in order to find meaningful patterns in the robot’s
proprioceptive and auditory sensory streams. Second, while
the robot in our study was tested on an object recognition task,
it is also possible to use auditory and proprioceptive feedback
to detect certain physical properties of the object (e.g., its
material type, whether it is hollow or solid, etc.). Some
preliminary results indicate that after applying all 5 behaviors
on a novel object, the robot can detect its material type
and other physical properties significantly better than chance
[36]. Furthermore, the method for integrating informationfrom
proprioceptive and auditory feedback can be generalized toan
arbitrary number of sensory modalities, allowing the robotto
detect the reliability of each modality for each exploratory

behavior. Integrating proprioceptive and tactile information
from the robot’s hand, as well as color and depth information
from the robot’s camera will allow the robot to further improve
its ability to learn about common household objects. Robots
that can interactively explore objects and make use of multiple
sensory modalities will ultimately be better suited for working
in human-inhabited environments.
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